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1. Introduction

These notes discuss variational formulas, Busemann functions, and fluctuation exponents for the
exactly solvable corner growth model with i.i.d. exponential weights. This is a preliminary version
of text for the proceedings of the 2017 American Mathematical Society Short Course on Random
Growth Models, organized by Michael Damron, Firas Rassoul-Agha and T.S. and held January 2–3
in Atlanta. This version does not yet have all the intended results nor complete citations of relevant
past work.

Notation, definitions and terminology. Zě0 “ t0, 1, 2, 3, . . . u and Zą0 “ t1, 2, 3, . . . u. The
standard basis vectors of R2 are e1 “ p1, 0q and e2 “ p0, 1q. For a point x “ px1, x2q P R2 the
`1-norm is |x|1 “ |x1| ` |x2| and integer parts are taken coordinatewise: txu “ ptx1u, tx2uq. We call
the x-axis occasionally the e1-axis, and similarly the y-axis and the e2-axis are the same thing. C is
a constant whose value can change from line to line. For n P Zą0 the segment is rns “ t1, 2, . . . , nu.
X „ Exp(λ) for 0 ă λ ă 8 means that random variable X has exponential distribution with rate

λ. This X is a positive random variable whose probability distribution satisfies P pX ą tq “ e´λt for
t ě 0. It has mean EpXq “ λ´1 and variance VarpXq “ λ´2.

We write ωx and ωpxq interchangeably for the weight attached to lattice point x. X “ X ´ EX
is the centered random variable X.
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2. Variational formulas for last-passage percolation shapes

2.1. Directed last-passage percolation on Zd. We consider here a general setting before spe-
cializing to the two-dimensional corner growth model. Let pΩ,S,Pq be a Polish product probability

space Ω “ ΓZd of random environments ω “ pωxqxPZd P Ω, with Borel σ-algebra S, and a prod-
uct probability measure P under which the coordinates are i.i.d. random variables: for any distinct
lattice points x1, . . . , xn P Zd and any Borel sets B1, . . . , Bn Ă Γ,

(2.1) Ptω : ωxi P Bi for i “ 1, . . . , nu “
n
ź

i“1

Ptω : ω0 P Biu.

The group of translations or shifts tθxuxPZd act on Ω by pθxωqy “ ωx`y.

Let R be a finite subset of Zd. A lattice path x0,n “ pxkq
n
k“0 Ă Zd is admissible if its steps satisfy

zk “ xk ´ xk´1 P R. Let U “ coR be the convex hull of R in Rd, and riU the relative interior of U .
We put ourselves in the directed setting by assuming that

(2.2) 0 R U .

This implies the existence of a vector û P Rd and δ ą 0 such that z ¨ û ě δ for all z P R.
For convenience we also assume that Zd is the smallest additive group that contains R. Without

this assumption we would carry along the group generated by R in the development.
The weights of admissible steps z are determined by a measurable function V : ΩˆRÑ R about

which we assume the following:

(2.3) @z P R, V pω, zq is a local function of ω and for some p ą d, V p¨ , zq P LppPq.

By definition, a local function of ω is one that depends on only finitely many coordinates of ω.

Example 2.1. The basic example to think about is the two-dimensional corner growth model, with

real weights on the vertices: ω “ pωxqxPZ2 P Ω “ RZ2
. The set of admissible steps is R “ te1, e2u,

and potential given by the weight at the origin: V pω, zq “ ω0. The set of possible limiting velocities
of paths is the closed line segment U “ re1, e2s, and its relative interior is the open line segment
riU “ pe1, e2q. 4

Example 2.2. The formulation covers also weights on directed edges. Let R “ te1, e2, . . . , edu and

let ~Ed “ tpx, yq P Zd ˆ Zd : y ´ x P Ru be the set of directed nearest-neighbor edges on Zd. Let
ω “ pωpeqqeP~Ed be a configuration of weights on directed nearest-neighbor edges. The potential picks

out the edge weight: V pθxω, zq “ ωpx, x` zq for x P Zd and z P R. 4

The point-to-level last-passage percolation with external field or tilt h P Rd is defined by

(2.4) Gnphq “ max
x0,n:x0“0

!

n´1
ÿ

k“0

V pθxkω, zk`1q ` h ¨ xn

)

, h P Rd.

The maximum is over admissible n-step paths x0,n “ pxkq
n
k“0 that start at the origin x0 “ 0 and

whose steps are denoted by zk “ xk ´ xk´1.
The point-to-point last-passage percolation with restricted path length is defined by

(2.5) Gx,pnq,y “ max
x0,n:x0“x, xn“y

n´1
ÿ

k“0

V pθxkω, zk`1q, x P Zd.

The maximum is over admissible n-step paths x0,n “ pxkq
n
k“0 that start at x and end at y. If y

cannot be reached from x with an admissible n-step path then set Gx,pnq,y “ ´8. Our convention
is Gx,p0q,x “ 0.



3

Remark 2.3. The number of steps in an admissible path from x to y is determined uniquely by x and
y for all pairs x, y iff 0 does not lie in the affine hull of R. This is true for natural directed examples
such as R “ te1, e2, . . . , edu. Then we can write Gx,y “ Gx,pnq,y where n is the unique number of
admissible steps from x to y. 4

We take the existence of the limiting shape functions for granted, as stated in the next theorem.

Theorem 2.4. Let P be an i.i.d. product probability measure and assume (2.2) and (2.3).
(i) There exists a finite, convex, Lipschitz function gpl : Rd Ñ R such that

(2.6) gplphq “ lim
nÑ8

n´1Gnphq P-a.s.

(ii) There exists a nonrandom finite, concave, continuous function gpp : U Ñ R such that

gpppξq “ lim
nÑ8

n´1G0,pnq,rnξs, ξ P U(2.7)

where rnξs is a point reachable in n steps and approximately nξ. The limits satisfy

(2.8) gplphq “ sup
ξPU
tgpppξq ` h ¨ ξu.

The theorem above is a part of Theorem 2.4 in [5].
Sketch of the argument for the duality (2.8) between point-to-point and point-to-line.

1

n
Gnphq “ max

x0,n:x0“0

1

n

!

n´1
ÿ

k“0

V pTxkω, zk`1q ` h ¨ xn

)

“ max
x

1

n

 

G0,pnq,x ` h ¨ x
(

“ sup
ξPU

! 1

n
G0,pnq,rnξs ` h ¨

rnξs

n

)

ÝÑ sup
ξPU

t gpppξq ` h ¨ ξ u

so
gplphq “ sup

ξPU
t gpppξq ` h ¨ ξ u.

By convex duality, equation (2.8) implies

(2.9) gpppξq “ inf
hPRd

tgplphq ´ h ¨ ξu, ξ P U .

Let us say that ξ P U and h P Rd are dual if

gplphq “ gpppξq ` h ¨ ξ.

Lemma 2.5. Every ξ P riU has a dual h P Rd.

The lemma is proved by arguing that the infimum in (2.9) can be restricted to a compact set. See
Lemma 4.3 in [5].

In order to develop variational formulas for the limits gpp and gpl, we introduce a class of stationary
processes we call cocycles and state an ergodic theorem for them.

2.2. Stationary cocycles.

Definition 2.6 (Cocycles). A measurable function B : Ωˆ Zd ˆ Zd Ñ R is a stationary cocycle if
it satisfies these two conditions for P-a.e. ω and all x, y, z P Zd:

Bpω, z ` x, z ` yq “ Bpθzω, x, yq (stationarity)

Bpω, x, yq `Bpω, y, zq “ Bpω, x, zq (additivity).

K denotes the space of stationary cocycles B such that E|Bpx, yq| ă 8 @x, y P Zd. K0 denotes the
subspace of F P K such that ErF px, yqs “ 0 @x, y P Zd.
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A special class of cocycles is given by gradients ∇ϕpω, x, yq “ ϕpθyωq ´ ϕpθxωq. K0 is the L1pPq-
closure of gradients of integrable functions.

The first lattice variable in our definition of a cocycle is superfluous: if we put rF pω, yq “ F pω, 0, yq

then F pω, x, yq “ F pθxω, 0, y ´ xq “ rF pθxω, y ´ xq. Occasionally we may simplify by dropping the
first lattice variable and write F pω, xq for F pω, 0, xq.

Our convention for centering non-mean-zero cocycles is the following. For B P K there exists a
vector hpBq P Rd such that

(2.10) ErBp0, xqs “ ´hpBq ¨ x @x P Zd.

