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Gradient models: Gaussian lattice free �eld: D �� Zd

Hamiltonian:

H (�) :=
1

4d

X
x;y2Zd; jx�yj=1

�
�x � �y

�2
; � = f�xg ; �x 2 R;

�D (d�) =
1

ZD
exp [�H (�)]

Y
x2D

d�x
Y
x=2D

�0 (d�x) :

Random walk representation of covariances: XDn ; n 2 N; the standard symmetric
random walk on Zd; killed when exiting D :

covD
�
�x; �y

�
= ERWx

�X
n
1y
�
XDn

��



Consequence: For D = DN := f�N; : : : ; Ngd :

var (�0) �

8><>:
const�N for d = 1

const� logN for d = 2
O (1) for d � 3

:

For d � 3; the limit �eld as N !1 exists, with slowly decaying correlations

covZd
�
�x; �y

�
� const

jx� yjd�2
:

In contrast, the massive �eld with Hamiltonian

H (�) :=
1

4d

X
x;y2Zd; jx�yj=1

�
�x � �y

�2
+m

X
x
�2x; m > 0

has exponentially decaying correlations in all dimensions.

There are many generalizations and open problems:



� Replace
�
�x � �y

�2
by a more general function V

�
�x � �y

�
; V strongly con-

vex: Hel¤er-Sjöstrand representation: RWRE. What if V is not convex? (Cotar-
Deuschel 2009 using decimation, Adams-Kotecky-Müller 2016 using �eld theory).

� Gaussian �elds without random walk representation: E.g. membrane model:

H (�) := const�
X
x
(��x)

2 ;

where

(��)x :=
1

2d

X
y:y�x

�
�y � �x

�
:

For d = 1 : Integrated random walk.

This model has �critical dimension�4:



E¤ect of local pinning at the origin, so-called �-pinning with pinning parameter " > 0:

�"D (d�) :=
1

Z"D
exp [�H (�)]

Y
x2D

(d�x + "�0 (d�x))
Y
x2@D

�0 (�x) ;

where

Z"D :=
Z
RD
exp [�HN (�)]

Y
x
(d�x + "�0 (d�x))

Y
x2@D

�0 (�x) :

In the gradient case: Strongly localizes the free �eld, i.e. makes it �massive�: If
DN " Zd, then

lim
N!1

�"DN

exists for all d, and has exponentially decaying correlations, and a positive density
of zeros. d � 3 by Brydges, Fröhlich, and Spencer 1982. d = 2: B-Brydges 2000,
Deuschel-Velenik, Io¤e-Velenik 2000, B-Velenik 2001.



First step: Positivity of the surface tension. For all d and " > 0

�" := lim
N!1

1

jDN j
log

Z"DN
ZDN

> 0; 8" > 0:

Second step: ExpansionY
x2D

(d�x + "�0 (d�x)) =
X
A�D

"jAj
Y
x2A

�0 (d�x)
Y

x2DnA
d�x;

leading to an expansion of the measure

�"D =
X
A�D

�"D (A)�DnA

where �DnA is the free �eld on DnA and

�"D (A) :=
Z"=0DnA
Z"D

"jAj:



Gradient model: Let A be the random subset with distribution �"D:

� d � 3 : 9p ("; d) > 0 such that 8D; x 2 D; C � Dn fxg

�"D (x 2 AjAn fxg = C) � p:

� Not true for d = 2; but 8B � D

�"D (A \B = ;) � (1� p)jBj :

Combined with a random walk representation:

cov�"D

�
�x; �y

�
=

X
A�Zd

�" (A)ERWx
�X

n
1y
�
XA

c[D
n

��
which decays exponentially in jx� yj.



A result in B.-Velenik 2001:

var�" (�x) �
X
n
ERWx

�
(1� p")jRnj 1x (Xn)

�
:

Using re�ned LD properties for the range (Donsker-Varadhan, B., Sznitman, van den
Berg-B-den Hollander), one gets the precise behavior, e.g. for d = 2; " � 0:

The domination of � by Bernoulli is rather delicate in d = 2.

Remark: The above expansion is particularly simple for the �-pinning case. More gen-
eral local attractions to 0 can be handled, too, for instance adding to the Hamiltonian
a summand

�
X
x
"I (j�xj � a) ;

and leaving the reference measure Lebesgue.



Pinning for the membrane model (jointly with Alessandra Cipriani and Noemi
Kurt): Gaussian model with Hamiltonian

H (�) :=
X
x
(��)2x =

D
�;�2�

E
;

where � is the discrete Laplace operator.

�N :=
1

ZN
exp [�H (�)]

Y
x2DN

d�x
Y

x=2DN
�0 (�x) ;

�"N :
Y

x2DN
d�x  

Y
x2DN

(d�x + "�0 (d�x)) :

In physics literature: Models for membranes: Sti¤er than the gradient model. Leibler
1989, Lipowsky 1995, and others.

The di¢ culty: Much less is known or true (for instance correlation inequalities, random
walk representation).



