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1. INTRODUCTION

These notes discuss variational formulas, Busemann functions, and fluctuation exponents for the
exactly solvable corner growth model with i.i.d. exponential weights. This is a preliminary version
of text for the proceedings of the 2017 American Mathematical Society Short Course on Random
Growth Models, organized by Michael Damron, Firas Rassoul-Agha and T.S. and held January 2-3
in Atlanta. This version does not yet have all the intended results nor complete citations of relevant
past work.

Notation, definitions and terminology. Z>o = {0,1,2,3,...} and Z-¢ = {1,2,3,...}. The
standard basis vectors of R? are e; = (1,0) and e3 = (0,1). For a point z = (z1,72) € R? the
¢l-norm is |z|; = |z1| + |72| and integer parts are taken coordinatewise: |z| = (|x1], |z2]). We call
the z-axis occasionally the ej-axis, and similarly the y-axis and the es-axis are the same thing. C is
a constant whose value can change from line to line. For n € Z~( the segment is [n] = {1,2,...,n}.

X ~ Exp(A) for 0 < A < o0 means that random variable X has exponential distribution with rate
M. This X is a positive random variable whose probability distribution satisfies P(X > t) = e~ for
t > 0. It has mean E(X) = A~! and variance Var(X) = A\~2.

We write w, and w(x) interchangeably for the weight attached to lattice point z. X = X — EX
is the centered random variable X.
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2. VARIATIONAL FORMULAS FOR LAST-PASSAGE PERCOLATION SHAPES

2.1. Directed last-passage percolation on Z? We consider here a general setting before spe-
cializing to the two-dimensional corner growth model. Let (2, &,P) be a Polish product probability
space Q = I'Z* of random environments w = (W) peza € 2, with Borel o-algebra &, and a prod-
uct probability measure P under which the coordinates are i.i.d. random variables: for any distinct
lattice points z1, ..., z, € Z% and any Borel sets By, ..., B, c T,

(2.1) P{w : wy, € B; forizl,...,n}:H]P’{w:woeBi}.
i=1

The group of translations or shifts {6, },cz¢ act on by (6,w)y = wyty.

Let R be a finite subset of Z%. A lattice path Ton = (Tk)i_g C 7% is admissible if its steps satisfy
2 = ok — Tp—1 € R. Let U = coR be the convex hull of R in R%, and rif the relative interior of U.
We put ourselves in the directed setting by assuming that

(2.2) 0¢U.

This implies the existence of a vector & € R? and § > 0 such that z- @ > ¢ for all z € R.

For convenience we also assume that Z¢ is the smallest additive group that contains R. Without
this assumption we would carry along the group generated by R in the development.

The weights of admissible steps z are determined by a measurable function V : 2 x R — R about
which we assume the following:

(2.3) VzeR, V(w,z) is a local function of w and for some p > d, V (-, z) € LP(P).
By definition, a local function of w is one that depends on only finitely many coordinates of w.

Ezample 2.1. The basic example to think about is the two-dimensional corner growth model, with
real weights on the vertices: w = (wy)gez2 € 2 = RZ*. The set of admissible steps is R = {e1,ea},
and potential given by the weight at the origin: V' (w, z) = wp. The set of possible limiting velocities
of paths is the closed line segment U = [e1,ez], and its relative interior is the open line segment

rid = (e, e2). A

Ezample 2.2. The formulation covers also weights on directed edges. Let R = {ey,ea,...,¢e4} and
let £ = {(x,y) € Z% x Z¢ : y — x € R} be the set of directed nearest-neighbor edges on Z¢. Let

w = (w(€)) g, be a configuration of weights on directed nearest-neighbor edges. The potential picks

out the edge weight: V (0,w, 2) = w(x,x + 2) for z € Z¢ and z e R. A

The point-to-level last-passage percolation with external field or tilt h € R? is defined by

zo,n: x0=0

n—1
(2.4) Gn(h) = max { NV (Oupws z1) + b xn} heRY
k=0

The maximum is over admissible n-step paths zo, = (xx){_, that start at the origin zo = 0 and
whose steps are denoted by zp = xp — Tp_1.
The point-to-point last-passage percolation with restricted path length is defined by

n—1

(2.5) Ga(n)y = max Z V(0p,w, 2k+1)s zeZ®
k=0

TO,n: TO=T, Tn=Y

The maximum is over admissible n-step paths xg, = (z1)}_, that start at = and end at y. If y
cannot be reached from x with an admissible n-step path then set G (,), = —00. Our convention
is Gm,(O),m = 0.

Y
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Remark 2.3. The number of steps in an admissible path from x to y is determined uniquely by x and
y for all pairs x,y iff 0 does not lie in the affine hull of R. This is true for natural directed examples
such as R = {e1,e2,...,eq4}. Then we can write Gy = G, (), Where n is the unique number of
admissible steps from x to y. A

We take the existence of the limiting shape functions for granted, as stated in the next theorem.

THEOREM 2.4. Let P be an i.i.d. product probability measure and assume (2.2) and (2.3).
(i) There exists a finite, convex, Lipschitz function gy : R? - R such that

(2.6) gpi(h) = linolo n'Gn(h) P-a.s.
(ii) There exists a nonrandom finite, concave, continuous function gy, : U — R such that
(2.7) gpp(€) = lim 07 Go gy g, EEU
where [n&] is a point reachable in n steps and approximately n&. The limits satisfy
(2.8) gpl(h) = SUP{gpp(f) +h- &}
Eeld

The theorem above is a part of Theorem 2.4 in [5].
Sketch of the argument for the duality (2.8) between point-to-point and point-to-line.

{ S V(Tyw, z+1) + b - xn}

1 1
—Gp(h) = max —
" k=0

To,n:xo=0MN
1 1 [n€]
= max 5{(}07(,1),9C +h-x}= 21615 { EGO’(")’["G +h- T}
— sup { gpp(§) +h- &}
Eeld
SO
gp1(h) = sup {gpp(§) +h- &}
Eeld
By convex duality, equation (2.8) implies
(2.9) 9pp(§) = inf {gp(h) — h - &}, §eU.
heRd
Let us say that £ € U and h € R? are dual if
gpl(h) = gpp(g) +h-&.
LEMMA 2.5. Every ¢ € rild has a dual h € R,

The lemma is proved by arguing that the infimum in (2.9) can be restricted to a compact set. See
Lemma 4.3 in [5].

In order to develop variational formulas for the limits gy, and g1, we introduce a class of stationary
processes we call cocycles and state an ergodic theorem for them.

2.2. Stationary cocycles.

DEFINITION 2.6 (Cocycles). A measurable function B : Q x Z¢ x Z% — R is a stationary cocycle if
it satisfies these two conditions for P-a.e. w and all x,y, z € Z%:

B(w,z+z,z+y) = B(O,w,x,y) (stationarity)
B(w,z,y) + B(w,y, 2) = B(w, z, 2) (additivity).

KC denotes the space of stationary cocycles B such that B|B(z,y)| < oo Ya,y € Z%. Ky denotes the
subspace of F € K such that E[F(x,y)] = 0 Y,y € Z%.



A special class of cocycles is given by gradients Vip(w, z,y) = p(6,w) — ¢(0,w). Ko is the L(P)-
closure of gradients of integrable functions.

The first lattice variable in our definition of a cocycle is superfluous: if we put F (w,y) = F(w,0,y)
then F(w,z,y) = F(0,w,0,y — x) = f’(@xw, y — x). Occasionally we may simplify by dropping the
first lattice variable and write F'(w,x) for F(w,0, z).

Our convention for centering non-mean-zero cocycles is the following. For B € K there exists a
vector h(B) € R? such that

(2.10) E[B(0,z)] = —h(B) -=z  VxeZ%
Existence of h(B) follows because c(z) = E[B(0, x)] is an additive function on the group Z¢. Then
(211) F(w,x,y) = —h(B)-(y—x)—B(w,a:,y), ajayEZd

is a centered stationary L'(P) cocycle.
Consider this assumption on a given F' € K.

3 F :Q xR — 0 such that the following properties hold for z € R\{0} and P-a.s.:

F(w,0,2) < F(w, 2)
(2.12) and

I 1 _
lim lim max — Z |F' (012w, 2)| = 0.

ONON—X0 z|<n N -
~ |z|<n 0<i<nd

A sufficient condition for the limit above is that the shifts of F are rg-independent for some 79 < o0
and E|F(w, 2)|%*¢ < 0.

THEOREM 2.7. Let F' € Ky. Under assumption (2.12) we have the following uniform ergodic theorem:

o 1P,0.0)
1m max —————
n—0 |z|<n n

=0 P-a.s.

For a proof see Appendix A.3 of [6].

2.3. Variational formulas. In this section we derive variational formulas for the restricted path
length point-to-level and point-to-point last-passage values.

THEOREM 2.8.

(2.13) gpi(h) = I}(ggo P- eSSjup gle%%({V(w, 2)+h-z+ F(w,0,z)}.

A minimizing F € Kq exists for each h € R2.
Abbreviate

(2.14) K(F) = P-esssup mz%{V(w, z2)+h-z+ F(w,0,2)}.
w z€

Proof. Upper bound. Let F € Ky. Assume K(F') < co. Then

F(w,0,2) < =V(w,2) —h-z+ K(F)
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together with assumption (2.3) on V imply that F' satisfies assumption (2.12) and therefore the
uniform ergodic theorem (Theorem 2.7) applies.

gpi(h) = nlgrg@r;loaf n{ kZO (O w, 2k41) + - a:n}

n—1

= lim max — {
n—w To,n N

M

V(Opw, 2k+1) + h -y + F(w,0 xn)}
k=0
n—1
= lim max— Z (O w, 2k41) + h - ziy1 + F(0g,w,0, Zk+1)]

n—w To,n N =0
< K(F)
because the last upper bound is valid P-a.s. for each term. We have shown that

< i .
gp1(h) Flg,go K(F)

Lower bound. Let A > g,1(h). Set u,(w) = e“(M =" with the interpretation that ug = 1. Since
n~1Gp(h) — gpi(h) almost surely, u,(w) < e~ for large n and a fixed ¢ > 0. Hence f below is a
well-defined finite function:

flw) = iun(w i Xp{max[ w,z1) + h-ag — A

n—0 Z0,n
n—1
+ Z V(lay, 26+1) + b (2 —21) — (0 — 1))\}}
o
= 1+ maxe’ @) thz=A Z Up—1(0,w) = max ev(w’z)+h'z_)‘f(ﬁzw)
z el z
_x  max[V(w,z)+h-z+log f(.w)]

= e e z
Rearrange this to
A= max{V(w, z) + h -z + log f(0,w) — log f(w)} a.s
from which
A= K(Vlog f) = inf K(F)
FE’CO
provided Vlog f € Ky which is implied by the next lemma. Let A\ gpi(h) to get

> i .
gp1(h) Flg,go K(F)

The existence of minimizer is proved by a weak convergence argument that we skip. It is given for
positive temperature polymer models in Theorem 2.3 of [§]. O

LEMMA 2.9. For a measurable function ¢ : @ — R define Vo(w,z,y) = ¢(8,w) — p(0,w). Then
K(Vy) < o implies Vip(-,2) € L' Vz e R.

Proof. For each z € R,
V(w,2) + h-2z+ Vo(w,0,2) < K(Vy) < a.s.
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and so (Vo(-,2))* € L' (P). Suppose (Vo(-,2))” ¢ L'. Then a contradiction arises as follows,
where the first equality comes by the pointwise ergodic theorem:

n—1 n—1
1 1
—o0 = lim — k;o VO, 2) = lim — ];0[90(9(1”1)2@ — @(Orw)]
1
= lin(}O —[e(Onw) — p(w)] =0 in probability. O
n—w n

THEOREM 2.10. For each & € rild we have this variational formula.

2.1 = inf P- - B — h(B) - &}.
(2.15) gpp(§) = Inf P-esssup max{V(w,2) — B(w,0,2) = h(B) - £}
For each & € rild there exists a mazimizing B € KC such that h(B) is dual to §.
Proof. From duality (2.9),

Ipp(§) = }Li‘:flﬂ{d{gpl(h) —h-&

= inf inf P-esssup m&;%({V(w,z) +h-z+ F(w,0,2) —h-&}
w 2€

heRd FeKo
= inf P-esssup max{V(w,z) — B(w,0,2) — h(B) - £}
BekC w 2ER

where we let
B((JJ,IL‘,y) =—h- (y—ZL') —F(w,a:,y)
define an element of K with
h(B)-z=-E[B(0,z)]-2z=h-z = h(B) =h.