Existence of hpBq follows because cpxq “ ErBp0, xqs is an additive function on the group Zd. Then

(2.11) F pω, x, yq “ ´hpBq ¨ py ´ xq ´Bpω, x, yq, x, y P Zd

is a centered stationary L1pPq cocycle.
Consider this assumption on a given F P K0.

(2.12)

D F : ΩˆRÑ 0 such that the following properties hold for z P Rzt0u and P-a.s.:

F pω, 0, zq ď F pω, zq

and

lim
δŒ0

lim
nÑ8

max
|x|ďn

1

n

ÿ

0ďiďnδ

|F pθx`izω, zq| “ 0.

A sufficient condition for the limit above is that the shifts of F are r0-independent for some r0 ă 8

and E|F pω, zq|d`ε ă 8.

Theorem 2.7. Let F P K0. Under assumption (2.12) we have the following uniform ergodic theorem:

lim
nÑ8

max
|x|ďn

|F pω, 0, xq|

n
“ 0 P-a.s.

For a proof see Appendix A.3 of [6].

2.3. Variational formulas. In this section we derive variational formulas for the restricted path
length point-to-level and point-to-point last-passage values.

Theorem 2.8.

gplphq “ inf
FPK0

P- ess sup
ω

max
zPR

tV pω, zq ` h ¨ z ` F pω, 0, zqu.(2.13)

A minimizing F P K0 exists for each h P R2.

Abbreviate

(2.14) KpF q “ P- ess sup
ω

max
zPR

tV pω, zq ` h ¨ z ` F pω, 0, zqu.

Proof. Upper bound. Let F P K0. Assume KpF q ă 8. Then

F pω, 0, zq ď ´V pω, zq ´ h ¨ z `KpF q
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together with assumption (2.3) on V imply that F satisfies assumption (2.12) and therefore the
uniform ergodic theorem (Theorem 2.7) applies.

gplphq “ lim
nÑ8

max
x0,n

1

n

!

n´1
ÿ

k“0

V pθxkω, zk`1q ` h ¨ xn

)

“ lim
nÑ8

max
x0,n

1

n

!

n´1
ÿ

k“0

V pθxkω, zk`1q ` h ¨ xn ` F pω, 0, xnq
)

“ lim
nÑ8

max
x0,n

1

n

n´1
ÿ

k“0

“

V pθxkω, zk`1q ` h ¨ zk`1 ` F pθxkω, 0, zk`1q
‰

ď KpF q

because the last upper bound is valid P-a.s. for each term. We have shown that

gplphq ď inf
FPK0

KpF q.

Lower bound. Let λ ą gplphq. Set unpωq “ eGnphq´nλ with the interpretation that u0 “ 1. Since
n´1Gnphq Ñ gplphq almost surely, unpωq ă e´nε for large n and a fixed ε ą 0. Hence f below is a
well-defined finite function:

fpωq “
8
ÿ

n“0

unpωq “ 1`
8
ÿ

n“1

exp

"

max
x0,n

„

V pω, x1q ` h ¨ x1 ´ λ

`

n´1
ÿ

k“1

V pθxk , zk`1q ` h ¨ pxn ´ x1q ´ pn´ 1qλ

*

“ 1`max
z
eV pω,zq`h¨z´λ

8
ÿ

n“1

un´1pθzωq ě max
z
eV pω,zq`h¨z´λfpθzωq

“ e´λ ¨ e
max
z
rV pω,zq`h¨z`log fpθzωqs

.

Rearrange this to

λ ě max
z
tV pω, zq ` h ¨ z ` log fpθzωq ´ log fpωqu a.s

from which

λ ě Kp∇ log fq ě inf
FPK0

KpF q

provided ∇ log f P K0 which is implied by the next lemma. Let λŒ gplphq to get

gplphq ě inf
FPK0

KpF q.

The existence of minimizer is proved by a weak convergence argument that we skip. It is given for
positive temperature polymer models in Theorem 2.3 of [8]. �

Lemma 2.9. For a measurable function ϕ : Ω Ñ R define ∇ϕpω, x, yq “ ϕpθyωq ´ ϕpθxωq. Then
Kp∇ϕq ă 8 implies ∇ϕp¨ , zq P L1 @z P R.

Proof. For each z P R,

V pω, zq ` h ¨ z `∇ϕpω, 0, zq ď Kp∇ϕq ă 8 a.s.
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and so p∇ϕp¨ , zqq` P L1pPq. Suppose p∇ϕp¨ , zqq´ R L1. Then a contradiction arises as follows,
where the first equality comes by the pointwise ergodic theorem:

´8 “ lim
nÑ8

1

n

n´1
ÿ

k“0

∇ϕpθkzω, zq “ lim
nÑ8

1

n

n´1
ÿ

k“0

rϕpθpk`1qzωq ´ ϕpθkzωqs

“ lim
nÑ8

1

n
rϕpθnzωq ´ ϕpωqs “ 0 in probability. �

Theorem 2.10. For each ξ P riU we have this variational formula.

gpppξq “ inf
BPK

P- ess sup
ω

max
zPR

tV pω, zq ´Bpω, 0, zq ´ hpBq ¨ ξu.(2.15)

For each ξ P riU there exists a maximizing B P K such that hpBq is dual to ξ.

Proof. From duality (2.9),

gpppξq “ inf
hPRd

tgplphq ´ h ¨ ξu

“ inf
hPRd

inf
FPK0

P- ess sup
ω

max
zPR

tV pω, zq ` h ¨ z ` F pω, 0, zq ´ h ¨ ξu

“ inf
BPK

P- ess sup
ω

max
zPR

tV pω, zq ´Bpω, 0, zq ´ hpBq ¨ ξu

where we let
Bpω, x, yq “ ´h ¨ py ´ xq ´ F pω, x, yq

define an element of K with

hpBq ¨ z “ ´ErBp0, zqs ¨ z “ h ¨ z ùñ hpBq “ h.

The first infimum above is achieved at some h dual to ξ whose existence is given in Lemma 2.5,
and for this h a minimizing F exists for gplphq. Thus the B defined above has hpBq dual to ξ. �

2.4. Cocycles adapted to the potential. The cocycles and the potential V that defines the
percolation both live on a general product space with some product probability measure P. It is not
evident how these two structures are connected. Next we identify a local condition that characterizes
those cocycles that are relevant to the percolation problem in various ways.

Definition 2.11. A cocycle B P K is adapted to the potential V if

(2.16) max
zPR

rV pω, zq ´Bpω, 0, zqs “ 0 P-a.s.

This condition is linked to (i) minimizing cocycles, (ii) geodesics, (iii) Busemann functions and
(iv) stationary percolation. We discuss briefly these four issues still in general, before moving to an
exactly solvable model.

Minimizing cocycles. Suppose B P K satisfies (2.16). Define a mean-zero cocycle F P K0 by

F pω, x, yq “ ´hpBq ¨ py ´ xq ´Bpω, x, yq.

Then (2.16) becomes
0 “ max

zPR
rV pω, zq ` hpBq ¨ z ` F pω, 0, zqs P-a.s.

The one-sided bound Bpω, 0, zq ě V pω, zq is enough for the uniform ergodic theorem to work for F .
Thus we can iterate the identity above and take a limit.

0 “ max
x0,n

! 1

n

n´1
ÿ

k“0

V pθxkω, zk`1q `
1

n
hpBq ¨ xn `

1

n
F pω, 0, xnq

)

“
1

n
GnphpBqq ` op1q ÝÑ gplphpBqq.
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We can conclude that

gplphpBqq “ 0 “ max
zPR

“

V pω, zq ` hpBq ¨ z ` F pω, 0, zq
‰

P-a.s.

The equality above shows that F minimizes in the variational formula

gplphq “ inf
FPK0

P- ess sup
ω

max
zPR

tV pω, zq ` h ¨ z ` F pω, 0, zqu

for h “ hpBq, even without the essential supremum over ω.
Furthermore: suppose hpBq and ξ are dual. Then from above, almost surely,

gpppξq “ gplphpBqq ´ hpBq ¨ ξ “ ´hpBq ¨ ξ “ max
zPR

rV pω, zq ´Bpω, 0, zqs ´ hpBq ¨ ξ.

Thus B is a minimizer for gpppξq.
In summary, we see that (2.16) is a criterion that finds cocycles that serve as minimizers in the

variational formulas. For future use we record the outcome of the calculation above in the next
lemma.

Lemma 2.12. Let B P K be an integrable stationary cocycle adapted to the potential V as required by
(2.16) and let hpBq be the negative of the mean vector of B as defined in (2.10). Then gplphpBqq “ 0.