The critical dimension is 4 : For d � 5, the �eld (without pinning) exists on Zd with
decay of correlations of order jx� yj4�d : For d = 4; the variance of �0 is of order
logN:  in the class of logarithmically correlated models.

Remark: Interesting for d = 1 : Sinai, Caravenna-Deuschel, Dembo-Gao and others.

Question: Does pinning localize the �eld in a strong sense?

Positivity of the surface tension for d � 2 was proved by Sakagawa just recently.
(earlier result d � 4).

Bernoulli domination: Trivial for d � 5; but not known for d � 4. My conjecture:
False for d = 2; 3; but true in the above form for d = 4:



Theorem Let d � 5. For all " > 0; there exist � (d; ") ; C (d; ") > 0 such that���cov"N �
�x; �y

���� � C ("; d) exp [�� (d; ") jx� yj] :
(We don�t know of limN!1 �"N exists).

Main problem: Random walk representations seem to be of no use.

Method of proof: Expansion as above

cov"N

�
�x; �y

�
=

X
A�DN

�" (A)GA (x; y)

where here y 7! GA (x; y) for x 2 DNnA satis�es

GA (x; y) = 0; y 2 A [DcN ;
�2yGA (x; y) = �x;y:

Question: If A is �su¢ ciently dense�does this imply the exponential decay?



Question about PDEs (in continuous space): Let


 := Rdn
[
x2ZdBr (x) ; r < 1=2;

where Br (x) is the closed ball of radius r around x: Consider in 
 the equation
�2u = f with f of compact support, and Dirichlet boundary conditions for u and
ru: How does one prove exponential decay of u?

Remark: The delicacy comes from the boundary conditions. If �u = 0 on the
boundary, then easy.

Vladimir Mazya: Crucial is an equivalence of norms: Fur u�s satisfying the boundary
conditions

kuk2H2(
) := kuk
2
2;
 + kruk

2
2;
 +




r2u


2
2;


�



r2u


2

L2(
)

which uses the high density of the �trapping� regions Br (x) and the boundary con-
ditions.



Cn := Bconst�n (0) and smooth interpolating �n = 1 on C
c
n+1 and = 0 on Cn: For

u with �2u = 0 in 
 \ Ccn+1

kuk2
H2
�
Ccn+1

� = k�nuk2
H2
�
Ccn+1

� � k�nuk2H2(
) � const� 


r2 (�nu)


2L2(
)
� const�




r2 (�nu)


2L2(Cn+1nCn)
� const�kukH2(Cn+1nCn)

� const�

0@kuk2H2(Ccn) � kuk2H2�Ccn+1�
1A

which proves the exponential decay. This argument works for any 
 which is �porous�
enough.

In our case: Everything is on the lattice, and �porosity� is de�ned via �"; the law of
the random trap con�guration A.



First step: One de�nes a random weighted Sobolev norm: E � Zd

kuk2H2(E);A :=
X
x2E

u (x)2

1 + d (x;Ao)2d+3
+

X
x2E

jru (x)j2

1 + d (x;Ao)d+2
+

X
x2E

���r2u (x)��� ;
where Ao is the set of lattice inner points of A: Then

kuk2H2(E);A � const (d)�
X
x2E

���r2u (x)��� :

In the Mazja-argument: important that the partial summations inside Cn+1nCn leads
via derivatives of �n to coe¢ cients which are small when d (x;Ao) is large. This leads
to random Cn := Cn;A which are growing faster in regions where Ao is thin.



More precisely: De�ne

�A (x; y) := min

:x!y

j
jX
k=1

1

1 + d
�

k;A0

�2d+3;
and put

Cn := fx : �A (0; x) � 10ng :

Up to now, nothing really depends on d:

For d � 5 it is easy to prove that �" dominates a Bernoulli measure in a strong sense:

�" (x 2 AjAn fxg = B) � p� (") > 0:

and then Cn and �n can be chosen such that diam (Cn) � const�n with over-
whelming �"-probability.



Remark: Although not a problem for the theorem, the necessity to useA0 is awkward:
At an isolated point, we don�t know what the boundary conditions are.

Open problems:

� What about d = 4 or even d = 2; 3? Positivity of surface tension was proved by
Sakagawa. The strong Bernoulli domination is not true. We don�t know if the
weaker version

�" (A \B = ;) � (1� p ("))jBj ; 8B

holds. An adaptation of the Mazja-type argument would probably be possible.

� The only place where the Bernoulli domination is used is to prove the linear
increase of diam (Cn) which may follow from much weaker notions.



� Properties of non Gaussian cases? For instance

H (�) :=
X
x
V (��x) ; V convex.

� Wetting transitions? Here one conditions on f�x � 0; 8xg ; but still has a pin-
ning parameter ": Does there exists "cr (d) > 0; such that for " < "cr is not
pinned (i.e. entropy repulsion wins), and for " > "cr; pinning wins.

� Many interesting problems other than pinning: E.g. scaling limits of level sets in
the critical dimension 4?