The first infimum above is achieved at some h dual to £ whose existence is given in Lemma 2.5,
and for this & a minimizing F' exists for gpi(h). Thus the B defined above has h(B) dual to §&. O

2.4. Cocycles adapted to the potential. The cocycles and the potential V' that defines the
percolation both live on a general product space with some product probability measure P. It is not
evident how these two structures are connected. Next we identify a local condition that characterizes
those cocycles that are relevant to the percolation problem in various ways.

DEFINITION 2.11. A cocycle B € K is adapted to the potential V if
(2.16) max [V(w,2) — B(w,0,2)] =0 P-a.s.
ze

This condition is linked to (i) minimizing cocycles, (ii) geodesics, (iii) Busemann functions and
(iv) stationary percolation. We discuss briefly these four issues still in general, before moving to an
exactly solvable model.

Minimizing cocycles. Suppose B € K satisfies (2.16). Define a mean-zero cocycle F' € Ky by
F(w,x,y) = _h(‘B) ’ (y —37) - B(w,x,y).
Then (2.16) becomes
0= mz%%c[V(w, z)+h(B)-z+ F(w,0,z)] P-as.
zE

The one-sided bound B(w, 0, z) = V(w, 2) is enough for the uniform ergodic theorem to work for F'.
Thus we can iterate the identity above and take a limit.

n—1

1 1 1
0= max{ - 2 V(O w, 2k11) + ﬁh(B) Ty + EF(OJ,O,IL‘H)}
k=0

Z0o,n

:%Gn(h(B))Jro(l) —  gu(h(B)).



We can conclude that
gpi(h(B)) =0 = mz%é([V(w, z)+ h(B)-z+ F(w,0,2)] P-as.
A4S
The equality above shows that F' minimizes in the variational formula

gpi(h) = Fléllgo PP- ess SUD I?ea%{V(w, 2)+h-z+ F(w,0,z2)}

for h = h(B), even without the essential supremum over w.
Furthermore: suppose h(B) and & are dual. Then from above, almost surely,

9op(6) = g1 (h(B)) — h(B) - € = ~h(B) - & = max[V (w, ) — B(w,0,2)] ~ h(B) &

Thus B is a minimizer for gpp(§).

In summary, we see that (2.16) is a criterion that finds cocycles that serve as minimizers in the
variational formulas. For future use we record the outcome of the calculation above in the next
lemma.

LEMMA 2.12. Let B € KC be an integrable stationary cocycle adapted to the potential V' as required by
(2.16) and let h(B) be the negative of the mean vector of B as defined in (2.10). Then gp(h(B)) = 0.

Geodesics. Turns out that a cocycle B satisfying (2.16) is involved not only in optimization on
the macroscopic level but also on the pathwise level. Suppose the path (x)}}_, follows the maximal
increments specified in (2.16), in other words, satisfies

(2.17) V (0w, 2k+1) — B(w, x, Ty1) = 0 Vk=0,1,...,n— 1.

Then this path is a geodesic from x( to x,. Here is the simple argument: consider any path y. from
Yo = T t0 Yn = Tn. Then, by (2.16), the stationarity and additivity of B, and (2.17),

n—1 n—1 n—1
Z V(eykwvyk—i-l - yk) < 2 B(‘gykMankH - yk) = Z B(waykvyk-l-l) = B(W,IE(),IE”)
k=0 k=0 k=0
n—1 n—1
= ), Blw,zp,wpi) = Y V(0aw, 2141).
k=0 k=0

Busemann functions. Having seen the usefulness of condition (2.16), we must ask how cocycles
that satisfy (2.16) arise? One way of obtaining such cocycles is through limits of local gradients of
passage times, called Busemann functions.

Suppose that we are in a setting where admissible paths that connect two given points have a
uniquely determined number of steps. Let G,y = G, (), denote the point-to-point last-passage
value where m is the unique number of steps from x to y. Fix a direction £ € rilf. Assume that for
all sequences {v,} < Z¢ such that v,,/|v,| — & we have this almost sure limit Yz, y € Z%:

(2.18) B(w,z,y) = ,}EIC}C[G”:’”" — Gy, v,] P-as.

B is called a Busemann function in direction £. It is a stationary cocycle. Additivity is immediate
from the limit (2.18). Stationarity comes from the fact that shifting v, by a fixed amount does not
alter its limiting direction £. Under additional assumptions (see for example Theorem 5.1 in [5]) this
cocycle is integrable.
At this time we simply wish to observe that B satisfies (2.16):
max|V (w, z) — B(w,0,2)] = lim max[V(w, 2) — Go,v, + Gz,0,] =0
z€R n—w0 zeR

where the last equality follows from
(219) GO,Un = ma‘x[v(w7 Z) + G27U7L]'
zeR



Proof of the limit in (2.18) is highly nontrivial. The route that we will take to finding cocycles
that satisfy (2.16) will involve the last item below.

Stationary percolation. Once again we assume cocycle B satisfies (2.16) and develop this
identity in a different direction. Let v € Z% be fixed.

0 = max[V (0w, z) — B(O,w, 0, z)] = max[V (0w, z) — B(w,z,x + z)]

ZER ZER
= me%[V(wa, z) — B(w,z,v) + B(w,z + z,v)]
zZE

from which we write

(2.20) B(w,z,v) = max [V (0w, z) + B(w,x + z,v)] Ve, v e Z4.
zE
We iterate this. Fix also u € Z% and write z,, = u+ 21 + ... + 2, for an admissible path from u with
steps z;.
B(w,u,v) = max[V (0w, z1) + B(w, 21,v)]
Zle'R

= maxR[V(HmOw, 21) + V(0z,w, 22) + B(w, z2,v)]
21,22€
(2.21) et
—- = zl,?}ii{e?% ’;)V(kaw,zkﬂ) + B(w,xn,v)]

=max [ Gy (). + B(w,z,0)].

We can turn this into a boundary value problem. Assume again that the number of steps on an
admissible path is determined uniquely by the endpoints so that we can write

G Gu,(n)y 1if y is reachable from z along an admissible path of n steps
R if y is not reachable from z along an admissible path.

Let H and 0H be finite subsets of Z¢ with the property that any admissible path from #H eventually
intersects 0H. So in a sense 0H is a “boundary” of H.
For example, suppose we are in the directed case R = {e1,...,eq}. If H is the rectangle H =

1_[?:1{0, 1,...,N;}, then 0H could be its “northeast” boundary o0H = U?;l{x eH:xi = N;}.

LEMMA 2.13. Assume that endpoints of paths determine uniquely the number of steps in the path.
Assume that the stationary cocycle B satisfies (2.16). Fiz v e Z% and finite subsets H and 0H of Z¢
such that every admissible path from H intersects 0H. Then

(2.22) B(w,u,v) = max [Guz + B(w,z,v)] for allue M.
Te

Proof. Fix u € H. Equation (2.21) gives
B(w,u,v) = Gy gz + B(w, z,v)

whenever there is an admissible path from u to x. This tells us that > holds in (2.22). It also shows
that if u € H n 0H then the maximum in (2.22) is assumed at = = u and the equality holds.

Next proof of < in (2.22). By the directedness assumption (2.2) we can take n in (2.21) large
enough so that every n-path from w intersects 0H. Fix a maximizing path v = xg, z1,...,x, on the



second last line of (2.21). Let x,, € 0H. Then
m—1 n—1
B(w,u,v) = 2 V(O w, 2k+1) + Z V(0 w, 2k+1) + B(w, zp,v)
k=0 k=m
< Gu,:cm + sz,zn + B(ern,v) < Gu@m + B(w,xm, U)

< right-hand side of (2.22).

In the second-last inequality above we applied (2.21) with z,, in place of u and n — m in place of
n. ([

Our interpretation is that equation (2.22) determines the values {B(u,v) : u € H} from the last-
passage percolation G, and given boundary values {B(x,v) : + € 0H}. Then we can search for
cases where the solution is tractable. In particular, we can look for distributional invariance. We
can make this program work in exactly solvable cases.

The analogy the reader should have in mind is finding the invariant distribution of a Markov
process such as an interacting particle system. The analogue of boundary values are the state
variables at time zero. The analogue of the weights V(6yw,z) are the Poisson clocks or other
random variables that govern the evolution of the particles.

3. STATIONARY EXPONENTIAL CORNER GROWTH MODEL IN TWO DIMENSIONS

We restrict now to the two-dimensional corner growth model (CGM), with real weights on the
vertices: w = (wy)z2 € Q = RZ’. The set of admissible steps is R = {e1, e2}, and potential given by
the weight at the origin: V(w, z) = wp. The set of possible limiting velocities of paths is the closed
line segment U = [eq, e2], and its relative interior is the open line segment rild = (eq, e2).

In this setting we alter slightly the earlier definition (2.5) of the point-to-point last-passage time
to include both endpoints of the path. This makes no difference to large-scale properties. Given an
environment w and two points z,y € Z? with z < y coordinatewise, define

ly—z[1
(3.1) Gry = zfg%f,y 2 Way -

k=0
II,,, is the set of paths x. = (x)}_, that start at zg = x, end at x,, = y with n = |y — z|;, and have
increments xp1 — Tk € {e1,e2}. Call such paths admissible or up-right. The zero-length path case
is Gz = wy. Our convention is that

(3.2) Gpy=—0 if v < y fails.

We work with the exponentially distributed weights, and so make the following assumption:
(3.3) the weights w, are independent rate 1 exponentially distributed random variables.
This means that P{w, >t} = e~ for ¢ > 0. This is abbreviated as w, ~ Exp(1).

By Theorem 2.4 we have the limiting point-to-point shape function defined by the almost sure
limit
(3.4) gpp(€) = lim N7'Go ng  for € RS,
This function gy, is concave, continuous and homogeneous [gpp(c§) = cgpp(§) for ¢ = 0]. A stronger
result is also true: the shape theorem gives a uniform limit (Theorem 5.1(i) of [7]):

(3.5) lim n~'  max  |Gou — gpp()| =0 P-almost surely.
n—on zeZly: |z|i=n

Our first task is to construct a coupling of i.i.d. rate 1 exponential weights and a stationary
integrable cocycle, for a given value of a parameter 0 < p < 1, that together satisfy (2.16), essentially
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by solving the boundary value problem in (2.22). This construction will be performed on quadrants
u + Z2, with a specified origin u € Z2.

Fix a parameter 0 < p < 1 and an origin u € Z2?. Assume given a collection of mutually
independent random variables

(3.6) {Was Tutiers Jutjes : TE€U+ZL20, 4,5 € Lo}
with these marginal distributions:
(3.7) we ~ Exp(1), Iytie, ~ Exp(1—p), and Jytje, ~ Exp(p).

The interpretation is that I, is a weight for the edge (z — ey, ), J, is a weight for edge (x — e2, ),
and w, is a vertex weight. The edge weights are on the boundary of the quadrant u + 2220 and the
vertex weights in the bulk.

In this setting define another last-passage process Gf , with origin fixed at u and that utilizes
edge weights on the boundary and then bulk weights. First put G, = 0 and on the boundaries

m n

P - . 14 — .

(38) Gu,u-i—mel - Z IUJrlel and Gu, utney Z JU+J€2'
i=1 j=1

Then in the bulk for z = u + (m,n) € u + Z2

>0

1<ksm 1<l<n

k L
(39) Gﬁ,x = max { Z Lyyie, + Gu+kel+ez,a:} \/ max { Z Jqujez + Gu+€ez+el,x}
i=1 j=1

G,z inside the braces is the last-passage value defined in (3.1). The superscript p in Gﬁ,z distinguishes
this last-passage value from the one in (3.1) with i.i.d. bulk weights, and the first subscript u specifies
that the I and J edge weights are placed on the axes u + Z-geg, k = 1, 2.

An equivalent definition of GY, , would be to give the boundary conditions (3.8) and the inductive
equation

(3.10) Gl =we + G v G

2
u, r—eq U, r—eg I TEU+ Z>O'

From the given variables (3.6) we define further variables as follows, proceeding inductively to the
north and east from the origin u: for all z € u + Z2

>0
(3.11) By—er—er = ooy A Joey
(3.12) Lo =wy+ (Ip—ey — Joey) ™
(3.13) Jr = we + (Io—ey — Jo—ey) ™

The mapping above from (wg, Iy—eys Jz—c;) t0 (Dz—ey—eys Lz, Jz) is illustrated in Figure 1. Note that
(3.12)—(3.13) imply the symmetric counterpart of (3.11)

(3.14) Wy = Iy N Jy

and the additivity around the unit square:

(3.15) Ipey + Iy = Jp—e, + L.
Utilizing (3.11)—(3.13) we extend (3.6) to the larger collection

(3.16) {Wey To—eyy Jo—eqy Op—eq—ey : TE U+ Z2>0}-

This larger collection has an &, variable for each vertex in the quadrant u + ZZZO, an I, variable
for each horizontal nearest-neighbor edge in the quadrant u + 22207 a J, variable for each vertical
nearest-neighbor edge in the quadrant w + ZZZO, and the originally given w, variables for points in
the bulk u + Z2,,.
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Wy I,

3.11)-(3.13
Jo—e, ( A ) Jz

~

We—eq—
z—es T—e1—e2

FIiGURE 1. Mapping (3.11)—(3.13) on a single lattice square. The figure illustrates how
southwest corners are flipped into northeast corners in the inductive construction of the
increment variables.