Geodesics. Turns out that a cocycle B satisfying (2.16) is involved not only in optimization on
the macroscopic level but also on the pathwise level. Suppose the path pxkq

n
k“0 follows the maximal

increments specified in (2.16), in other words, satisfies

(2.17) V pθxkω, zk`1q ´Bpω, xk, xk`1q “ 0 @k “ 0, 1, . . . , n´ 1.

Then this path is a geodesic from x0 to xn. Here is the simple argument: consider any path y‚ from
y0 “ x0 to yn “ xn. Then, by (2.16), the stationarity and additivity of B, and (2.17),

n´1
ÿ

k“0

V pθykω, yk`1 ´ ykq ď
n´1
ÿ

k“0

Bpθykω, 0, yk`1 ´ ykq “
n´1
ÿ

k“0

Bpω, yk, yk`1q “ Bpω, x0, xnq

“

n´1
ÿ

k“0

Bpω, xk, xk`1q “

n´1
ÿ

k“0

V pθxkω, zk`1q.

Busemann functions. Having seen the usefulness of condition (2.16), we must ask how cocycles
that satisfy (2.16) arise? One way of obtaining such cocycles is through limits of local gradients of
passage times, called Busemann functions.

Suppose that we are in a setting where admissible paths that connect two given points have a
uniquely determined number of steps. Let Gx,y “ Gx,pmq,y denote the point-to-point last-passage
value where m is the unique number of steps from x to y. Fix a direction ξ P riU . Assume that for
all sequences tvnu Ă Zd such that vn{|vn| Ñ ξ we have this almost sure limit @x, y P Zd:
(2.18) Bpω, x, yq “ lim

nÑ8
rGx, vn ´Gy, vns P-a.s.

B is called a Busemann function in direction ξ. It is a stationary cocycle. Additivity is immediate
from the limit (2.18). Stationarity comes from the fact that shifting vn by a fixed amount does not
alter its limiting direction ξ. Under additional assumptions (see for example Theorem 5.1 in [5]) this
cocycle is integrable.

At this time we simply wish to observe that B satisfies (2.16):

max
zPR

rV pω, zq ´Bpω, 0, zqs “ lim
nÑ8

max
zPR

rV pω, zq ´G0, vn `Gz, vns “ 0

where the last equality follows from

(2.19) G0, vn “ max
zPR

rV pω, zq `Gz, vns.
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Proof of the limit in (2.18) is highly nontrivial. The route that we will take to finding cocycles
that satisfy (2.16) will involve the last item below.

Stationary percolation. Once again we assume cocycle B satisfies (2.16) and develop this
identity in a different direction. Let v P Zd be fixed.

0 “ max
zPR

rV pθxω, zq ´Bpθxω, 0, zqs “ max
zPR

rV pθxω, zq ´Bpω, x, x` zqs

“ max
zPR

rV pθxω, zq ´Bpω, x, vq `Bpω, x` z, vqs

from which we write

(2.20) Bpω, x, vq “ max
zPR

rV pθxω, zq `Bpω, x` z, vqs @x, v P Zd.

We iterate this. Fix also u P Zd and write xn “ u` z1` . . .` zn for an admissible path from u with
steps zi.

(2.21)

Bpω, u, vq “ max
z1PR

rV pθx0ω, z1q `Bpω, x1, vqs

“ max
z1,z2PR

rV pθx0ω, z1q ` V pθx1ω, z2q `Bpω, x2, vqs

“ ¨ ¨ ¨ “ max
z1,...,znPR

”

n´1
ÿ

k“0

V pθxkω, zk`1q `Bpω, xn, vq
ı

“ max
x
rGu,pnq,x `Bpω, x, vqs.

We can turn this into a boundary value problem. Assume again that the number of steps on an
admissible path is determined uniquely by the endpoints so that we can write

Gx,y “

#

Gx,pnq,y if y is reachable from x along an admissible path of n steps

´8 if y is not reachable from x along an admissible path.

Let H and BH be finite subsets of Zd with the property that any admissible path from H eventually
intersects BH. So in a sense BH is a “boundary” of H.

For example, suppose we are in the directed case R “ te1, . . . , edu. If H is the rectangle H “
śd
i“1t0, 1, . . . , Niu, then BH could be its “northeast” boundary BH “

Ťd
i“1tx P H : xi “ Niu.

Lemma 2.13. Assume that endpoints of paths determine uniquely the number of steps in the path.
Assume that the stationary cocycle B satisfies (2.16). Fix v P Zd and finite subsets H and BH of Zd
such that every admissible path from H intersects BH. Then

(2.22) Bpω, u, vq “ max
xPBH

rGu,x `Bpω, x, vqs for all u P H.

Proof. Fix u P H. Equation (2.21) gives

Bpω, u, vq ě Gu,x `Bpω, x, vq

whenever there is an admissible path from u to x. This tells us that ě holds in (2.22). It also shows
that if u P HX BH then the maximum in (2.22) is assumed at x “ u and the equality holds.

Next proof of ď in (2.22). By the directedness assumption (2.2) we can take n in (2.21) large
enough so that every n-path from u intersects BH. Fix a maximizing path u “ x0, x1, . . . , xn on the
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second last line of (2.21). Let xm P BH. Then

Bpω, u, vq “
m´1
ÿ

k“0

V pθxkω, zk`1q `

n´1
ÿ

k“m

V pθxkω, zk`1q `Bpω, xn, vq

ď Gu,xm `Gxm,xn `Bpω, xn, vq ď Gu,xm `Bpω, xm, vq

ď right-hand side of (2.22).

In the second-last inequality above we applied (2.21) with xm in place of u and n ´m in place of
n. �

Our interpretation is that equation (2.22) determines the values tBpu, vq : u P Hu from the last-
passage percolation Gx,y and given boundary values tBpx, vq : x P BHu. Then we can search for
cases where the solution is tractable. In particular, we can look for distributional invariance. We
can make this program work in exactly solvable cases.

The analogy the reader should have in mind is finding the invariant distribution of a Markov
process such as an interacting particle system. The analogue of boundary values are the state
variables at time zero. The analogue of the weights V pθxω, zq are the Poisson clocks or other
random variables that govern the evolution of the particles.

3. Stationary exponential corner growth model in two dimensions

We restrict now to the two-dimensional corner growth model (CGM), with real weights on the

vertices: ω “ pωxqZ2 P Ω “ RZ2
. The set of admissible steps is R “ te1, e2u, and potential given by

the weight at the origin: V pω, zq “ ω0. The set of possible limiting velocities of paths is the closed
line segment U “ re1, e2s, and its relative interior is the open line segment riU “ pe1, e2q.

In this setting we alter slightly the earlier definition (2.5) of the point-to-point last-passage time
to include both endpoints of the path. This makes no difference to large-scale properties. Given an
environment ω and two points x, y P Z2 with x ď y coordinatewise, define

(3.1) Gx,y “ max
x‚PΠx,y

|y´x|1
ÿ

k“0

ωxk .

Πx,y is the set of paths x‚ “ pxkq
n
k“0 that start at x0 “ x, end at xn “ y with n “ |y´x|1, and have

increments xk`1 ´ xk P te1, e2u. Call such paths admissible or up-right. The zero-length path case
is Gx,x “ ωx. Our convention is that

(3.2) Gx,y “ ´8 if x ď y fails.

We work with the exponentially distributed weights, and so make the following assumption:

(3.3) the weights ωx are independent rate 1 exponentially distributed random variables.

This means that Ptωx ą tu “ e´t for t ě 0. This is abbreviated as ωx „ Exp(1).
By Theorem 2.4 we have the limiting point-to-point shape function defined by the almost sure

limit

(3.4) gpppξq “ lim
NÑ8

N´1G0,tNξu for ξ P R2
ě0.

This function gpp is concave, continuous and homogeneous [gpppcξq “ cgpppξq for c ě 0]. A stronger
result is also true: the shape theorem gives a uniform limit (Theorem 5.1(i) of [7]):

lim
nÑ8

n´1 max
xPZ2

ě0: |x|1“n
|G0,x ´ gpppxq| “ 0 P-almost surely.(3.5)

Our first task is to construct a coupling of i.i.d. rate 1 exponential weights and a stationary
integrable cocycle, for a given value of a parameter 0 ă ρ ă 1, that together satisfy (2.16), essentially



10

by solving the boundary value problem in (2.22). This construction will be performed on quadrants
u` Z2

ą0 with a specified origin u P Z2.
Fix a parameter 0 ă ρ ă 1 and an origin u P Z2. Assume given a collection of mutually

independent random variables

(3.6) tωx, Iu`ie1 , Ju`je2 : x P u` Z2
ą0, i, j P Zą0u

with these marginal distributions:

(3.7) ωx „ Expp1q, Iu`ie1 „ Expp1´ ρq, and Ju`je2 „ Exppρq.

