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Gradient models: Gaussian lattice free field: D CC 72

Hamiltonian:

H@) =, Y (6-6,) 6={a}, bR

CB,yEZd, |$_y|:1

up (do) = —exp[ H ()] [I dox 1] 60 (dey)-

x€D x¢ D

Random walk representation of covariances: X , n € N, the standard symmetric
random walk on Zd, killed when exiting D :

covp <§bx, ¢y> = B3 (Zn 1y (X;b)))



Consequence: For D = Dy :={—N, ..., N}d .

const XN  ford=1
var (¢g) =~ ¢ const x log N ford =2 .
O (1) ford > 3

For d > 3, the limit field as N — oo exists, with slowly decaying correlations

COVy4d (qu, qby) ~

const
z —y|d?

In contrast, the massive field with Hamiltonian

1
H@)=— Y (6:-9,) +m¥ 6% m>0
LE,yEZd, |$_y|:1 Cl’,‘

has exponentially decaying correlations in all dimensions.

There are many generalizations and open problems:



2
e Replace (%; — gby> by a more general function V (qﬁm — qby) , V strongly con-
vex: Helffer-Sjostrand representation: RWRE. What if V' is not convex? (Cotar-
Deuschel 2009 using decimation, Adams-Kotecky-Miiller 2016 using field theory).

e Gaussian fields without random walk representation: E.g. membrane model:
H (¢) := const x 3 (Ag,)?,
T

where

y.y~x
For d = 1 : Integrated random walk.

This model has “critical dimension” 4.



Effect of local pinning at the origin, so-called d-pinning with pinning parameter € > O:

1

wp (d) = exp [~ H ()] 1] (dé, +edo(des)) 11 d0(9z)
D x€D x€0D
where
2= [ @@= Hy O[] (@05 + 200 (46,) [ b0(6s)-
x€edD
In the gradient case: Strongly localizes the free field, i.e. makes it “massive”: If
Dy 1 Z%, then
li 5
Nlnoo KDy

exists for all d, and has exponentially decaying correlations, and a positive density
of zeros. d > 3 by Brydges, Frohlich, and Spencer 1982. d = 2: B-Brydges 2000,
Deuschel-Velenik, loffe-Velenik 2000, B-Velenik 2001.



First step: Positivity of the surface tension. For all d and € > 0

Z€
€8 := lim log Dy

>0, Ve > 0.
N—oco |[Dy| ~ Zpy

Second step: Expansion

[1 (d¢, +edo(dd)) = > e ] do(de,) [1 dos,

xeD ACD x€A reD\A
leading to an expansion of the measure

up= Y, vp(A)pp\a
ACD
where pip\ 4 is the free field on D\ A and
7e=0

D\A
vy (A) = ZS\ elAl
D




Gradient model: Let A be the random subset with distribution V%.

e d>3: dp(e,d) >0suchthat VD, x € D, C C D\ {«x}
V5 (z € Al A\ {2} = C) > p.

e Not true ford =2, but VB C D

vH(ANB =0) < (1-p)Bl

Combined with a random walk representation:

COV e (gbx, qﬁy) — Z V¢ (A) EEW (Zn 1y (X,f;lcuD))

AcCzd

which decays exponentially in |z — y]|.



A result in B.-Velenik 2001
vary, (¢) < > ERY (1 = pe) Pl 14 (X)) .
mn

Using refined LD properties for the range (Donsker-Varadhan, B., Sznitman, van den
Berg-B-den Hollander), one gets the precise behavior, e.g. ford =2, ¢ ~ 0.

The domination of v by Bernoulli is rather delicate in d = 2.

Remark: The above expansion is particularly simple for the -pinning case. More gen-
eral local attractions to 0 can be handled, too, for instance adding to the Hamiltonian

a summand
_ZEI(|¢x| S a)?
X

and leaving the reference measure Lebesgue.



Pinning for the membrane model (jointly with Alessandra Cipriani and Noemi
Kurt): Gaussian model with Hamiltonian

H(¢) = (A¢) = (¢, 0%),

where A is the discrete Laplace operator.

uy = —ewl=H (@) T] do, TT so(0,).

xeD :C§EDN

H dqba: e H (dQSx + edg (d¢x)) .

x€D N x€D N

In physics literature: Models for membranes: Stiffer than the gradient model. Leibler
1989, Lipowsky 1995, and others.

The difficulty: Much less is known or true (for instance correlation inequalities, random

walk representation).



The critical dimension is 4 : For d > 5, the field (without pinning) exists on Z¢ with
decay of correlations of order |x — y|4_d. For d = 4, the variance of ¢ is of order
log N. ~~ in the class of logarithmically correlated models.