The next theorem summarizes the properties of (3.16) and the connection with the process G%, .
Point (iii) of the theorem uses the following definitions. A bi-infinite sequence Y = (yx)kez in u+2Z%,
is a down-right path if y —yr_1 € {e1, —ea} for all k € Z. ) decomposes the vertices of the quadrant
into a disjoint union u + Z;O =G_u)YugG, where

G- ={zeu+7Z% :3j€Z=g such that x + (j,5) € V}
is the region strictly to the south and west of ) and
+ ={reu+7Z% :3j € Z=g such that z — (j,5) € V}

is the region strictly to the north and east of ). Note that G, is necessarily unbounded but G_ is
finite iff all but finitely many of the points y; lie on the axes u + Z-ge, k = 1,2. In the extreme
case Y = {u +ier,u + jea : 0 < 1i,j < oo} consists of the axes, G_ = @ and G = u + Z2,,.

For an undirected nearest-neighbor edge e on u + Zio: we denote the weight by

(3.17) He) = {? i: _ z - Z;ﬁ

THEOREM 3.1. Fizu € Z? and 0 < p < 1 and assume given independent variables (3.6) with marginal
distributions (3.7). Then the variables in (3.16) have the following properties.

(i) For any down-right path Y in u + Zio: the random variables

(3.18) {&u t({yk—1,9k}), w1 2€G_, keZ, x € Gy}
are mutually independent with marginal distributions
(3.19) wg, Wy ~ Exp(1), I ~Exp(l—p), and J,~ Exp(p).

(i) The I, and J, variables are the increments of the Gf » last-passage process:
L =G, -G for x € u+ (Z=o) x (Zxp),
Jo. =Gl . — G for z € u+ (Zso) x (Z>o).

u,r—e2

(3.20)

Theorem 3.1 rests on an inductive argument based on the next lemma, which describes the joint
distribution preserved by the mapping in Figure 1.

LEMMA 3.2. Let 0 < p < 1. Assume given independent variables W ~ Exp(1), I ~ Exp(1 —p), and
J ~ Exp(p). Define

W =IAJ
(3.21) I'=sW+ I -J)*"
J=W+{I-J)".
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Then the triple (W', I', J') has the same distribution as (W, I,J).

This lemma is proved by calculating a joint transform such as the Laplace transform or charac-
teristic function, or by transforming the joint density.

Proof of Theorem 3.1. Part (i). This is proved inductively on ). The base case is J = {u +iej,u +
jea : 0 <i,j < oo}, in which case the claim simply amounts to the initial condition in (3.7).

Now assume given ) = {yx} for which the claim in part (i) holds. We show that this claim
continues to hold for any )’ obtained from Y by “flipping a southwest corner into a northeast
corner”. So pick any x € u+Z2, and m € Z such that (Ym—1, Ym, Ym+1) = (T —e1,x — €1 — €2, — e2)
are points along ). Define )’ = {y}.} by setting

Y = Yk for kK #m, and Yr = Ym + €1+ e =,

In other words, ) has a southwest corner at x — e; — e9, and )’ has a northeast corner at .

Transforming ) into )’ changes G_ to G = G_ U {x —e; — ez} and G, to G, = G \{z}.
Thus constructing the variables (3.18) for )’ involves transforming the triple (wg, Iz—cy, Jz—e, ) into
(Oz—ey—eyy Iz, Jz) according to equations (3.11)—(3.13), and copying the remaining variables from
(3.18) for Y. The claim now follows for ) by the induction assumption and Lemma 3.2. By the
induction assumption, variables (wy, Iy—e,, Jz—e,) have the independent exponential distributions
required for the hypothesis of Lemma 3.2, and so by the lemma the triple (0g—e¢;—ey, Iz, Jo) also has
the independent exponential distributions required for (3.19).

Part (ii). The claim is true by construction for variables I, c, and Jy4 je, on the axes. Here is the
inductive argument for I, assuming that the claim holds for I,_., and J,_., and utilizing (3.10):

I = w; + (LE,@ - Jx*61)+ =wg + (GZ7 r—ey Gz,x—el)+
= Wg + Gﬁ,xfel Vv Gﬁ,xfez - Gﬁu),:pfel
= Gz,z - GZ, z—eqp”
A similar argument works for J, under the same inductive assumption. U

Let us observe some immediate and valuable consequences of Theorem 3.1.

By taking ) as the axes at a new origin v € u + 22207 given by yr = v+ key and y_, = v + ke for
k = 0, part (i) of the theorem implies that the process {wyiz, lotz—eys Jota—e, : T € Z24} has the
same distribution for all v € u + Z%,. Thus B(z,y) = Giy — Gi» is a stationary cocycle, restricted
to the quadrant x,y € u + ZQZO.

The variables {&, : x € u + Z2} are i.i.d. Exp(1) distributed.

We compute the limit shape functions for both last-passage percolation processes, the stationary
one and the one with i.i.d. weights. For the stationary process define the function

s t

l—p p
PropPOSITION 3.3. Fiz 0 < p < 1. The stationary corner growth model satisfies these properties:

(3.22) g (s,t) =

IE[G&(mm)] = g?(m,n) for all m,n € Z=o and the law of large numbers
(3.23) A}iinoo NﬁlGS,([NsJ,[NtJ) = g”(s,t) almost surely and in L' for all (s,t) € RZ,.

Proof. Rewrite in terms of nearest-neighbor increments:

i=1 j=1
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Then use the translation invariance of the distributions which says that each nearest-neighbor in-
crement has the exponential distribution imposed on the boundary variables in (3.7):

(3.25) ZELel + Z Emj) = 7 p %

The limit of the stationary last-passage process is an application of the classical law of large numbers
and some large deviation estimates, applied separately to the two sums: the limit below holds almost
surely for any given (s,t) € RZ,,.

|| N¢]

1 . -1 -1
hm N© GO([NSJ INt]) = ]\}I_I,HOO{N Z Iy + N Z J(leJ,j)}
(3.26) i=1 j=1
t
= sE(L,,) + tE(J.,) = 1f +2. 0

Next we take a limit in the coupling between the last-passage processes G, and Gg}x. Fix s,t > 0
and use (3.9) for x = (|Ns|,|Nt|) to write

|Nal
G (1¥ap INt]) = 0228{ ; i) + Gva1velive) §
(3.27) -

\/ sup { 21 Jog) + G(LthJ»(LNsJ,LNtJ)}-
p=

o<h<t

After letting N — oo, with some estimation on the right-hand side, utilizing limits (3.4) and
(3.23), we have

(3.28) 54! {5 + gopls — a,1) {b+ (s,t—b)}
) — = sup s—a, v osup { — s,t—0)¢.
T—p  p ocamsli—p ozbetlp | PP

In the next theorem we take advantage of the connection above to find the shape function g, for
the LPP process (3.1) with i.i.d. Exp(1) weights.

THEOREM 3.4. Assume (3.3). Then we have the following law of large numbers. For every & € Rio
the limit below holds with probability 1, with the shape function gy, as given.

2
(3.29) lim N7 Gone) = 9pp(€) = (VE +VE)

N—oo

Proof. By the general law of large numbers Theorem 2.4 for last-passage percolation, we know that
the limit in (3.29) exists and that gpp is finite, concave and continuous. Begin with (3.28) for s = ¢:
t

t
—_ 4 - =

{22 4 gt —a.0)} {24 gooltot 1)
sup —a,t)r v sup {— t—10b)¢.
1—p ' p ozazll—p  » AP

0<b<t
Use the symmetry of g, and assume that 0 < p < 1/2:

Lot {2 + gt —a,)} {b + goplt = b,) |
—— 4+ — = sup | —— + gpp(t —a,t) v sup {— + gpp(t — b,
1—p p ocaell—p 7P osbtlp

b
= sup {f + gpp(t — b,t)}.
obt ~ P
Let

—gpp(t —b,t), 0<b<t
f(b)z Pp( )
0, b<Oorb=>t.
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Then f is convex and lower semicontinuous. After a change of variable x = 1/p € [2, 00), the equation
above becomes

1
t(x—l—l—%m) zigﬂg{bx—f(b)}a x> 2.

This is an instance of convex duality, so the convex conjugate f* of f satisfies

1
* = _ >
f*(zx) t(a:+1+x71> for z > 2.

The derivatives (f*)(2+) = 0 and (f*)’(00—) = ¢ tell us that we can restrict the supremum in the
double convex duality as below, for 0 < b < ¢t. Then find the supremum by calculus:

- - )2
f(b) = f**(b) = 21;12){xb — f*($)} _ 7b\/m+ bi(t i(z/)%_‘_ m) ‘

Taking b =t — s for s € [0,¢] in the definition of f in terms of g gives

gop(s,t) = (Vs +Vt)?  for0<s<t.

Symmetry of g completes the proof. O

Next we use (3.28) to identify the characteristic direction £(p) € U associated with parameter
value p € (0,1). By definition, £(p) is the unique direction for which the optimal path for Gg INE)]

takes o(IN) steps on the coordinate axes as N — oo. It is the value of { = (s,1 — s) for which the
right-hand side of (3.28) with (s,t) = (s,1 — s) is maximized at @ = b = 0. This direction is given
uniquely by

(1-p)? P
(3.30) &(p) = <(1_p)2 T2 =P +p2>‘

An alternative characterization of the characteristic direction is by comparison of the stationary and
ii.d. limit shapes. In general gpp(s,t) < g”(s,t) for all s,¢ >0, and

3.31 gop(s,t) = g°(s,t) if and only if (s,t) = c¢((1 —p)?, p?) for some ¢ > 0.
pp

We can also record the limit of the point-to-line LPP process, defined by for h € R? by

zo,n: x0=0

Gn(h) = max { nz:lwgck +h- mn}
k=0

THEOREM 3.5. Assume (3.3). Then for every h € R? the limit below holds with probability 1, with
the limit function g, as given.

hi+h 1
(3.32) lim n 'Gp(h) = gm(h) =1 + ! ; £ SV (h1 —h2)? +4.

n—0o0

Proof. The limit is given in Theorem 2.4. The formula for g, comes from the duality (2.8) with gy
given in (3.29). O
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4. BUSEMANN FUNCTIONS FOR THE EXPONENTIAL CORNER GROWTH MODEL

4.1. Results. In this section we prove the existence of the Busemann functions and show that they
provide minimizers for the variational formulas.

We extend the constructions discussed in Section 3 to the full lattice Z2. As before a down-right
path is a bi-infinite sequence Y = (yi)rez in Z? such that yp — yr_1 € {e1, —e2} for all k € Z. The
lattice decomposes into a disjoint union Z? = G_ U Y U G, where the two regions are

G_={xe 72 3j € Z~¢ such that = + j(e1 + e2) € V}
and
G ={ze 72 3j € Z~ such that x — j(e1 + e2) € V}.

It will be convenient to formalize the properties identified earlier in Theorem 3.1 in the following

definition.

DEFINITION 4.1. Let 0 < o < 1. Let us say that a process

(41) {77177 ILBv '].Tv 7\7/CC ‘T E Z2}

is an exponential-a last-passage percolation system if the following properties hold.
(a) The process is stationary with marginal distributions

(4.2) Ny Nz ~ Exp(l), I, ~Exp(l—«), and J, ~ Exp(a).
For any down-right path Y = (yi)rez in Z2, the random variables
(4.3) {(n.:2€G-}, {t(yr—1,9k}) :k€Z}, and {n,:x€Gi}
?;’e(gli;)nutually independent, where the undirected edge variables t(e) are defined as before

(b) Equations (3.11)~(3.13) are in force at all x € Z2.
Recall in particular from (3.11) that the definition above implies the property
(4‘4) ﬁa: = dgteg N Jac+e2'

THEOREM 4.2. On the probability space (2, S,P) of the i.i.d. Exp(1) weights w = (wy)zez2 there
exist for each 0 < a < 1 a stationary cocycle B and a family of random weights { X&'} ez2 with the
following properties.