The interpretation is that Ix is a weight for the edge px´ e1, xq, Jx is a weight for edge px´ e2, xq,
and ωx is a vertex weight. The edge weights are on the boundary of the quadrant u` Z2

ě0 and the
vertex weights in the bulk.

In this setting define another last-passage process Gρu,x with origin fixed at u and that utilizes
edge weights on the boundary and then bulk weights. First put Gρu,u “ 0 and on the boundaries

(3.8) Gρu, u`me1 “
m
ÿ

i“1

Iu`ie1 and Gρu, u`ne2 “
n
ÿ

j“1

Ju`je2 .

Then in the bulk for x “ u` pm,nq P u` Z2
ą0,

(3.9) Gρu, x “ max
1ďkďm

!

k
ÿ

i“1

Iu`ie1 `Gu`ke1`e2, x

)

ł

max
1ď`ďn

!

ÿ̀

j“1

Ju`je2 `Gu``e2`e1, x

)

Ga,x inside the braces is the last-passage value defined in (3.1). The superscript ρ inGρu,x distinguishes
this last-passage value from the one in (3.1) with i.i.d. bulk weights, and the first subscript u specifies
that the I and J edge weights are placed on the axes u` Zą0ek, k “ 1, 2.

An equivalent definition of Gρu,x would be to give the boundary conditions (3.8) and the inductive
equation

(3.10) Gρu,x “ ωx `G
ρ
u, x´e1 _G

ρ
u, x´e2 , x P u` Z2

ą0.

From the given variables (3.6) we define further variables as follows, proceeding inductively to the
north and east from the origin u: for all x P u` Z2

ą0,

qωx´e1´e2 “ Ix´e2 ^ Jx´e1(3.11)

Ix “ ωx ` pIx´e2 ´ Jx´e1q
`(3.12)

Jx “ ωx ` pIx´e2 ´ Jx´e1q
´.(3.13)

The mapping above from pωx, Ix´e2 , Jx´e1q to pqωx´e1´e2 , Ix, Jxq is illustrated in Figure 1. Note that
(3.12)–(3.13) imply the symmetric counterpart of (3.11)

(3.14) ωx “ Ix ^ Jx

and the additivity around the unit square:

(3.15) Ix´e2 ` Jx “ Jx´e1 ` Ix.

Utilizing (3.11)–(3.13) we extend (3.6) to the larger collection

(3.16) tωx, Ix´e2 , Jx´e1 , qωx´e1´e2 : x P u` Z2
ą0u.

This larger collection has an qωx variable for each vertex in the quadrant u ` Z2
ě0, an Ix variable

for each horizontal nearest-neighbor edge in the quadrant u ` Z2
ě0, a Jx variable for each vertical

nearest-neighbor edge in the quadrant u ` Z2
ě0, and the originally given ωx variables for points in

the bulk u` Z2
ą0.
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(3.11)–(3.13)

ωx

Ix´e2

Jx´e1

qωx´e1´e2

Ix

Jx

Figure 1. Mapping (3.11)–(3.13) on a single lattice square. The figure illustrates how
southwest corners are flipped into northeast corners in the inductive construction of the
increment variables.

The next theorem summarizes the properties of (3.16) and the connection with the process Gρu,x.
Point (iii) of the theorem uses the following definitions. A bi-infinite sequence Y “ pykqkPZ in u`Z2

ě0

is a down-right path if yk´ yk´1 P te1,´e2u for all k P Z. Y decomposes the vertices of the quadrant
into a disjoint union u` Z2

ě0 “ G´ Y Y Y G` where

G´ “ tx P u` Z2
ě0 : Dj P Zą0 such that x` pj, jq P Yu

is the region strictly to the south and west of Y and

G` “ tx P u` Z2
ě0 : Dj P Zą0 such that x´ pj, jq P Yu

is the region strictly to the north and east of Y. Note that G` is necessarily unbounded but G´ is
finite iff all but finitely many of the points yk lie on the axes u ` Zą0ek, k “ 1, 2. In the extreme
case Y “ tu` ie1, u` je2 : 0 ď i, j ă 8u consists of the axes, G´ “ ∅ and G` “ u` Z2

ą0.
For an undirected nearest-neighbor edge e on u` Z2

ě0, we denote the weight by

(3.17) tpeq “

#

Ix if e “ tx´ e1, xu

Jx if e “ tx´ e2, xu.

Theorem 3.1. Fix u P Z2 and 0 ă ρ ă 1 and assume given independent variables (3.6) with marginal
distributions (3.7). Then the variables in (3.16) have the following properties.

(i) For any down-right path Y in u` Z2
ě0, the random variables

(3.18) t qωz, tptyk´1, ykuq, ωx : z P G´, k P Z, x P G`u
are mutually independent with marginal distributions

(3.19) ωx, qωx „ Expp1q, Ix „ Expp1´ ρq, and Jx „ Exppρq.

(ii) The Ix and Jx variables are the increments of the Gρu,x last-passage process:

(3.20)
Ix “ Gρu,x ´G

ρ
u,x´e1 for x P u` pZą0q ˆ pZě0q,

Jx “ Gρu,x ´G
ρ
u,x´e2 for x P u` pZě0q ˆ pZą0q.

Theorem 3.1 rests on an inductive argument based on the next lemma, which describes the joint
distribution preserved by the mapping in Figure 1.

Lemma 3.2. Let 0 ă ρ ă 1. Assume given independent variables W „ Expp1q, I „ Expp1´ ρq, and
J „ Exppρq. Define

(3.21)

W 1 “ I ^ J

I 1 “W ` pI ´ Jq`

J 1 “W ` pI ´ Jq´.
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Then the triple pW 1, I 1, J 1q has the same distribution as pW, I, Jq.

This lemma is proved by calculating a joint transform such as the Laplace transform or charac-
teristic function, or by transforming the joint density.

Proof of Theorem 3.1. Part (i). This is proved inductively on Y. The base case is Y “ tu` ie1, u`
je2 : 0 ď i, j ă 8u, in which case the claim simply amounts to the initial condition in (3.7).

Now assume given Y “ tyku for which the claim in part (i) holds. We show that this claim
continues to hold for any Y 1 obtained from Y by “flipping a southwest corner into a northeast
corner”. So pick any x P u`Z2

ą0 and m P Z such that pym´1, ym, ym`1q “ px´e1, x´e1´e2, x´e2q

are points along Y. Define Y 1 “ ty1ku by setting

y1k “ yk for k ‰ m, and y1m “ ym ` e1 ` e2 “ x.

In other words, Y has a southwest corner at x´ e1 ´ e2, and Y 1 has a northeast corner at x.
Transforming Y into Y 1 changes G´ to G1´ “ G´ Y tx ´ e1 ´ e2u and G` to G1` “ G`ztxu.

Thus constructing the variables (3.18) for Y 1 involves transforming the triple pωx, Ix´e2 , Jx´e1q into
pqωx´e1´e2 , Ix, Jxq according to equations (3.11)–(3.13), and copying the remaining variables from
(3.18) for Y. The claim now follows for Y 1 by the induction assumption and Lemma 3.2. By the
induction assumption, variables pωx, Ix´e2 , Jx´e1q have the independent exponential distributions
required for the hypothesis of Lemma 3.2, and so by the lemma the triple pqωx´e1´e2 , Ix, Jxq also has
the independent exponential distributions required for (3.19).

Part (ii). The claim is true by construction for variables Iu`ie1 and Ju`je2 on the axes. Here is the
inductive argument for Ix, assuming that the claim holds for Ix´e2 and Jx´e1 and utilizing (3.10):

Ix “ ωx ` pIx´e2 ´ Jx´e1q
` “ ωx ` pG

ρ
u, x´e2 ´G

ρ
u, x´e1q

`

“ ωx `G
ρ
u, x´e1 _G

ρ
u, x´e2 ´G

ρ
u, x´e1

“ Gρu, x ´G
ρ
u, x´e1 .

A similar argument works for Jx under the same inductive assumption. �

Let us observe some immediate and valuable consequences of Theorem 3.1.
By taking Y as the axes at a new origin v P u`Z2

ě0, given by yk “ v` ke1 and y´k “ v` ke2 for

k ě 0, part (i) of the theorem implies that the process tωv`x, Iv`x´e2 , Jv`x´e1 : x P Z2
ą0u has the

same distribution for all v P u` Z2
ě0. Thus Bpx, yq “ Gρu,y ´G

ρ
u,x is a stationary cocycle, restricted

to the quadrant x, y P u` Z2
ě0.