Remark: Interesting for d = 1 : Sinai, Caravenna-Deuschel, Dembo-Gao and others.
Question: Does pinning localize the field in a strong sense?

Positivity of the surface tension for d > 2 was proved by Sakagawa just recently.
(earlier result d > 4).

Bernoulli domination: Trivial for d > 5, but not known for d < 4. My conjecture:
False for d = 2, 3, but true in the above form for d = 4.



Theorem Let d > 5. For all € > 0, there exist (d,e),C (d,&) > 0 such that

‘covf\f (qu, gby)‘ < C(e,d)exp[-n(d,e) |z —yl|].
(We don't know of limp_, o, pf; exists).

Main problem: Random walk representations seem to be of no use.

Method of proof: Expansion as above

covyy (qba;, gby) = > v (A)Gs(z,y)

ACDy
where here y — G 4 (x,y) for © € D\ A satisfies

Ga(z,y) = 0, yc AU DY,

Question: If A is “sufficiently dense” does this imply the exponential decay?



Question about PDEs (in continuous space): Let

Q = R U, cqdBr (@), r<1/2,

where By (x) is the closed ball of radius r around z. Consider in Q the equation
A%y = f with f of compact support, and Dirichlet boundary conditions for w and
Vu. How does one prove exponential decay of u?

Remark: The delicacy comes from the boundary conditions. If Au = 0 on the
boundary, then easy.

Vladimir Mazya: Crucial is an equivalence of norms: Fur u's satisfying the boundary
conditions

2 {112 2 2. 12 o2,
lullfr) = Il + IVuli o+ |[V2ul, o ~ |[V2ul o)
which uses the high density of the “trapping” regions By (x) and the boundary con-

ditions.



Chn = Beconst xn (0) and smooth interpolating 17,, = 1 on Cr,1 and = 0 on Cp. For
u with A%y = 0 in QﬂC’fL_I_l

2 2 : 2 :
U - U < U < const X ||V u
llz(ce,) = Il e,y = vl = 192 )
5 2
< const X ‘ \Y (Unu)HL2(Cn+1\Cn)
< const X [[ull g2, 1\ )
/ 2 2
< constx { el — ol o ))

n—+1
which proves the exponential decay. This argument works for any 2 which is “porous”
enough.

In our case: Everything is on the lattice, and “porosity” is defined via v¢, the law of
the random trap configuration A.



First step: One defines a random weighted Sobolev norm: E C Z¢

u(z)? Vu ()|

w2 my 4= D + 3 + 3 [V2u ()
H4(F),A x€E1+d(x7A0)2d+3 x€E1+d($,AO)d+2 a:EE‘

Y

where A is the set of lattice inner points of A. Then

lull 2y 4 < const (d) x > V2u(z)|.
rel

In the Mazja-argument: important that the partial summations inside C,,11\Ch, leads
via derivatives of 7),, to coefficients which are small when d (x, .A°) is large. This leads
to random Cp, := C), 4 which are growing faster in regions where A is thin.



More precisely: Define

Y] 1

5"4 (33, y) = ’yr:gﬂy I{;zzjl 14d (/yk AO) 2d+3’

and put
Cn:={x:564(0,z) <10n}.

Up to now, nothing really depends on d.

For d > 5 it is easy to prove that v* dominates a Bernoulli measure in a strong sense:

v (x € A|A\{z} =B)>p (¢) > 0.

and then C}, and 7,, can be chosen such that diam (C}) < const xn with over-
whelming v*-probability.



Remark: Although not a problem for the theorem, the necessity to use A is awkward:
At an isolated point, we don't know what the boundary conditions are.

Open problems:

e What about d = 4 or even d = 2,37 Positivity of surface tension was proved by
Sakagawa. The strong Bernoulli domination is not true. We don't know if the
weaker version

E(ANB=0)<(1—-p()B, vB

holds. An adaptation of the Mazja-type argument would probably be possible.

e The only place where the Bernoulli domination is used is to prove the linear
increase of diam (C'y,) which may follow from much weaker notions.



e Properties of non Gaussian cases? For instance

H(¢) :=> V(A¢,), V convex.

e Wetting transitions? Here one conditions on {¢, > 0, Vx}, but still has a pin-
ning parameter €. Does there exists ecr (d) > 0, such that for € < e¢r is not
pinned (i.e. entropy repulsion wins), and for € > e¢r, pinning wins.

e Many interesting problems other than pinning: E.g. scaling limits of level sets in
the critical dimension 47