(i) For each 0 < a < 1, process
{Xy, By BY wy @ x € L%}

r—ey1,x’ Pr—eg,x
1s an exponential-a last-passage system as described in Definition 4.1.

(ii) There exists a single event Qg of full probability such that for all w € Qa, all x € Z* and all
A < p in (0,1) we have the inequalities

(4'5) B:i\,z-&-el (w) < Baﬁc),a:-&-el (w) and Bi\,m—i-eg (w) = Bg,x-ﬁ-eg (w)

iii) For each fixed 0 < o < 1 there exists an event 0 of full probability such that the following
2
holds: for each w € Qéa) and any sequence v, € Z? such that |v,|1 — o0 and

_ (1—a)? a?
4.6 | = -
(4.6) s |vn]1 £(@) ((1—a)2—|—a2’ (1-a)2+a2)’
we have the limits

(4'7) B(ml,y(w) = nli_r}c}o[Gx,vn - Gy,vn] Va,y € v/

The next section is devoted to the proof of Theorem 4.2.
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Remark 4.3. The process B% has some regularity in «: it can be defined as left- or right-continuous
(for each x,y, on an event of full probability). A

Part (i) of Theorem 4.2 together with (4.4) implies
(4.8) = BY

x,rt+eq

A BY

T, xtez?

in other words, cocycle B* is adapted to the potential of the corner growth model in the sense of
(2.16). (Note that in this construction the given w-weights are now playing the role of the w-weights
in Theorem 3.1, and the constructed weights X play the role of the w-weights in Theorem 3.1.)

Recall the variational formula for the point-to-point limit shape function, specialized to the two-
dimensional corner growth model.

(4.9) gpp(§) = été}fc IP- ess Sup max {wo — B(w,0,¢;) — h(B) - &}

Above h(B) is the negative of the mean vector:
(4.10) h(B) = —(E[B(0,e)], E[B(0,)]).

The next theorem shows that cocycle B* from Theorem 4.2 is a minimizer in (4.9) for the charac-
teristic direction &(av).

THEOREM 4.4. Continue with the setting of Theorem 4.2. The following hold for each 0 < o < 1.

(i) The characteristic direction §(a) and the vector h(B®) are dual to each other in the sense
that

(4.11) gp1(h(B*)) = gpp(£(@)) + h(BY) - {(a).
(il) B minimizes in the variational formula (4.9) in the characteristic direction:

(4.12) gpp(&(r)) = Igéll}é[ — Bf..(w) = h(B®) - &(a) | P-almost surely.

Proof. Part (i). From the explicit formulas for the shape function (Theorem 3.4),

Gop(5,t) = s+t +24/st

and then
Vop(s,t) = (1 ++/t/s,1+/s/t).

From the explicit exponential distributions of B“-increments (Theorem 4.2),

L) = Vgple(a).

1—a’«

~h(B®) = (E[Bg,],E[BS,]) = (
By the strict concavity of gpp, {(c) is the unique maximizer in the duality

gpl(M(B®)) = sup[ gpp(§) + h(B*) - £].
celd

Part (ii). By Lemma 2.12, g,1(h(B®)) = 0. By the duality (4.11) and the adaptedness (4.8),

gop(&§(@)) = gp1(h(B®)) = h(B®) - {(a) = wo — Bi, A Bpe, — h(B%) - &(a)

= max [wo — Bf, (w) — h(B*) - &(a) ]. O
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4.2. Proof of Theorem 4.2. This technical section is devoted to proving the existence of the
limiting Busemann functions. Before specializing to the processes we study, we state and prove
general inequalities for planar last-passage increments. Early appearances of these types of inequal-
ities in first-passage percolation can be found in [1, 2]. Let real weights {}N/x}zezz be given. Define
last-passage times

(4.13) Gry = max Z Yo,
k=0
where the maximum is over up-right paths from zy = = to z, = y with n = |y — z|; and the

admissible steps are as before zj, — x;_1 € {e1, e2}. The convention is Gy, = 0. For 2 < v —e; and
y < v — ez denote increments by

Ix,v = G:r:,v - Gx+e1,v and Jy,v = Gy,v - Gy-i—ez,v .

For the precise statement of the lemma below it is important that the sum in (4.13) includes the first

weight }N/m, but the increments I and .J are not sensitive to whether the last weight }ny is included or
excluded.

LEMMA 4.5. Forx <v—e; andy < v —eg

~ ~ ~ ~

(414) ICC,’U+€2 = I:I:,v = Ix,v-‘,—el and Jy,v-‘reg < Jy,v < Jy,v-i—el .
Proof. Let v = (m,n). The proof goes by an induction argument that starts from the north and
east boundaries. On the north, for x = (k,n) for some k < m,

~

Ik m),(mn+1) =

~

(kn),(mat1) — Gll+1n),(mn+1)

¢ 2

kn + é(k+1,n),(m,n+1) v é(k,n+1),(m,n+1) - é(k+1,n),(m,n+1)

~

Yin = Gn),imn) — Ger1,n),(mn) = Lkn),(mm) -

\%

A similar argument (or the above inequality applied to transposed lattice points (a’,0) = (b,a))
gives, for y = (m, ¢) for some ¢ < n,

~

Jim,0),(m+1,0) = Jm,0),(mn)-

We also have the equalities, first for y = (m, ¢) for some ¢ < n

Jm o), (mn+1) =

~

(m,0),(mm+1) — G(m,e41),(mm+1)

Qe

i

~

mt = Gm0),(mn) — Gme+1),(mm) = J(m,0),(m.n)

and similarly also

~

L), (m+1,m) = L(k,m) (mom)-
These inequalities start the induction. Now let u < v — e; — e2. Assume by induction that (4.14)
holds for = u + eg and y = u + e;. We prove the first inequalities of (4.14) for z = w.

~ ~

_ ~ o ~ ~ i
Iu,v+62 - Gu,erez - Gu+e1,v+62 - Yu + (Gu+ez,v+eg - Gu+61,v+ez)
o ~ ~ 4
- Yu + (Iu+eg,v+eg - u+el,v+ez>
~ ~ ~ +_ 5
= Yu + (Iu+e2,v - Ju+e1,v) - Iu,v .

The last equality comes by repeating the first three equalities with v instead of v + es.
Replacing the pair (v + ez,v) with (v,v + ;) in the argument above gives I,,, = Iy yte,. A
symmetric argument works for the J inequalities. O
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We introduce the following general notational device which we illustrate in the context of (4.13).
If A is a subset of admissible paths from x to y, then

(4.15) Gay(A) = max Yo

is the last-passage value obtained when the maximum is restricted to paths xg,, in A.

Return to the context of the CGM with exponential weights. Consider an origin u and a parameter
0 < p < 1 fixed for the moment. Let the variables

(4.16) {Wey Ty, Jo—ery On—eq—eq : T € U+ Z24}

be defined via equations (3.11)—(3.13) from independent initial variables (3.6) with marginal dis-
tributions (3.7), so that the properties given in Theorem 3.1 are satisfied. Let & = &(p) be the
characteristic direction for p defined by (3.30).
Utilizing the edge weights I, and J, and the vertex weights &, we define several last-passage
percolation processes. First a process with i.i.d. weights:
ly—z|1
(4.17) Gy = max Dy, fory > x> u.

Its increments are defined by
Inw=Gep—Gogerp foru<az<v—e and Jy,=Gyy— Gyiew foru<y<ov—es.

Then we introduce an auxiliary increment-stationary last-passage process éévf for u < x < v,
with boundary edge weights on the north and east borders. First set Cvr’fjvf = 0. Then, on the north
and east boundaries emanating from v in the negative directions,

- k—1 - -1
(418) G{)Vf?cel,v = Z Ivfiel and Gﬁ—%eg,v = Z JU*J'€2‘
i=0 §=0
In the bulk for © < < v — e1 — e3 we define,

SNE _ ~ SNE SNE
Gxﬂ; =Wz + Gz+e1,v v Ga:+ez,v

(4‘19) o k—1 - /—1
= max {Ga:,v—kel—eg + Z Iv—iq} \/ max {Gx,v—el—éeg + 2 Jv—jeg}
i=0 j=0

1<k<(v—=x)-e1 1<l<(v—2)-e2

In the next lemma we check that the increments of the GV process are in fact the already given

I and J variables.
LEMMA 4.6. Foru<z<v—e; andu <y < v —eg,

__ XNE XNE _ ANE SNE
(420) Iﬂf-‘rel - Gz,v - G:c+el,v and Jy+e2 - Gy,v - Gy+62,v'

Proof. The claim is true for z = v — ke; and y = v — feg by definition (4.18). Here is the induction
step for the edge (z,x + e1), assuming that (4.20) has been proved for edges (x + e2, z + €1 + e3) and
(x4 e1,x + e1 + ea).

SNE SNE _~ SNE SNE + - +
Ga:,v - Gx+e1,v =wg t+ (Gx+e2,v - Gx+e1,v) =Wy + (IZ+€1+€2 - JZ+€1+62)

+
=Ipye; N Jptey + (Iz+e1 - Jx+ez) = lgte;-

The second last equality used (3.11) and the cocycle property Inie, + Jrte;+es = Jotes + Loter+es-
A similar argument extends (4.20) to the edge (x,z + e32). O
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Next we consider restricted GNE last-passage values utilizing the notation introduced in (4.15).
In particular, we consider last-passage values of the kind

1<k<(v—=x)-e1

k—1

“NE ~

GO,U (U —e1 € ;L'.) = max {Gz,vfkelfez + Z Iv—iel}
=0

where the condition v—e; € x. means that the path goes through the point v—e;, which is equivalent
to saying that the last step of the path goes from v — ey to v. We show that the asymptotics of the
restricted GNVF are the expected ones and calculate the limits.

LEMMA 4.7. Fiz a point a € u+Z2>0 and reals 0 < s5,t < 00. Let v, € u+ZQZ0 be such that |v, |1 —
and vy /|vn|1 — (s,t)/(s +t) as n — c0. Then we have the following almost sure limits.

1 _ T
|vn|11Gé\j§n(vn—elezx.) — (s+1) U sup {7+gpp(s—7,t)}
n—a 0<7<s —p
2
2 8 1-—
(4.21) gpp(s,1) = (\/§+ \/E) 3 < ( ’ ,0)
= 2
s E7 S (1 p)
I—p »p t p
and
1 _ T
\vnlllGé\{En(vn—egex.) —> (s+1) L sup {——i—gpp(s,t—T)}
n—00 osr<t\ P
2
2 S8 1-—
(4.22) gpp(s,t) = (\/§+\/i) - = < P P>
= 2
Lt S< <1_p> :
I—p »p t p

Proof. We prove (4.21), the proof of (4.22) being entirely analogous. Fix ¢ > 0, let M = |¢7!], and

n | Elvalis
7 _‘7{ +t

For large enough n it is the case that ¢}, — Ce < ¢}, < q};-

J for0<j<M—1, and qjyy = (v, — a) - e;.

Suppose a maximal path for (v}év ]i (vn — €1 € xa) enters the north boundary from the bulk at the
point v, — (¢,0) with q < l< qj11- By nonnegativity of the weights,

-1
Gaon (vn = €1 € 70) = Gao, (1) + D Toics
i=0
a1 " .
€ q? ’ 1 441 — 95
< Ga,’un*(q;l,l) + - P + ;) (Ivn—zel - ﬂ) + ﬁ
Collect the bounds for all the intervals (q;?, q;?H];
q"."
SNE < !
Gflv Un ('Un —€1 € x') < Osﬁ%\};fl{Ga, ’Unf(q;'lvl) + ]_ - p

(4.23)

0y1—1
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Divide through by |v,|; and let n — c0. On the right-hand side the shape theorem (3.5) and the
homogeneity of gy, give

~

Ga,vnf(q?,l) U qa; O(1) Jpp(s — sje, t)
—_— = er + +o(l) — =/~
|Un|1 ‘vn|1 ‘Unyl |Un|1 s+t
The mean zero i.i.d. sum satisfies
1 q?‘Fl_l
‘ 1y o
e & (e o) 0
We get the upper bound
T —15NE -1 sje
T Jon["Go y, (vn — €1 € a) < (s +1) omax | [gpp( — sje,t) + T, Ce]
T
<(s+t)7! sup [7 + gpp(s — T, t)] + Ce.
0<7<s —p
Let € N\, 0 to complete the proof of the upper bound.
To get the matching lower bound let the supremum
sup {7/(1 = p) + gpp(s — 7, 1)}
T€[0,s]
be attained at 7* € [0, s]. With m,, = |v,|1/(s + t) we have
(Imn7*|-1
G(]z\,[fn (Un —€1€ xl) = Ga,vnf([mnT*Jvl,l) + Ivn—ie1-
=0

Let n — o0 to get

. 1 _ T
lim |vy, | lGé\ffn(vn —e1€xa) = (s+1) 1[gpp(s — 7% 1)+ ]

n—00 1—p

This completes the proof of (4.21). O

As a consequence we record the expected asymptotics for the unrestricted process with edge
weights on the north and east:

. “NE . -1 SANE SNE
Tim [o|[ 71 GNE = Tim [oa[; GIE (0 — €1 € 2a) \/ GIVE (00 — €2 € 32)

a, Un
T T
—(s+t)7 ! sup {74- s—T,t} sup{——i— S,t—T}
(4 24) ( ) o<r<stl—p gpp( ) \/OSTSt p gpp( )
' =(s—|—t)_10iug {71_ —1—(\/3—74—\[) }voiugt{p (Vs++vt—1) }
ITKS T
t
= 5 4+ —.
IL—p p

In the next lemma we derive bounds on the limiting local gradients of the last-passage values G
defined in terms of the i.i.d. @ weights. Recall the definition (3.30) of the characteristic direction £
associated to p.