The variables tqωx : x P u` Z2
ě0u are i.i.d. Expp1q distributed.

We compute the limit shape functions for both last-passage percolation processes, the stationary
one and the one with i.i.d. weights. For the stationary process define the function

(3.22) gρps, tq “
s

1´ ρ
`
t

ρ
.

Proposition 3.3. Fix 0 ă ρ ă 1. The stationary corner growth model satisfies these properties:
ErGρ0,pm,nqs “ gρpm,nq for all m,n P Zě0 and the law of large numbers

(3.23) lim
NÑ8

N´1Gρ0,ptNsu,tNtuq “ gρps, tq almost surely and in L1 for all ps, tq P R2
ě0.

Proof. Rewrite in terms of nearest-neighbor increments:

(3.24) Gρ0,pm,nq “
m
ÿ

i“1

Ipi,0q `
n
ÿ

j“1

Jpm,jq.



13

Then use the translation invariance of the distributions which says that each nearest-neighbor in-
crement has the exponential distribution imposed on the boundary variables in (3.7):

(3.25) ErGρ0,pm,nqs “
m
ÿ

i“1

EIie1 `
n
ÿ

j“1

EJpm,jq “
m

1´ ρ
`
n

ρ
.

The limit of the stationary last-passage process is an application of the classical law of large numbers
and some large deviation estimates, applied separately to the two sums: the limit below holds almost
surely for any given ps, tq P R2

ě0.

(3.26)

lim
NÑ8

N´1Gρ0,ptNsu,tNtuq “ lim
NÑ8

"

N´1
tNsu
ÿ

i“1

Ipi,0q `N
´1

tNtu
ÿ

j“1

JptNsu, jq

*

“ sEpIe1q ` tEpJe2q “
s

1´ ρ
`
t

ρ
. �

Next we take a limit in the coupling between the last-passage processes Gx,y and Gρ0,x. Fix s, t ą 0

and use (3.9) for x “ ptNsu, tNtuq to write

(3.27)

Gρ0,ptNsu,tNtuq “ sup
0ďaďs

!

tNau
ÿ

i“1

Ipi,0q `GptNau,1q,ptNsu,tNtuq

)

ł

sup
0ďbďt

!

tNbu
ÿ

j“1

Jp0,jq `Gp1,tNbuq,ptNsu,tNtuq

)

.

After letting N Ñ 8, with some estimation on the right-hand side, utilizing limits (3.4) and
(3.23), we have

(3.28)
s

1´ ρ
`
t

ρ
“ sup

0ďaďs

! a

1´ ρ
` gppps´ a, tq

)

_ sup
0ďbďt

! b

ρ
` gppps, t´ bq

)

.

In the next theorem we take advantage of the connection above to find the shape function gpp for
the LPP process (3.1) with i.i.d. Expp1q weights.

Theorem 3.4. Assume (3.3). Then we have the following law of large numbers. For every ξ P R2
ě0

the limit below holds with probability 1, with the shape function gpp as given.

(3.29) lim
NÑ8

N´1G0,tNξu “ gpppξq ”
`

a

ξ1 `
a

ξ2

˘2
.

Proof. By the general law of large numbers Theorem 2.4 for last-passage percolation, we know that
the limit in (3.29) exists and that gpp is finite, concave and continuous. Begin with (3.28) for s “ t:

t

1´ ρ
`
t

ρ
“ sup

0ďaďt

! a

1´ ρ
` gpppt´ a, tq

)

_ sup
0ďbďt

! b

ρ
` gpppt, t´ bq

)

.

Use the symmetry of gpp and assume that 0 ă ρ ď 1{2:

t

1´ ρ
`
t

ρ
“ sup

0ďaďt

! a

1´ ρ
` gpppt´ a, tq

)

_ sup
0ďbďt

! b

ρ
` gpppt´ b, tq

)

“ sup
0ďbďt

! b

ρ
` gpppt´ b, tq

)

.

Let

fpbq “

#

´gpppt´ b, tq, 0 ď b ď t

8, b ă 0 or b ą t.
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Then f is convex and lower semicontinuous. After a change of variable x “ 1{ρ P r2,8q, the equation
above becomes

t
´

x` 1`
1

x´ 1

¯

“ sup
bPR
tbx´ fpbqu, x ě 2.

This is an instance of convex duality, so the convex conjugate f˚ of f satisfies

f˚pxq “ t
´

x` 1`
1

x´ 1

¯

for x ě 2.

The derivatives pf˚q1p2`q “ 0 and pf˚q1p8´q “ t tell us that we can restrict the supremum in the
double convex duality as below, for 0 ď b ď t. Then find the supremum by calculus:

fpbq “ f˚˚pbq “ sup
xě2
txb´ f˚pxqu “ ´

b
a

tpt´ bq ` bt´ tp
?
t`

?
t´ b q2

a

tpt´ bq
.

Taking b “ t´ s for s P r0, ts in the definition of f in terms of g gives

gppps, tq “ p
?
s`

?
t q2 for 0 ď s ď t.

Symmetry of g completes the proof. �

Next we use (3.28) to identify the characteristic direction ξpρq P U associated with parameter
value ρ P p0, 1q. By definition, ξpρq is the unique direction for which the optimal path for Gρ0,tNξpρqu
takes opNq steps on the coordinate axes as N Ñ 8. It is the value of ξ “ ps, 1 ´ sq for which the
right-hand side of (3.28) with ps, tq “ ps, 1 ´ sq is maximized at a “ b “ 0. This direction is given
uniquely by

(3.30) ξpρq “

ˆ

p1´ ρq2

p1´ ρq2 ` ρ2
,

ρ2

p1´ ρq2 ` ρ2

˙

.

An alternative characterization of the characteristic direction is by comparison of the stationary and
i.i.d. limit shapes. In general gppps, tq ď gρps, tq for all s, t ě 0, and

(3.31) gppps, tq “ gρps, tq if and only if ps, tq “ c
`

p1´ ρq2, ρ2
˘

for some c ě 0.

We can also record the limit of the point-to-line LPP process, defined by for h P R2 by

Gnphq “ max
x0,n:x0“0

!

n´1
ÿ

k“0

ωxk ` h ¨ xn

)

.

Theorem 3.5. Assume (3.3). Then for every h P R2 the limit below holds with probability 1, with
the limit function gpl as given.

(3.32) lim
nÑ8

n´1Gnphq “ gplphq ” 1`
h1 ` h2

2
`

1

2

a

ph1 ´ h2q
2 ` 4 .

Proof. The limit is given in Theorem 2.4. The formula for gpl comes from the duality (2.8) with gpp

given in (3.29). �
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4. Busemann functions for the exponential corner growth model

4.1. Results. In this section we prove the existence of the Busemann functions and show that they
provide minimizers for the variational formulas.

We extend the constructions discussed in Section 3 to the full lattice Z2. As before a down-right
path is a bi-infinite sequence Y “ pykqkPZ in Z2 such that yk ´ yk´1 P te1,´e2u for all k P Z. The
lattice decomposes into a disjoint union Z2 “ G´ Y Y Y G` where the two regions are

G´ “ tx P Z2 : Dj P Zą0 such that x` jpe1 ` e2q P Yu
and

G` “ tx P Z2 : Dj P Zą0 such that x´ jpe1 ` e2q P Yu.
It will be convenient to formalize the properties identified earlier in Theorem 3.1 in the following

definition.

Definition 4.1. Let 0 ă α ă 1. Let us say that a process

(4.1) tηx, Ix, Jx, qηx : x P Z2u

is an exponential-α last-passage percolation system if the following properties hold.

(a) The process is stationary with marginal distributions

(4.2) ηx, qηx „ Expp1q, Ix „ Expp1´ αq, and Jx „ Exppαq.

For any down-right path Y “ pykqkPZ in Z2, the random variables

(4.3) tqηz : z P G´u, ttptyk´1, ykuq : k P Zu, and tηx : x P G`u
are all mutually independent, where the undirected edge variables tpeq are defined as before
in (3.17).

(b) Equations (3.11)–(3.13) are in force at all x P Z2.

Recall in particular from (3.11) that the definition above implies the property

(4.4) qηx “ Ix`e1 ^ Jx`e2 .

Theorem 4.2. On the probability space pΩ,S,Pq of the i.i.d. Exp(1) weights ω “ pωxqxPZ2 there
exist for each 0 ă α ă 1 a stationary cocycle Bα and a family of random weights tXα

x uxPZ2 with the
following properties.

(i) For each 0 ă α ă 1, process

tXα
x , B

α
x´e1,x, B

α
x´e2,x, ωx : x P Z2u

is an exponential-α last-passage system as described in Definition 4.1.
(ii) There exists a single event Ω2 of full probability such that for all ω P Ω2, all x P Z2 and all

λ ă ρ in p0, 1q we have the inequalities

(4.5) Bλ
x,x`e1pωq ď Bρ

x,x`e1pωq and Bλ
x,x`e2pωq ě Bρ

x,x`e2pωq.

(iii) For each fixed 0 ă α ă 1 there exists an event Ω
pαq
2 of full probability such that the following

holds: for each ω P Ω
pαq
2 and any sequence vn P Z2 such that |vn|1 Ñ8 and

(4.6) lim
nÑ8

vn
|vn|1

“ ξpαq “

ˆ

p1´ αq2

p1´ αq2 ` α2
,

α2

p1´ αq2 ` α2

˙

,

we have the limits

(4.7) Bα
x,ypωq “ lim

nÑ8
rGx,vn ´Gy,vns @x, y P Z2.

The next section is devoted to the proof of Theorem 4.2.
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Remark 4.3. The process Bα has some regularity in α: it can be defined as left- or right-continuous
(for each x, y, on an event of full probability). 4

Part (i) of Theorem 4.2 together with (4.4) implies

(4.8) ωx “ Bα
x,x`e1 ^B

α
x,x`e2 ,

in other words, cocycle Bα is adapted to the potential of the corner growth model in the sense of
(2.16). (Note that in this construction the given ω-weights are now playing the role of the qω-weights
in Theorem 3.1, and the constructed weights Xα play the role of the ω-weights in Theorem 3.1.)

Recall the variational formula for the point-to-point limit shape function, specialized to the two-
dimensional corner growth model.

gpppξq “ inf
BPK

P- ess sup
ω

max
i“1,2

tω0 ´Bpω, 0, eiq ´ hpBq ¨ ξu.(4.9)

Above hpBq is the negative of the mean vector:

(4.10) hpBq “ ´
`

ErBp0, e1qs,ErBp0, e2qs
˘

.

The next theorem shows that cocycle Bα from Theorem 4.2 is a minimizer in (4.9) for the charac-
teristic direction ξpαq.

Theorem 4.4. Continue with the setting of Theorem 4.2. The following hold for each 0 ă α ă 1.

(i) The characteristic direction ξpαq and the vector hpBαq are dual to each other in the sense
that

(4.11) gplphpB
αqq “ gpppξpαqq ` hpB

αq ¨ ξpαq.

(ii) Bα minimizes in the variational formula (4.9) in the characteristic direction:

gpppξpαqq “ max
i“1,2

“

ω0 ´B
α
0,eipωq ´ hpB

αq ¨ ξpαq
‰

P-almost surely.(4.12)

Proof. Part (i). From the explicit formulas for the shape function (Theorem 3.4),

gppps, tq “ s` t` 2
?
st

and then

∇gppps, tq “
`

1`
a

t{s , 1`
a

s{t
˘

.

From the explicit exponential distributions of Bα-increments (Theorem 4.2),

´hpBαq “
`

ErBα
0,e1s ,ErB

α
0,e2s

˘

“

´ 1

1´ α
,

1

α

¯

“ ∇gpppξpαqq.

By the strict concavity of gpp, ξpαq is the unique maximizer in the duality

gplphpB
αqq “ sup

ξPU
r gpppξq ` hpB

αq ¨ ξ s.

Part (ii). By Lemma 2.12, gplphpB
αqq “ 0. By the duality (4.11) and the adaptedness (4.8),

gpppξpαqq “ gplphpB
αqq ´ hpBαq ¨ ξpαq “ ω0 ´B

α
0,e1 ^B

α
0,e2 ´ hpB

αq ¨ ξpαq

“ max
i“1,2

“

ω0 ´B
α
0,eipωq ´ hpB

αq ¨ ξpαq
‰

. �
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4.2. Proof of Theorem 4.2. This technical section is devoted to proving the existence of the
limiting Busemann functions. Before specializing to the processes we study, we state and prove
general inequalities for planar last-passage increments. Early appearances of these types of inequal-

ities in first-passage percolation can be found in [1, 2]. Let real weights trYxuxPZ2 be given. Define
last-passage times

(4.13) rGx,y “ max
x0,n

n
ÿ

k“0

rYxk

where the maximum is over up-right paths from x0 “ x to xn “ y with n “ |y ´ x|1 and the

admissible steps are as before xk ´ xk´1 P te1, e2u. The convention is rGv,v “ 0. For x ď v ´ e1 and
y ď v ´ e2 denote increments by

rIx,v “ rGx,v ´ rGx`e1,v and rJy,v “ rGy,v ´ rGy`e2,v .

For the precise statement of the lemma below it is important that the sum in (4.13) includes the first

weight rYx, but the increments rI and rJ are not sensitive to whether the last weight rYy is included or
excluded.

Lemma 4.5. For x ď v ´ e1 and y ď v ´ e2

(4.14) rIx,v`e2 ě
rIx,v ě rIx,v`e1 and rJy,v`e2 ď

rJy,v ď rJy,v`e1 .

Proof. Let v “ pm,nq. The proof goes by an induction argument that starts from the north and
east boundaries. On the north, for x “ pk, nq for some k ă m,

rIpk,nq,pm,n`1q “
rGpk,nq,pm,n`1q ´

rGpk`1,nq,pm,n`1q

“ rYk,n ` rGpk`1,nq,pm,n`1q _
rGpk,n`1q,pm,n`1q ´

rGpk`1,nq,pm,n`1q

ě rYk,n “ rGpk,nq,pm,nq ´ rGpk`1,nq,pm,nq “
rIpk,nq,pm,nq .

A similar argument (or the above inequality applied to transposed lattice points pa1, b1q “ pb, aq)
gives, for y “ pm, `q for some ` ă n,

rJpm,`q,pm`1,nq ě
rJpm,`q,pm,nq.

We also have the equalities, first for y “ pm, `q for some ` ă n

rJpm,`q,pm,n`1q “
rGpm,`q,pm,n`1q ´

rGpm,``1q,pm,n`1q

“ rYm,` “ rGpm,`q,pm,nq ´ rGpm,``1q,pm,nq “
rJpm,`q,pm,nq

and similarly also
rIpk,nq,pm`1,nq “

rIpk,nq,pm,nq.

These inequalities start the induction. Now let u ď v ´ e1 ´ e2. Assume by induction that (4.14)
holds for x “ u` e2 and y “ u` e1. We prove the first inequalities of (4.14) for x “ u.

rIu,v`e2 “
rGu,v`e2 ´

rGu`e1,v`e2 “
rYu ` p rGu`e2,v`e2 ´

rGu`e1,v`e2q
`

“ rYu ` prIu`e2,v`e2 ´
rJu`e1,v`e2q

`

ě rYu ` prIu`e2,v ´
rJu`e1,vq

` “ rIu,v .

The last equality comes by repeating the first three equalities with v instead of v ` e2.

Replacing the pair pv ` e2, vq with pv, v ` e1q in the argument above gives rIu,v ě rIu,v`e1 . A

symmetric argument works for the rJ inequalities. �
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We introduce the following general notational device which we illustrate in the context of (4.13).
If Λ is a subset of admissible paths from x to y, then

(4.15) rGx,ypΛq “ max
x0,nPΛ

n
ÿ

k“0

rYxk

is the last-passage value obtained when the maximum is restricted to paths x0,n in Λ.

Return to the context of the CGM with exponential weights. Consider an origin u and a parameter
0 ă ρ ă 1 fixed for the moment. Let the variables

(4.16) tωx, Ix´e2 , Jx´e1 , qωx´e1´e2 : x P u` Z2
ą0u

be defined via equations (3.11)–(3.13) from independent initial variables (3.6) with marginal dis-
tributions (3.7), so that the properties given in Theorem 3.1 are satisfied. Let ξ “ ξpρq be the
characteristic direction for ρ defined by (3.30).

Utilizing the edge weights Ix and Jx and the vertex weights qωx we define several last-passage
percolation processes. First a process with i.i.d. weights:

(4.17) qGx,y “ max
x‚PΠx,y

|y´x|1
ÿ

k“0

qωxk for y ě x ě u.