LEMMA 4.8. Consider two sequences {v,} and {wy} in a + Z2 such that

lim
n—0o0 |’U |1

=(s,1—s) and lim = (t,1—1).

Assume that



21

(i) Almost surely
(4.25) GNE (v, — ez € wa) = GNE and GNE (w, —e; € 2a) = GNE

a,vn, a,vn, a,Wn, a,Wnp,

for all large enough n.

(ii) The following inequalities hold almost surely:

(426) m [Ga,wn - éa+e1,wn] < Ia+61 < h7m [éaﬂm - Ga+e1,vn]
n—a n—00
and
(4.27) m [Ga,vn - Ga-i—eg,vn] < Ja+eg < h7m [Ga,wn - Ga-&-eg,um]-
n—a0 n—o0

Proof. Part (i). We prove the second statement of (4.25). The maximizing path to w,, comes through
either w,, —e1 or w, — e3. So to get a contradiction we can assume that P(A) > 0 for the event A
on which Cvlévfn (wp, — ez € Ta) = ég\’gn happens for infinitely many n. On the event A we can take
limits (4.22) and (4.24) to get

sp T4 (Vi vioior)th = L

o<r<l—t\ p S 1-p p

But by (4.22), %_t > (l;pp)2 implies that the supremum on the left equals (\/f +4/1 - t)2 which is

strictly less than the right-hand side by (3.31). Thus P(A) > 0 is not possible.

Part (ii). We prove the statements for w,,. By a combination of developments from above, justified
below, we derive the following sequence of inequalities and equalities that proves the first inequality
of (4.26).

-« « N N
Ga,wn - Ga+€1,wn < Ga, Wpt+ez Ga+e1,wn+62

_ ANE SNE
(4 28) = Ga,wn+e1+eg (U)n +e2 € CEl) - Ga+e1,wn+e1+62(wn +eg € x')
_ éNE - é«NE
- Ya,wpte;tes ater,wnter+en
= la+te;-

The first inequality in (4.28) above is a special case of the first inequality of (4.14), applied to the
situation where the weights in (4.13) are given by

0 if ¢ = w, + e2,
Y, =1 Liye, ifx=w,+ex—ie; for somei>1,
WOy if z < w,

The notation éé\{wn +e, denotes a last-passage process in the rectangle {z : a < < wy, + ez} that
uses w weights on the horizontal lines below the top one, and the I weights on the top vertical line
x - ey = wy, ez + 1 (north boundary), with an irrelevant zero weight assigned at the top right corner
Wy, + €9.

In the first equality in (4.28) we move the upper right corner from w,, + ez one step to the right
to w, + e1 + ez so that we can include the boundary weights both on the north and east boundaries.
This is exactly the definition of GV in (4.18) and (4.19). To preserve the equality we force the
paths to go through w,, + es.

The second equality in (4.28) is valid almost surely for large enough n, by the already proved

(4.25). The last equality comes from (4.20).
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Similarly we reason for the ey increment:

~ N N
Ga,wn - Ga+€2,wn = Ga, wp+ex Ga+62,wn+eg

SNE ~NE
(4.29) = G rertes(Wn + €2 € Ta) = Gule, ey ey (Wn + €2 € Tu)
SNE ANE
= Ga, wp+er+ey Ga+ez,wn+61+62
= Ja+ez‘
This proves the last inequality of (4.27). O

Next we use the estimates above to build an exponential-« last-passage system from limits of local
gradients of last-passage values. Denote the Exp()\) cumulative distribution function by

F/\(S):{O, s<0

1—e ™, s>0.

LEMMA 4.9. Let i.i.d. Exp(1) weights w = (wg),ez2 be given and define the point-to-point last-passage
process {Gyy} by (3.1). Fiz 0 < a < 1 and a sequence v, € Z* such that |v,|1 — 0 and
Un,

(4.30) lim = ¢la) = <( (1-a)” o ) e rild.

n—0 vy |1 1—a)2+a?2’ (1—a)2+a?

(i) The limits
(431) BC(CX,:I/ = 7111_1;I()10[G$7”n - Gyavn]

exist for P-almost every w for all x,y € Z? and satisfy additivity By, + By, =Bg,.
(ii) Define
(4.32) Xy =By o ~NBy ey for x e 72,
Then the process
(X2, BY B wy : x € 72}

r—e1,x’ Cr—e2,x’
18 an exponential-a last-passage system as described in Definition 4.1.

Proof. Part (i). Fix a € Z? and let
B= @O[Ga,vn = Gaterv,] and B = lim [Gop, — Gater -

n n—o0
To get control of the distributions of B and B, we realize the processes {G,,} on another proba-

bility space as instances of {é&y}. Then we can apply bounds (4.26)(4.27).
Let 0 < A < a < p < 1. This implies

(1-p)? (1-a)? (12
(1—=p)2+p? = (1-a)2+a? = (1—=X)24+ X

Take any lattice point u < a as an origin. Suppose on some arbitrary probability space we have
mutually independent variables 0 = (04 )4e72, (Lj‘ﬂel)i?l, (Jzi\Jrjeg)jZl? (I} i, )i=1, and (Jgﬂ-@)jzl
with marginal distributions

or ~ Exp(1), &

(4.33)

~Bxp(L =)y S ~ Bxp(V),

(4 34) u+tieq u+jes
I e, ~Exp(1—p), and J7 .. ~Exp(p).

In other words, for parameters A and p we have initial conditions of the kind described in (3.6) and
(3.7). Iterating with equations (3.11)—(3.13), on the quadrant u + ZZ, construct two processes of
the type (3.16): one denoted by

(4.35) (o0, I o T2 5N izeut 72,

r—e2’ “xr—ey? r—ej1—e2
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with parameter A, and the other denoted by

4.36 op, 10 JP_ 5l cxeut 72
x eo >0

r—e1’ Yax—ej—ea

with parameter p. By construction these processes have the properties given in Theorem 3.1, process
(4.35) with parameter A and &\ replacing &, and process (4.36) with parameter p (as stated in
Theorem 3.1) but with & replacing &. In particular, both {E[A]}xewzio and {5[p]}xeu+zg>0 are

i.i.d. Exp(1) variables, and the superscripts [A] and [p] simply remind us that these variables were
constructed from edge variables with parameters \ and p, respectively.

We stipulated above that the initial edge weights on the axes {u + iep : ¢ = 1,k = 1,2} for
the A and p systems were independent. In fact the coupling between processes (4.35) and (4.36) is
immaterial because the two processes will not be used jointly.

The key point is that we can replace the weights w on the right of (4.31) with 5" and ] without
changing the distribution of the last-passage process. Let G denote the last-passage process defined
in (4.17) with i.i.d. Exp(1) weights 5, and similarly for GI7).

We derive bounds for the distribution functions of B and B.

P{B < s} = P{ hm G, — Gateron) 3} P{ nh_m 1[13;” - égfi]'el,vn) S 3}
P{ atep } = Fl*ﬂ(s)
and

P{B < s} = P{ lim (Ga, — Gaterv,) < 5} = P{ lim (éa)"v" - éc[l/:]el,vn) < s}

7’L—>OO n—0o0

P{ ater S} = Fl—)\(s)'

Above we first replaced the weights w with F* and Fl#), respectively. Then we applied (4.36), as
justified by (4.33). Last we used the known distributions of the I increment variables. Since B > B
always, we have deduced that

Fi_,(s) <P{B < s} <P{B<s}<Fi_x(s) for all A\, p such that A < a < p.

Letting A /" « and p \, « allows us to conclude that B = B ~ Exp(1 — ). This proves the limit in
(4.31) for (x,y) = (a,a + e1). Proof of the limit for (x,y) = (a,a + e2) proceeds analogously. Since
a € 7?2 was arbitrary, we have the limit in (4.31) for all nearest-neighbor pairs x,y.

An arbitrary increment y — x can be decomposed into a sum of nearest-neighbor increments, and
then the limit follows for all pairs x,y by the additivity on the right-hand side of (4.31). Along the
way one also derives the additivity By, + By, = By ..

Part (ii). We need to verify the properties in Definition 4.1. We begin with the joint distribution
of B*increments along a down-right path.

Consider the joint distribution of k + ¢ nearest-neighbor increments B . ..

[0}
and By w tes

1<i<kandl<j</{ Fix an origin u such that all z; and y; lie in the quadrant u + Z . We
use again the auxﬂlary processes given in (4.35) and (4.36).

for

The processes {CVJE{\;, ty = x> ul, {GH, cy = x> u}, and {G,y 1y = = > u} all have the same
distribution because they are defined the same way from i.i.d. Exp(1 ) we1ghts. Hence from part (i)
we can also conclude the existence of the almost sure limits

~

B:][CA; lim (G[/\ln = Ggq]) ) and B

) n—oo )

lim (chpln -G

[
n;}w 2 y?

g[c; ln) Va:,yeu—i—Z;O.
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Then, first by distributional equality of processes,

(o3
P{B, 41er < 5> B

e > 1 Vie[k],je[l] }

A . .
—P{BY), .. <si. BY), . >t Vielklje[)
]P){I)\ +ep 574’ ‘]z,)l\j-l-ez > t] va € [k]7] € [E] }

The last step came from the inequalities (4.26) and (4.27) (the case of v, of those inequalities is the
right one to look at). Similarly, using the remaining two inequalities of (4.26) and (4.27), we deduce

P{ Ti, Tj +61 < Siy B;,yj"!‘EQ > t.] Vie [k]?] € [E]}
= IP’{B < s;, BI"! >t; Vielk],jell]}

Ti, riter Yj,Yjtez

=PI ey <80y Iy e, >t Vi [k],j€[(]

Assume in particular now that the edges {x;, z; +e1} and {y;, y; +e2} lie on a given down-right path.
Then, part (i) of Theorem 3.1 applied to the processes (4.35) and (4.36) turns the bounds above into

H Fip(si) - H(l — Fp(t)) < P{Bg, 44e, < i, By yives >t Vie[k]je 4]}

Jele]
< 1—[ Fl—)\(si) . 1—[ (1 - F)\(tj))'
i€[k]

Jjele]

Letting again A " « and p ™\, a shows that along a down-right path, the variables By , . and
By +e, are independent with distributions Exp(1 —«) and Exp(«), respectively, as required by part
(a) of Definition 4.1.

Fix a down-right path ) in Z2. We verify the distributional properties on G_, ) and G, inside
an arbitrarily large rectangle.

Consider a large rectangle D = {z : (Mo, No) < = < (M;, N1)} whose lower left and upper right
corners are (My, Nog) and (M7, N7). The ej-edge varlables B( N1),(i+1,N1) for My <i< M;—1on
the north boundary, the es-edge variables B( M), (Ma,j+1) for NO < j < N1 —1 on the east boundary,

and the bulk variables w, for (My, No) < = < (M; — 1, N; — 1) are mutually independent. (The w-
variables are independent of the B*-variables to their north and east because limit (4.31) constructs
a B“-variable in terms of w-weights to its north and east.)

In other words, the B%-increments on the north and east boundaries and the w-weights in the bulk
of the rectangle satisfy the properties of the I, J boundary weights and w-bulk weights in Theorem
3.1. Next we show by a south and westward induction that the joint distribution of (X%, B,w) is a
correct one.