Its increments are defined by

qIx,v “ qGx,v ´ qGx`e1,v for u ď x ď v ´ e1 and qJy,v “ qGy,v ´ qGy`e2,v for u ď y ď v ´ e2.

Then we introduce an auxiliary increment-stationary last-passage process qGNEx,v for u ď x ď v,

with boundary edge weights on the north and east borders. First set qGNEv,v “ 0. Then, on the north
and east boundaries emanating from v in the negative directions,

(4.18) qGNEv´ke1,v “
k´1
ÿ

i“0

Iv´ie1 and qGNEv´`e2,v “
`´1
ÿ

j“0

Jv´je2 .

In the bulk for u ď x ď v ´ e1 ´ e2 we define,

(4.19)

qGNEx,v “ qωx ` qGNEx`e1,v _
qGNEx`e2,v

“ max
1ďkďpv´xq¨e1

!

qGx,v´ke1´e2 `
k´1
ÿ

i“0

Iv´ie1

)

ł

max
1ď`ďpv´xq¨e2

!

qGx,v´e1´`e2 `
`´1
ÿ

j“0

Jv´je2

)

In the next lemma we check that the increments of the qGNE process are in fact the already given
I and J variables.

Lemma 4.6. For u ď x ď v ´ e1 and u ď y ď v ´ e2,

(4.20) Ix`e1 “
qGNEx,v ´

qGNEx`e1,v and Jy`e2 “
qGNEy,v ´

qGNEy`e2,v.

Proof. The claim is true for x “ v ´ ke1 and y “ v ´ `e2 by definition (4.18). Here is the induction
step for the edge px, x` e1q, assuming that (4.20) has been proved for edges px` e2, x` e1` e2q and
px` e1, x` e1 ` e2q.

qGNEx,v ´
qGNEx`e1,v “ qωx `

`

qGNEx`e2,v ´
qGNEx`e1,v

˘`
“ qωx `

`

Ix`e1`e2 ´ Jx`e1`e2
˘`

“ Ix`e1 ^ Jx`e2 `
`

Ix`e1 ´ Jx`e2
˘`
“ Ix`e1 .

The second last equality used (3.11) and the cocycle property Ix`e1 ` Jx`e1`e2 “ Jx`e2 ` Ix`e1`e2 .
A similar argument extends (4.20) to the edge px, x` e2q. �
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Next we consider restricted qGNE last-passage values utilizing the notation introduced in (4.15).
In particular, we consider last-passage values of the kind

qGNE0, v pv ´ e1 P x‚q “ max
1ďkďpv´xq¨e1

!

qGx,v´ke1´e2 `
k´1
ÿ

i“0

Iv´ie1

)

where the condition v´e1 P x‚ means that the path goes through the point v´e1, which is equivalent
to saying that the last step of the path goes from v ´ e1 to v. We show that the asymptotics of the

restricted qGNE are the expected ones and calculate the limits.

Lemma 4.7. Fix a point a P u`Z2
ě0 and reals 0 ă s, t ă 8. Let vn P u`Z2

ě0 be such that |vn|1 Ñ8

and vn{|vn|1 Ñ ps, tq{ps` tq as nÑ8. Then we have the following almost sure limits.

(4.21)

|vn|
´1
1

qGNEa, vnpvn ´ e1 P x‚q ÝÑ
nÑ8

ps` tq´1 sup
0ďτďs

! τ

1´ ρ
` gppps´ τ, tq

)

“

$

’

’

’

&

’

’

’

%

gppps, tq “
`?
s`

?
t
˘2
,

s

t
ď

ˆ

1´ ρ

ρ

˙2

s

1´ ρ
`
t

ρ
,

s

t
ě

ˆ

1´ ρ

ρ

˙2

and

(4.22)

|vn|
´1
1

qGNEa, vnpvn ´ e2 P x‚q ÝÑ
nÑ8

ps` tq´1 sup
0ďτďt

!τ

ρ
` gppps, t´ τq

)

“

$

’

’

’

&

’

’

’

%

gppps, tq “
`?
s`

?
t
˘2
,

s

t
ě

ˆ

1´ ρ

ρ

˙2

s

1´ ρ
`
t

ρ
,

s

t
ď

ˆ

1´ ρ

ρ

˙2

.

Proof. We prove (4.21), the proof of (4.22) being entirely analogous. Fix ε ą 0, let M “ tε´1u, and

qnj “ j
Yε|vn|1s

s` t

]

for 0 ď j ďM ´ 1, and qnM “ pvn ´ aq ¨ e1.

For large enough n it is the case that qnM ´ Cε ă qnM´1 ă qnM .

Suppose a maximal path for qGNEa, vnpvn ´ e1 P x‚q enters the north boundary from the bulk at the
point vn ´ p`, 0q with qnj ă ` ď qnj`1. By nonnegativity of the weights,

qGNEa, vnpvn ´ e1 P x‚q “ qGa, vn´p`,1q `
`´1
ÿ

i“0

Ivn´ie1

ď qGa, vn´pqnj ,1q `
qnj

1´ ρ
`

qnj`1´1
ÿ

i“0

`

Ivn´ie1 ´
1

1´ρ

˘

`
qnj`1 ´ q

n
j

1´ ρ
.

Collect the bounds for all the intervals pqnj , q
n
j`1s:

(4.23)

qGNEa, vnpvn ´ e1 P x‚q ď max
0ďjďM´1

!

qGa, vn´pqnj ,1q `
qnj

1´ ρ

`

qnj`1´1
ÿ

i“0

`

Ivn´ie1 ´
1

1´ρ

˘

`
qnj`1 ´ q

n
j

1´ ρ

)
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Divide through by |vn|1 and let n Ñ 8. On the right-hand side the shape theorem (3.5) and the
homogeneity of gpp give

qGa, vn´pqnj ,1q

|vn|1
“ gpp

ˆ

vn
|vn|1

´
qnj
|vn|1

e1 `
Op1q

|vn|1

˙

` op1q ÝÑ
gppps´ sjε, tq

s` t
.

The mean zero i.i.d. sum satisfies

1

|vn|1

qnj`1´1
ÿ

i“0

`

Ivn´ie1 ´
1

1´ρ

˘

ÝÑ 0.

We get the upper bound

lim
nÑ8

|vn|
´1
1

qGNE0, vnpvn ´ e1 P x‚q ď ps` tq
´1 max

0ďjďM´1

”

gppps´ sjε, tq `
sjε

1´ ρ
` Cε

ı

ď ps` tq´1 sup
0ďτďs

” τ

1´ ρ
` gppps´ τ, tq

ı

` Cε.

Let εŒ 0 to complete the proof of the upper bound.
To get the matching lower bound let the supremum

sup
τPr0,ss

tτ{p1´ ρq ` gppps´ τ, tqu

be attained at τ˚ P r0, ss. With mn “ |vn|1{ps` tq we have

qGNEa, vnpvn ´ e1 P x‚q ě qGa,vn´ptmnτ˚u_1,1q `

ptmnτ˚u´1q`
ÿ

i“0

Ivn´ie1 .

Let nÑ8 to get

lim
nÑ8

|vn|
´1
1

qGNE0, vnpvn ´ e1 P x‚q ě ps` tq
´1
”

gppps´ τ
˚, tq `

τ˚

1´ ρ

ı

.

This completes the proof of (4.21). �

As a consequence we record the expected asymptotics for the unrestricted process with edge
weights on the north and east:

(4.24)

lim
nÑ8

|vn|
´1
1

qGNEa, vn “ lim
nÑ8

|vn|
´1
1

qGNEa, vnpvn ´ e1 P x‚q
ł

qGNEa, vnpvn ´ e2 P x‚q

“ ps` tq´1 sup
0ďτďs

! τ

1´ ρ
` gppps´ τ, tq

)

ł

sup
0ďτďt

!τ

ρ
` gppps, t´ τq

)

“ ps` tq´1 sup
0ďτďs

! τ

1´ ρ
`
`?
s´ τ `

?
t
˘2
)

ł

sup
0ďτďt

!τ

ρ
`
`?
s`

?
t´ τ

˘2
)

“
s

1´ ρ
`
t

ρ
.

In the next lemma we derive bounds on the limiting local gradients of the last-passage values qG
defined in terms of the i.i.d. qω weights. Recall the definition (3.30) of the characteristic direction ξ
associated to ρ.

Lemma 4.8. Consider two sequences tvnu and twnu in a` Z2
ě0 such that

lim
nÑ8

vn
|vn|1

“ ps, 1´ sq and lim
nÑ8

wn
|wn|1

“ pt, 1´ tq.