We claim that the variables satisfy the equations

6% 6% (6%
Xotertes = Bz+e2 vtertes N Brter, zter+es
« « 67 +
(4'37) Bm,x+e1 (Bx+62,:r:+el+ez Bx+61,a:+e1+62)

(64 —
Bm,z+e2 = Wy + (B$+62,$+81+62 - BCB+€1,Z‘+61+62) .

In contrast with the iteration (3.11)—(3.13), the equations above proceed to the south and west.
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The first equation in (4.37) is definition (4.32). The second and third come from the limits (4.31).
For example,

a . .
Bz,x+e1 = lim [Gz,vn — Gyteyv,) = lim wy + Goter,vn V Gates, v, — Grter,vn]
n—o0 n—0o0

. +
= wy + lim [Gx-i-ez,vn — Guier, v,
n—0o0

. +
=Wz + nlgrolo[(GaHeQ,vn — Garyerves,vn) — (G:v+e1,vn - GT+31+€27U71)]

— B%

= wg + [B $+€1,I+61+62]+‘

a
xr+eo, x+e1+ea

By Lemma 3.2 and induction, for any down-right path from the upper left corner (M, N1) to the
lower right corner (M, Ny), inside the rectangle D, the B*-increments on the path, the w weights
below and to the left of the path, and the X® weights above and to the right of the path, are all
independent with the correct marginal distributions stipulated in (4.2). Part (a) of Definition 4.1
has been verified.

It remains to check that equations (3.11)—(3.13) are satisfied.
Bg,1‘+61 A B§,$+62 = JLIPX)[GZ"U" - G$+61,’Un] A [Gxﬂ}n - Gx+627vn]

= nhnolo[wm + Gx+61,vn Vv Gz+eg,vn - Gw+61,vn] N [Wm + Gm+el,vn Vv Gw+ez,vn - Gm+ez,vn]
.

_ + +
=Wz + [Gz+62,vn - G:c+e1,vn] A [Gm+e1,vn - Gm+eg,vn]
= Wyg.

This verifies (3.11) (at  instead of at x — e; — e2).
By definition (4.32) and the additivity of B®,

Bg—ehx = Bg—el,x A Bg—627x + (B;cl—el,:c - B$_627x)+
= X;:l + (Bg—el—eg,x—eg - Bg—el—ez,m—el)+'
This is (3.12). Equation (3.13) is verified in a similar manner. O

LEMMA 4.10. Fiz a countable dense subset D < (0,1). Then there exists an event Q of full proba-
bility such that the following holds for each w € Q.

(i) For each p € D the process {Bfy(w)}y yezz is well-defined by the limits in (4.31) for the
specific sequence v, = |n&(p)|. These processes satisfy the following inequalities:
A
B:c,x+e1 (w) < Bg,:erel (w>

and B (w) = BY (w) for all z € Z* and \ < p in D.

T, r+e2 x,T+e2

(4.38)

(ii) For each a € (0,1), and any sequence u, in Z* such that |u,|; — © and

(4.39) lim —" = £(a) = <( (1—a)’ o )

n—o |up|; l—a)+a?’ (1-a)?+a?

we have these bounds:

A .
sup B$,J}+61 < h7m [Gm,un - Gz+el,un]
AeD:A< n—0o0
(4.40) ° e o
< i [Goy = Gaterun] < seinf Biote

and

S Brgpe, < M0 [Gouy = Govenun]
(4.41) peipma

< lim [G -G < inf B¢ .
\n—>oo[ T, Un I+82,un] = \eD A< T,x+ez
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Proof. Define Qg to be the event on which the limits in (4.31) hold for each p € D, for the specific
sequence v, = |n&(p)]. Then fix w e Qy. Let 0 < A < a < p < 1 be such that \,p € D. Let u, be
any sequence in Z? such that |u,|; — 00 and (4.39) holds. Let b, = |u,|1. Then (4.33) implies that
for large n,

(442)  [B&()] o1 <wn-er < [baEN)]-er and  [BuEON)]-ea < up- €2 < [Ba(p)] - eo.
Then Lemma 4.5 gives the bounds

G lbne)] = Gater,lbae)] S Grun = Grterun < Golbag(p)] = Gaven lbag (o)

and

G lone(o)] — Cutes, bat(p)] S Caun = Goterun < Gafbne)] ~ Cates, [bae )]
All the inequalities claimed follow by taking n — oo. O

Proof of Theorem 4.2. We start with a countable dense subset D < (0, 1), the processes B for A € D
defined by the limits

A .
(4.43) By = M [Go lng(r)] = Gy )]

n—0o0

on the event 2y of full probability given in Lemma 4.10. For each A € D, from Lemma 4.9 we know
the additivity

(4.44) By, +B,. =B,
and that with X} = B A B the process {X}, B} B) wy : x € Z% is an

T—e1,T T—e€2,T r—e1,x) —xr—eg,x) VT
exponential-A last-passage system as described in Definition 4.1.

Let Q1 be the subset of €y on which

A — R — 3 P
Sup B:):,x+e1 - B:v,erel - lnf Bm,:erel
(4.45) AeD:A<ry pED:p>7y
’ P - B — A
and sup By e, = Bragie, = inf cate, forallyeD.
peD:p>y AeD: A<y

Event €1 has full probability because of the monotonicity and control of distributions: for example,
for the first equality in (4.45) reason as follows: by (4.38)
sup B2 = lim B}

T,x+eq T, r+eq
AeD:A<y DaX 7y

v
< Bw,x-ﬁ-el’

but by Lemma 4.9(b) and the convergence of distributions, both limpsy B‘%’I t+e, and B, have
Exp(1 — ) distribution. Hence they agree almost surely. By discarding another zero probability
event we can assume that 2 is invariant under translations.

In order to prove that B is a stationary cocycle (Definition 2.6) for v € D, it remains to check the
stationarity By, (0.w) = B],, .., We apply bounds (4.40)~(4.41) to the sequence u,, = [n&(7)| + 2
that satisfies (4.39) with limit £(y). Together with (4.45) these bounds give (with an extension by
additivity) almost sure equalities

Bly = i [Go pne(y)|+2 = Gy, Ing()+2]

n—o0

for any fixed z and all z,y. Consequently

Biisyre = 10 [Gors ne)+2 = Gz Ing(r))+2] = 1M [Ga ()] = Gy, ine()] © 0=
= B;,y 06,.

We have now checked that B” is a cocycle for each v € D.
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We take the step to general o € (0,1). For each o € (0,1) define processes X and B* by taking
right limits from values in D: set for each w e 4 and z,y € Z

(4.46) (X2 (), BEy (@) = lim (X2(w). B,(w).

These limits exist for nearest-neighbor pairs z,y by the monotonicity in (4.38), and extend to all
pairs x,y by additivity on the right. The limit for X¢(w) comes along as a function by virtue of the
definition X (w) = Bé\—el,z (w) A Bé\—eg,z (w) which is then also preserved to the limit.

Extend these functions in some arbitrary way outside {2;. By the arguments given above, we have
not altered these functions on €2; if @ happens to lie in D. The properties of both Definitions 2.6 and
4.1 are preserved by the limits: B* is a stationary cocycle and {X¢, BY ., ., BY ., ,,wy : @ € Z*} is
an exponential-a last-passage system. We have verified part (i) of the theorem.

Inequalities (4.5) are valid on the event §2; simultaneously for all A, p € D and preserved by the

limit in (4.46). Part (ii) is proved.

For part (iii), fix 0 < @ < 1 and let Qéa) be the intersection of the event 2 above (which is
contained in the event 2y of Lemma 4.10) with the event on which

(4.47) sup Bp,.,., = inf B, .. and sup By .., =  inf

e
AeD: A< peED:p>a peD:p>a AeDd<a  TTter

The equalities above hold with probability 1 by the argument used already above. First, by mono-
tonicity inequality < holds in both equalities above. Then the suprema and infima are limits, and
the left- and right-hand sides of the equalities above are equal in distribution. Hence the left- and
right-hand sides agree almost surely.

The coincidence of the lower and upper bounds in (4.40)—(4.41) imply that the claimed limit in
(4.7) holds for nearest-neighbor pairs x,y. Extend to all z,y by additivity. This completes the proof
of Theorem 4.2. O

5. FLUCTUATION EXPONENT FOR THE CORNER GROWTH MODEL WITH EXPONENTIAL WEIGHTS

Return to the point-to-point last-passage process defined as before in (3.1) by

ly—z|1
Gey = max Z Wiy
Tu€lly y
k=0

with i.i.d. Exp(1) weights (w,) and the maximum over up-right paths from = to y. In Theorem 3.4
we proved the law of large numbers

lim N71G07[N5J = gpp(§) = (\/gl + \/52)2'

N—o0
for ¢ € [0,00)2. The next result states that the fluctuation exponent of Go,|nve) 1s 1/3, as predicted
by Kardar-Parisi-Zhang (KPZ) universality.

THEOREM 5.1. Fiz £ € R2,. There exists a constant 0 < C = C(&,p) < o such that for N > 1 and
1<p<3/2,

(5.1) CTINPPB < E[|Gone) — Ng(€)P] < CNPB.

Currently this theorem is not proved in these notes. It is a consequence of the fluctuation bounds
for the increment-stationary last-passage process G” to which we now turn.

We recall the setting from Section 3. The parameter 0 < p < 1 of the boundary weights is fixed.
We are given mutually independent random variables

(5.2) {We, Tieys Jjey : €2, 0,j € Zng}
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with marginal distributions
(5.3) wy ~ Exp(l), ILie, ~ Exp(1—p), and Jj, ~ Exp(p).
The last-passage process GSJ is defined for = = 0 by G&O =0,

m
(5.4) Gl e, = Z L, and Gf . = 2 Jies
i=1 j=1

and then for z = (m,n) € Z2,,,

k /l
P _ . .
(5.5) GO,a: = 1I<I}<:asxm { 2;1161 + er1+62,x} \/ 12;2% { Z:l JJ€2 + G€62+617$}‘
i= j=

G, inside the braces is the last-passage value defined in (3.1) for i.i.d. Exp(1) weights.

We do not have a closed form expression for Var[Gg,(m’n)] but we can access it well enough to
show that it obeys the fluctuation exponent 1/3 characteristic of the KPZ class. However, there in an
extra twist. Notice in (5.3) that the boundary weights wje, and wje, are larger on average than the
bulk weights {wfc}xezz> . This implies that the boundaries are attractive to the maximizing path. It
turns out that only when we take the point z to infinity in the characteristic direction ¢((1— p)?, p?),
the pull of the boundaries balance out and GG@ obeys KPZ fluctuations. Otherwise the boundaries
swamp the effects of the percolation and GS@ obeys the classical central limit theorem.

Let N be a scaling parameter that increases to co. We consider the point-to-point last-passage
percolation from 0 to a point (m,n) = (m(N),n(N)) that is taken to infinity as N — oo. Let ky
denote the deviation of (m,n) from the characteristic direction:

(5.6) ky =|m—N(1—p)?|+|n—Np?|

THEOREM 5.2. Assume weight distributions (5.3) and ky < agN?/3 for some constant ag. Then 3
constant 0 < C' = C(p,ag) < o such that

(5.7) CTINYB < Var[Gf, [ ]<CN*®  for N=>1.

(m;n)

We prove the upper bound in the theorem above completely and the lower bound for the case
where k is bounded by a constant.

As a fairly immediate corollary we obtain the behavior in off-characteristic directions. For con-
creteness, we state the result for the case where the horizontal direction is abnormally large.

COROLLARY 5.3. Assume weight distributions (5.3). Suppose m,n — . Define parameter N by
n = Np?, and assume that
N~%(m—N(1 —p)z) —c1 >0 asm,n — ©
for some o > 2/3. Then as m,n — o0,
—a/2
N o/ {Gg _E(GS,(m,n))}

converges in distribution to a centered normal distribution with variance ¢1(1 — p)

,(m;n)
-2 .

Proof. Recall that overline means centering of a random variable.

—a/2 AP —a/2 AP —a/2 T
N= GG ) = N2 G qnvaper vy + N7 20 iy
i=|N(1-p)2|+1
The mean square of the first term on the right is of order N~ - N?/3 and hence in the limit vanishes

in L? and in probability. The second term is a sum of approximately ¢; N® mean zero i.i.d. terms
with variance E[ I (21 n)] = (1 — p)~2. This sum gives the normal limit, by the CLT. O
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6. PROOF OF THE FLUCTUATION EXPONENT FOR THE STATIONARY PROCESS

This proof was originally presented in article [3], which itself was based on the earlier work [4] on
increasing sequences among planar Poisson points.

The first step towards the proof of Theorem 5.2 is an explicit formula that ties together Var[GSj (m’n)]
and the amount of weight the maximizing path collects on the boundary.

For a given x, the last-passage problem (5.5) has an almost surely unique maximizing path z. =
(Zk)}_y from Zg = 0 to T, = x that satisfies vax = > r_q Wz, where we utilized the notational
convention on the axes that wge, = Ike, and wye, = Jpe,. For 7 = 1,2, define the exit time (or exit
point) of this path from the e, axis by

(6.1) 7, = max{k = 0: Ty - e3_, = 0}, r=1,2.

If the first step of the path Z. from the origin is e,, then 1 < 7. < x - e, and 73—, = 0. In other
words, almost surely exactly one of 71 and 75 is positive (but which one is positive varies with the
realization of the weights w).

Further, introduce the sums of weights along the axes:

k l
Sl,k = 2 Iie1 and 5274 = 2 JjeQ.

i=1 j=1

Then S, ;. is the amount of weight that the maximizing path collects on the e,-axis. Again, for
each weight configuration w, exactly one of Si -, and S35, is positive and the other one zero. When
necessary for distinguishing processes with different boundary weights (5.3), these variables will be
adorned with superscripts, as in 7 and Sﬁ L

Next we state the variance formula for the last-passage value in the increment-stationary CGM.

THEOREM 6.1. Assume weight distributions (5.3).

m n 2
— 4+ FE[S,
A—p? 22 1=p [51.7]

m n 2
= —— — 5+ -E[S2]

1=p2 p p 7

We skip the proof of this lemma for now. It involves explicit computations with exponential
distributions and covariances.

This section proves Theorem 5.2. The section is divided into an upper bound proof and a lower
bound proof.

Var[G? )] =—

0,(m,n

(6.2)

6.1. Upper bound. We couple the boundary variables for two different parameters 0 < p < A <1
as follows:

1—
A P A P
(6.3) Loy = T\ Tiew > Tey  and iy, = T3, < Ji,

From this follows for example that 7 > 7{ and 75 < 74, and also
(6.4) S —SY, <S8, —8f, for0<l<k
We begin with auxiliary lemmas.
LEMMA 6.2. Let 0 < e < 1. Then there ezists a constant C = C(e) such that, fore < p <A <1—¢,

Var[Gé‘v(m,n)] < Var[G}) |+ Cm(X —p).

»(m,m)
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Proof. From (6.3)

7'2 7’
Sg\,fz Z jea Z je2 § Z png2

Using the second line of (6.2),

A m n 2 A
Var[GO’(mm)] = 4(1 _ A)2 - ﬁ + XE[SQJ—Z]

(1=p?* m  p» n  p* 2

< : LA - )
A—N2 T—pf ¥ 2+A2 . [55:)

2

p (1—

=2 Var| 8( PEAGEE )

< Var[G)) 0,(m )] + Cm()\ p). O

LEMMA 6.3. Let 0 <e < 1. Then there exists a constant C = C(e) such that, fore < p <1—¢,
(6.5) E[Sf . 1< C(E[7{]+1).

1,71
We skip the proof of the above lemma.
The main estimate for the upper bound in (5.7) is contained in the next proposition.

PROPOSITION 6.4. Consider the increment-stationary CGM Go( n) with weight distributions (5.3)

for a given 0 < p < 1. Let ky be defined by (5.6). Three positive constants ap, a1 and Ny are given
and the assumption is that

(6.6) kn <aoN?? and m<aiN for N = Ny.
Then there exist constants co,c3 < 00 such that the following two bounds hold:
N2 N8/3
(6.7) P{T{’>£}<C3(€—3+(1+a0)7) for N= Ny and 1 v cary < £ <m
and
(6.8) E[()?] < ( q)N2q/3 for N> Ny and 1 < q < 3.

The functional dependencies of the constants ca,cs on the parameters is as follows:
(6.9) ca =ca(p) and c3 = c3(al,p).
Furthermore, co and cs are locally bounded functions of their arguments.

The upper variance bound in (5.7) follows from a combination of (6.2), assumption (5.6), (6.5),
and (6.8) for g = 1.

Proof of Proposition 6.4. Consider N > Ny so that the assumptions are in force. Assume that, for
some 0 < ¢o < 00, the integer ¢ satisfies
lveky<f<m<aN.

The proof will choose ¢y = ca(p) large enough. Let 0 < r < 1 be a constant that will be set small
enough in the proof. Let

rl
6.10 A= —.
(6.10) Pt
We take r = (a1, p) at least small enough so that ra; < 3(1 — p). This guarantees that for N > 1
1+p

A€ (p,—5%) is also a legitimate parameter for an increment-stationary CGM.
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In the first inequality below use Si\,k + G1),(mn) < Gg‘ () In the last inequality below use
(6.4).
]P){Tlp = f} = P{ dk =0 Sik + G(k,l),(m,n) = G87(m7n) }
< P{ k=1 Sf\,k - Sf,k < G())\,(m,n) - G'S (m,n) }

A A
(6.11) <P{STr = 570 < Gg tmam) = GO (mm) }
Next we compute and bound the means of the random variables in the probability above. First

1 1 4 1 rf?
i way) Rl ey LSSl e e B

B[S}, - 57, = ¢(

Introduce the quantities
(6.12) Ky =m—N(1—p)? and k% =n— Np?
that satisfy (with ky as in (5.6))

|y |+ 85 ] < K.

Then the LPP values.

1 1 11
EIG may = Co ] = (75~ 725) *7(5 )
“(ana=n )0
1—p »p K K3
:N(ﬁ_X)O\_p)—i_((l—)\)]{l—p)_TZ>( =7
(6.13) =N(>\—p)2—|—(l€}v—lﬁv>(>\—p)
A1 =A) (I=XNA=p) A
r2¢? K\ K2\ 1l
:A(1—A)N+<(1—A)J(V1—p)_TJ;>N
r2¢? 1 02

< n :
AMI=XMN  (1=XN(1A—=p)AXp N

The last inequality came from ky < £/cs.
Comparison of the means shows that if we choose ¢y large enough and then r small enough, both
as functions of (A, p), then for a large enough constant cs = c3(A, p),

ri?
E[S7y — 57 ] > E[Gy (mm) =~ G (] T N

Since the range A € (p, HT”) is determined by p, the dependence on A can be dropped and we have
& = ea(p), 7 = (a1, p) and ¢ = ca(p).

We continue from line (6.11). Below we subsume 7, a1, p, A dependent factors into a constant
C = C(ay,p). Along the way we use Lemma 6.2, Theorem 6.1, (6.12), Ky < 0516, m < a1 N, and
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Lemma 6.3.
P{rf = ¢} <IP’{S%K sz\GS( )~ Goy )_7%2}

m,n mn) cgN
<P < e+ H{ Gt~ O > oy
< Oé:ﬂ Var[Sl = Sf’g] + ngvar[GS,(m,n) - Gg,(m,n)]

g cg? . C évz (Var[G ()] + Var[G . 1)
< Cé;ﬂ + Cé\ﬂ (Var[GY) 0, (mumy) T (A — p))
2 2
= Cg + Céj (— a TP)Q + % + 12PE[51 71] +aN - TNZ)
61 < O O prty g <« E 1 gy

Now use the assumption Ky < agN 2/3 Let b = coag + 1 + C, with C as above. This ensures
bN?/3 > ¢ok which lets us use the bound above for integers ¢ > bN?/3. By adjusting the constant
C in the front we can apply the bound to all real £ = bN?/3.

o 03 N? N?
E[+/] :L P(r{ > s)ds < bN? +C’JN2/3 T+ Bl ds
CN?3  C
= bN* 4 = + oIl < BN 4 GNP 4 SE[r{].

From this we obtain the bound
E[{] < (c2(p)ao + Ci(a1, p)) N*?
and thereby (6.8) has been proved for ¢ = 1. Substituting this bound back into line (6.14) gives

N2 N8/3

for a constant Cy = Cy(aq, p), verifying (6.7). Another integration with b = ca(p)ag + 1 + Cy proves
(6.8) for 1 < ¢ < 3:

e} ee}
E[(r])?] = f P(rf > s)qs?tds < N3 + CQJ (N2s7% 4 (1 + ag) N®/3577%) ds
0 bN2/3
Cbd~ C >
_ pN2/3 4 2 ja 4 2 5q 2q/3
bN"P + 2 CLBI + (L ag) N3 < (c2(p)ao + 3_q>N

where we summarized the (a1, p)-dependent constants into C5 = Cs(aq, p). This completes the proof
of Proposition 6.4, with c3 defined as the constant that appears in front of the right-hand sides of
(6.7)—(6.8). O

6.2. Lower bound. The parameter 0 < p < 1 of the increment-stationary LPP process is fixed.
Let N be the scaling parameter that is sent to infinity, and define the endpoint of the point-to-point
LPP process by

(m,n) = (IN(1—p)°|, [Np*))
going in the characteristic direction for p. We prove the lower bounds on the right and left tail stated
in the theorem below.
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THEOREM 6.5. There exist constants 1 < ay(p), az2(p), No(p,s) < oo such that, for s = az(p) and
N = NO(ﬂ? S))

$3/2

(6.15) P{w : Gg”( > E[G! 1+ sN1/3} > ea1(p)

m,n)

Furthermore, there exist constants 0 < as(p), as(p), N1(p,t) < 00 such that, for 0 <t < az(p) and
N =N (p7t);

(6.16) P{w : G}

7(m7n)

p

0,(m n)] o tNl/g} = a4(p)t2.

)

This gives the lower variance bound in (5.7) for the case when ky is bounded:

3/2

Var[Gf (.] = E[(Coimm) — B [Comm]) "] = *N¥2 - emn0

7(m?n)
In this proof also we perturb the parameter of the boundary weights. Introduce a quantity r > 0

which, in the end, will be a constant multiple of s/2. Define another parameter for the increment-
stationary CGM by

r

To guarantee that A € (p, %) e assume that

N = Ny = No(p,r) = 8(13,;)3-

Ny will be increased along the proof, but remains a function of p and r.

Notational comment. In this section we find it convenient to attach the parameters p and A to the
measure P and the expectation E and variance Var to indicate which distribution is placed on the
boundary variables. We denote all the weights now by w; and the last-passage value G, is defined
by

with maximum over paths that satisfy 9 = 0 and x,, =  with n = |z|;. Under P? the distributions
are as in (5.3) but without the I and J notation, namely

(6.17) wy ~ Exp(1) for bulk vertices z € Z2,, wie, ~ Exp(1 — p), and wje, ~ Exp(p).

IF’S’ (m.n 18 the probability distribution of the weights on the rectangle [0, (m,n)]. A
For N € Z~y and r > 0 define the event

(6.18) Any = {1 = p)rN?? <1 <4p~'rN?3}.

Variable 71 is the exit time from the ej-axis of the maximizing path from 0 to (m,n), defined by
(6.1). We develop a lower bound for the probability of Ay, under Pé‘ (myn)’ that is, for the increment-

stationary process with parameter A, restricted to the rectangle [0, (m,n)]. Note that this rectangle
is mot of the characteristic shape for A, and we take advantage of this in the proof.

LEMMA 6.6. There exists a constant Cy = Ci(p) such that the bound below holds for r = 1 and
N > N().'

(6.19) 3 (mumy (AN.r) = 1= Cir™?
Proof. We derive first an upper bound for ]P’(’} (m n){ﬁ > 4p~1rN?/3}. Define
m=|Np*A2(1 = \)?|
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so that (m,n) points in the characteristic direction for A\, up to an O(1) error ky coming from integer
parts. Furthermore,

A+p—2Np

m—-m<N((1-p)?—pPA2(1-N})+1=N v

(A=p)+1
< 2p_17“N2/3

for N > Ny(p,r), for a suitably chosen Ny(p,r). By Lemma A.2 in the appendix, and then by the
upper bound (6.7),

yim > 4p” TN2/3}—IP”\ {r1 > 4p ' rN?3 — (m — i)}

(m,n)

_ c4
P) i1 > 207 N3} < 3

O(mn

where ¢4 = c4(p) contains c3 from (6.7).
Next we derive an upper bound for P} (m n){ﬁ < (1= p)rN?3}. Let

(6.20) (m,n) = (IN(1=A)?], [NA?))
point in the characteristic direction A. Bound these differences:
m—m=N1-p2—=1=-XN)=1=NA—p)2—p—A)—1=2-p—NrN¥> -1
> (1—p)rN?3
and
i—n=NA=p>)—1=NA—=p)p+A) —1=prN?3,

again for large enough N relative to (p,r). By Lemma A.3 in the appendix, and then by the upper
bound (6.7),

IP)S,(m,n){Tl < (1 - p)TN2/3} < Pa(m’n){Tl <m — m} = ]P)S,(m,ﬁ) {TQ >n — n}

Cs

where ¢5 = ¢5(p) contains cs from (6.7).
Combine the bounds:

]P)()i( ){( _ ) N2/3 <7 < 4p71rN2/3}
=1- mn){ﬁ > 4p~ ’I“N2/3} IP’O (mn) {7’1 <(1- p)TN2/3}
=>1- 017“ . ]

Computing as in (6.13),

i~ #nimn) (5 - 7)1 -

1)
N IN(1—p)*| =N —p)* |Np*| - Np?
(6.21) = >2+{ T-N-p W }“‘”)
B r2N1/3 ol r . 2 713
“ oy HOW = e

where cg = c¢(p) > 0 is a constant chosen small enough to satisfy the inequality above for all N > Ny
and r > 1.

Let Ay denote the set of paths z. € Il (, ) that satisfy 71 = e; and w5-e3 > 0 for k > |4p~ 1 N?/3].
In other words, the path stays on the z-axis for a while after leaving the origin, but does not
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stay on the z-axis beyond the point |4p~'rN?3|e;. For any given weights {w,} on the rectangle
{0,...,m} x{0,...,n}, let

(6.22) Go,(mmy(Av) = max > wy,

denote the LPP value whose maximum is restricted to the paths in Ay. Observe that Gy (, n)(An) =
Go,(m,n) if event Ay ;. of (6.18) occurs for weights {w;}. (This would be true even if the lower bound

in Ay, would be relaxed to 7 > 1 instead of 71 > (1 — p)rN?/3.)
We derive our second probability bound. Define the event

(6.23) By = {w : Go,(mn)(AN) = E?[Go (mm)] + %067“2N1/3}.

LEMMA 6.7. There exists a constant Cy = Ca(p) such that the bound below holds for r = 1 and
N = Ny:

(6.24) P3 (mmy(BN.r) = 1= Cor™®
Proof. Since by (6.21)
E[Go,(m,n)] + %067"2-7\[1/3 <E [Go,(m.m)] — %067“2]\71/3,

we can bound the complementary probability as follows. Constant C' changes from line to line.
Below we use Lemma 6.2.

Pé’(m’n) (B?V’T) = (m n){GO (m,n) (AN) < EP[G (m,n)] + %067°2N1/3}
(m n){GO (m,n) (An) < EA[G 0,(m, n)] - lC67"2]\71/3}
< 0,( m,n){GO,(sz) < E [Gm(m’n)] CGT2N1/3} + P/\ mn)( §V7r)

C Cy
< T4N2/3Var [GO (m, n)] + 7”73
C C
YTE] (Var’[Go (m,m)] + m(X—p)) + e
oo .

R
With the preliminary work done, we turn to the proof of Theorem 6.5.

Proof of Theorem 6.5. We construct a coupling of three environments. Let w” and w” denote envi-
ronments as described in (6.17) with parameters p and A\. We assume that these environments

are coupled so that in the bulk, for x € Z>0, wh = wi‘ = w,, while the boundary variables
{wml,w]peywz)‘el,w?62 :1,j € Z=o} are mutually independent.

Construct a mixed environment @ as follows:

Bie, = wh, for 1<i< [4p71 N?3|

ieq

and Bp =wh for x¢{ieg:1<i<|4p” TN2/3J}

Thus in the bulk all weights agree and are i.i.d. Exp(1): for x € Z%,, &, = wh = w)} = w,. On the
boundary @& follows w® on the segment that is relevant for the event B, and elsewhere & follows
w”. Note that w* € By, iff & € By,
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Let the distributions of the three env1r0nments w”, w* and @, restricted to the rectangle {0, ..., m}x
{0,...,n}, be denoted by IE”O (o) ]P”‘ 0, (m.n) and P07(m7n) respectively. These are all probablhty mea-
sures on the product space Rio’ Smp{0sm} pp g Radon-Nikodym derivative

—1 N2/3J
dPO &o,(m,n) Mo A A—p)w;
fN(W) dPﬂ 0.(m.m) (w) = H E e ( p)wiey
s =1

is a product of the Radon-Nikodym derivatives of the exponential single weight marginal distributions
on that segment of the boundary where w?” and & differ. Computation of the mean square gives

, ) A2 [ 2O [4p=1r N3] 22 [4p~1rN?/3)
E vl = (J e TP peT P8 ds) = <>
0,(mym) LIN] 2 ), P p(2X — p)

_ r 2r
= exp{ Y | 21+ G) o155 |}

3

%

< e4'r
Now fix 7 > 1 large enough relative to Cy = Ca(p) from (6.24) so that Cor—3 < 1.
1- 027' IP)0 ,(m,n) (BN r) IP)O,(m,n) (BN,T') = ES,(mm) [lBN,T fN]
1/2 2 111/2
< {IP)O ,(m,n) (BN77')} {Eg,(m,n) [fN]}
1/2 9,3,-3
{PO ,(m,n) (BNW)} / M
Since G, (m,n) = Go,(m,n)(An), from this comes the lower bound
PG oy (@ Go,mm) = E?[Go mm)] + 3067 N2}
(6.25) > Pl 19 Gomm) (AN) = E?[Go )] + 3eer” N2}
> 4 (1- 027,_3)2‘
To complete the proof of inequality (6.15) of Theorem 6.5, set s = Scgr® and let ai(p),az(p) be
suitable functions of p, c¢g and Cs.
To prove the second inequality (6.16), abbreviate temporarily X = G (mn) — E[Go (m,n)] and
first derive this estimate from inequality (6.15):

0= EP[X] = EP[X+] —EP[X "] = sN/3e—ulr

where we set

)72 _RP[X ] = 2tNY3 — EP[X ]

t = %Se_al(P)SSQ'

Note that for s > a2(p) as in the statement of Theorem 6.5, ¢ is bounded above by some constant
as(p) but can be arbitrarily small. Next,

UANVP <EP[XT]=FEP[X~, X~ <tNY3]+EP[X™, X~ > (N3]
<tNYB 4 (BP[(X 7)) P (PP{x— = tNV3}H) Y2
<N 4 (Var [Go gmm]) 2 (PPAX ™ = tN3})

From which we deduce, together with the upper variance bound from Theorem 5.2, for some constant
as(p),

1/2

PP{X™ > tN'3} > ay(p)t?.
This inequality is the same as (6.16). This completes the proof of Theorem 6.5. O
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APPENDIX A. COUPLING LPP PROCESSES

We first prove a lemma for deterministic weights. Fix a point a € Z2. Suppose boundary weights
{Watke, * k € Z=g,r € {1,2}} on the south and west boundaries of a + Z;O and bulk weights
{Wm}xea+z2>0 are given. Put an irrelevant weight w, = 0 in the corner a. Let G, denote the LPP

value for points z € a + Z2 and let 73" be a maximizing path from a to z. (If it is not unique,
make an arbitrary choice.)
Let b > a on Z2. On the lattice b + Z;m put a corner weight m, = 0 and define boundary weights

(A.1) Mo+ke, = Ga,btke, — Gapr(k—1)e, ~ for k € Zsg and r € {1,2}.

In the bulk use 1, = w, for x € b + Zio. Denote the LPP process in b + Z2>0 that uses weights
{nx}web—kzio by

|z—bl1
(A.2) Gpr = max Z N, s reb+ Zio.
’ a:.eHb@ =0 =

LEMMA A.1. Let a < b<wv in Z>. Then Gaw = Gap+ ébﬂ,. The restriction of any maximizing path
for Ggo to b+ Z2>0 is part of a maximizing path for Gy,. The edges in the interior of b + Z;O of

any maximizing path for Cﬁ;’bﬂ, extend to a maximizing path for G,p.

Proof. If v = b + ke, (that is, v is on the boundary of b + Z;O) the situation is straightforward.
Suppose v > b coordinatewise. Suppose a maximal path from a to v enters b + Z2>0 by taking the
step from x = b + ke, to y = b+ ke, + e3—,. Suppose a maximal path for (N}bﬂ, enters b + Z2>0 by
taking the step from Z = b + fegs to i = b + fes + e3_s. Then
k
Ga,v = Ga,:c + Gy,v = Ga,b + Z Mo+ie, + Gy,v
i=1
N ¢
< Ga,b + Gb,v = Ga,b + Z No+ies T Gﬂ,v
i=1
= Ga@ + szﬂ, < Gop.
Thus the inequalities above are in fact equalities. O

Write Py, for the probability measure of the LPP process in the rectangle [0, v] with boundary
and bulk weights (5.3).

LEMMA A2. Letl <k<k+/?¢<m. Then P07(m7n)(7‘1 >k + f) = ]P)O,(m—k:,n)(Tl = f)
Proof. Take a = 0, b = (k,0) and v = (m,n) in Lemma A.1. Then, under Py , ), the LPP process

éb,x in [b, v] has the same distribution, modulo the translation of the origin to b, as an LPP process
under Py (,_p n). By Lemma A.1 the maximizing paths from a and b to v agree in their portions
inside [k + 1,m] x [0, n]. O

LEMMA A3. Let 1<m <m and 1 <n <n. Then Py () (11 <m —m) =Py 5.5 (72 >0 —n).

Proof. We couple these LPP processes as follows. Let

a=(m—-m,0), d=(0,n-n) and v=(m,n).
The origin 0 takes the role of b in Lemma A.1.
Let i.i.d. Exp(1) weights {wy},ez2 be given. Then place independent boundary edge weights with
distributions dictated by (5.3) on the south and west boundaries of the lattice region (a + Z2,) U
(a/ +Z%,):
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erjie; form—m+1<i<0and

(a) On horizontal boundary edges put Exp(1 — p) weights o(;_)
Oa’+(i—1)e1, a/ +iex for i € Z~o.

(b) On vertical boundary edges put Exp(p) weights o(;_1)e, je, for n —n +1 < j < 0 and
Oa+(j—1)ez, a+jes for j € Z~o.

Next consider two LPP processes that emanate from a and @' and use the boundary weights
described above in (a) and (b): G4,y for points y on the y-axis, and G , for points « on the z-axis.
(The restriction put on y implies that G4, does not need boundary weights on the z-axis beyond the
interval [a, 0], and similarly G , does not need boundary weights on the y-axis beyond the interval
[a’,0].) Let these processes define boundary weights on Z2: Ni-1)er,ier = Gat ier — Gar (i—1)e, and
N(Gj—1)ez, jea = Ga,j€2 - G(L(j—l)eg for i,j € Z>o.

Now consider three LPP processes with lower left corners a, 0 and o'

(i) Ga z uses boundary weights o(;_1)e, je, for m —m +1 <7 <0 and 1;_1)e, je, fOr i € Z=g on
the horizontal axis emanating from a and aa+u_1)627aﬂ62 for J € Z~g on the vertical axis
emanating from a.

(ii) CNJO@ uses boundary weights 7;_1)e,, je, and 7)(j_1)e,, je, O the standard axes emanating from
0.

(iii) Gy . uses boundary weights o414 (i_1)e;, a/4ie; fOT i € Z~¢ on the horizontal axis emanating
from a’ and weights T(j—1)es, ]62
vertical axis emanating from a’'.

forn—n+1<7 <0 and n;_1)e,,je, for j € Z>o on the

Let P denote the probability measure under which this coupling has been constructed, that is, the
probability measure of the independent weights w, and oz, ;e -

Let A be the event that the (a.s. unique) maximal path for C:’a v does not go through the origin.
Let B the event that the (a.s. umque) maximal path for Ga/ v 8oes through the point e5. Lemma
Al apphes to the palr Gav and GOU, and also to the pair Ga v and GO v- Thus the maximizing

paths for Gaﬂ, and Ga v agree from that point onwards at which they exit the y-axis. Both A and
B are equivalent to the statement that this point is strictly above the origin on the y-axis. Hence
A=DB. - ~

On the other hand, LPP processes {Ga,a+o}eez2, and {Ga,a/+a}pezz  Poth have the same dis-
tribution as the LPP process {GJ’Q}%ZQ> , With stationary increments. Event A is equivalent to the

condition that the maximizing path for éa,v takes at most m — m — 1 consecutive e;-steps from a,

which is the same as 7, < m —m for GS () Similarly, event B says that the maximizing path for
P

éa/w takes at least n —n + 1 consecutive es-steps from a’, which for G(m 7) is the same as 75 > n—n.
Thus

~

Po,(mm) (11 < m —m) = B(A) = B(B) = Py .2y (72 > 1 — ). O
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