Assume that

s ă
p1´ ρq2

p1´ ρq2 ` ρ2
ă t.
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(i) Almost surely

(4.25) qGNEa,vnpvn ´ e2 P x‚q “ qGNEa,vn and qGNEa,wnpwn ´ e1 P x‚q “ qGNEa,wn

for all large enough n.

(ii) The following inequalities hold almost surely:

(4.26) lim
nÑ8

r qGa,wn ´ qGa`e1,wns ď Ia`e1 ď lim
nÑ8

r qGa,vn ´ qGa`e1,vns

and

(4.27) lim
nÑ8

r qGa,vn ´ qGa`e2,vns ď Ja`e2 ď lim
nÑ8

r qGa,wn ´ qGa`e2,wns.

Proof. Part (i). We prove the second statement of (4.25). The maximizing path to wn comes through
either wn ´ e1 or wn ´ e2. So to get a contradiction we can assume that PpAq ą 0 for the event A

on which qGNEa,wnpwn ´ e2 P x‚q “ qGNEa,wn happens for infinitely many n. On the event A we can take
limits (4.22) and (4.24) to get

sup
0ďτď1´t

! τ

ρ
`
`
?
t`

?
1´ t´ τ

˘2
)

“
t

1´ ρ
`

1´ t

ρ
.

But by (4.22), t
1´t ą

`

1´ρ
ρ

˘2
implies that the supremum on the left equals

`?
t`

?
1´ t

˘2
which is

strictly less than the right-hand side by (3.31). Thus PpAq ą 0 is not possible.

Part (ii). We prove the statements for wn. By a combination of developments from above, justified
below, we derive the following sequence of inequalities and equalities that proves the first inequality
of (4.26).

(4.28)

qGa,wn ´ qGa`e1,wn ď
qGNa,wn`e2 ´

qGNa`e1, wn`e2

“ qGNEa,wn`e1`e2pwn ` e2 P x‚q ´ qGNEa`e1, wn`e1`e2pwn ` e2 P x‚q

“ qGNEa,wn`e1`e2 ´
qGNEa`e1, wn`e1`e2

“ Ia`e1 .

The first inequality in (4.28) above is a special case of the first inequality of (4.14), applied to the
situation where the weights in (4.13) are given by

rYx “

$

’

&

’

%

0 if x “ wn ` e2,

Ix`e1 if x “ wn ` e2 ´ ie1 for some i ě 1,

qωx if x ď wn

The notation qGNa,wn`e2 denotes a last-passage process in the rectangle tx : a ď x ď wn ` e2u that
uses qω weights on the horizontal lines below the top one, and the I weights on the top vertical line
x ¨ e2 “ wn ¨ e2` 1 (north boundary), with an irrelevant zero weight assigned at the top right corner
wn ` e2.

In the first equality in (4.28) we move the upper right corner from wn ` e2 one step to the right
to wn` e1` e2 so that we can include the boundary weights both on the north and east boundaries.

This is exactly the definition of qGNE in (4.18) and (4.19). To preserve the equality we force the
paths to go through wn ` e2.

The second equality in (4.28) is valid almost surely for large enough n, by the already proved
(4.25). The last equality comes from (4.20).
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Similarly we reason for the e2 increment:

(4.29)

qGa,wn ´ qGa`e2,wn ě
qGNa,wn`e2 ´

qGNa`e2, wn`e2

“ qGNEa,wn`e1`e2pwn ` e2 P x‚q ´ qGNEa`e2, wn`e1`e2pwn ` e2 P x‚q

“ qGNEa,wn`e1`e2 ´
qGNEa`e2, wn`e1`e2

“ Ja`e2 .

This proves the last inequality of (4.27). �

Next we use the estimates above to build an exponential-α last-passage system from limits of local
gradients of last-passage values. Denote the Exppλq cumulative distribution function by

Fλpsq “

#

0, s ă 0

1´ e´λs, s ě 0.

Lemma 4.9. Let i.i.d. Exp(1) weights ω “ pωxqxPZ2 be given and define the point-to-point last-passage
process tGx,yu by (3.1). Fix 0 ă α ă 1 and a sequence vn P Z2 such that |vn|1 Ñ8 and

(4.30) lim
nÑ8

vn
|vn|1

“ ξpαq “

ˆ

p1´ αq2

p1´ αq2 ` α2
,

α2

p1´ αq2 ` α2

˙

P riU .

(i) The limits

(4.31) Bα
x,y “ lim

nÑ8
rGx,vn ´Gy,vns

exist for P-almost every ω for all x, y P Z2 and satisfy additivity Bα
x,y `B

α
y,z “ Bα

x,z.
(ii) Define

(4.32) Xα
x “ Bα

x´e1,x ^B
α
x´e2,x for x P Z2.

Then the process
tXα

x , B
α
x´e1,x, B

α
x´e2,x, ωx : x P Z2u

is an exponential-α last-passage system as described in Definition 4.1.

Proof. Part (i). Fix a P Z2 and let

B “ lim
nÑ8

rGa,vn ´Ga`e1,vns and B “ lim
nÑ8

rGa,vn ´Ga`e1,vns.

To get control of the distributions of B and B, we realize the processes tGa,yu on another proba-

bility space as instances of t qGa,yu. Then we can apply bounds (4.26)–(4.27).
Let 0 ă λ ă α ă ρ ă 1. This implies

(4.33)
p1´ ρq2

p1´ ρq2 ` ρ2
ă

p1´ αq2

p1´ αq2 ` α2
ă

p1´ λq2

p1´ λq2 ` λ2
.

Take any lattice point u ď a as an origin. Suppose on some arbitrary probability space we have
mutually independent variables σ “ pσxqxPZ2 , pIλu`ie1qiě1, pJλu`je2qjě1, pIρu`ie1qiě1, and pJρu`je2qjě1

with marginal distributions

(4.34)
σx „ Expp1q, Iλu`ie1 „ Expp1´ λq, Jλu`je2 „ Exppλq,

Iρu`ie1 „ Expp1´ ρq, and Jρu`je2 „ Exppρq.

In other words, for parameters λ and ρ we have initial conditions of the kind described in (3.6) and
(3.7). Iterating with equations (3.11)–(3.13), on the quadrant u ` Z2

ě0, construct two processes of
the type (3.16): one denoted by

(4.35) tσx, I
λ
x´e2 , J

λ
x´e1 , qσ

rλs
x´e1´e2 : x P u` Z2

ą0u
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with parameter λ, and the other denoted by

(4.36) tσx, I
ρ
x´e2 , J

ρ
x´e1 , qσ

rρs
x´e1´e2 : x P u` Z2

ą0u

with parameter ρ. By construction these processes have the properties given in Theorem 3.1, process
(4.35) with parameter λ and qσrλs replacing qω, and process (4.36) with parameter ρ (as stated in

Theorem 3.1) but with qσrρs replacing qω. In particular, both tqσrλsux Pu`Z2
ě0

and tqσrρsux Pu`Z2
ě0

are

i.i.d. Exp(1) variables, and the superscripts rλs and rρs simply remind us that these variables were
constructed from edge variables with parameters λ and ρ, respectively.

We stipulated above that the initial edge weights on the axes tu ` iek : i ě 1, k “ 1, 2u for
the λ and ρ systems were independent. In fact the coupling between processes (4.35) and (4.36) is
immaterial because the two processes will not be used jointly.

The key point is that we can replace the weights ω on the right of (4.31) with qσrλs and qσrρs without

changing the distribution of the last-passage process. Let qGrλs denote the last-passage process defined

in (4.17) with i.i.d. Exp(1) weights qσrλs, and similarly for qGrρs.
We derive bounds for the distribution functions of B and B.

PtB ď su “ P
 

lim
nÑ8

pGa,vn ´Ga`e1,vnq ď s
(

“ P
 

lim
nÑ8

p qGrρsa,vn ´
qG
rρs
a`e1,vnq ď s

(

ě PtIρa`e1 ď su “ F1´ρpsq

and

PtB ď su “ P
 

lim
nÑ8

pGa,vn ´Ga`e1,vnq ď s
(

“ P
 

lim
nÑ8

p qGrλsa,vn ´
qG
rλs
a`e1,vnq ď s

(

ď PtIλa`e1 ď su “ F1´λpsq.

Above we first replaced the weights ω with qσrλs and qσrρs, respectively. Then we applied (4.26), as
justified by (4.33). Last we used the known distributions of the I increment variables. Since B ě B
always, we have deduced that

F1´ρpsq ď PtB ď su ď PtB ď su ď F1´λpsq for all λ, ρ such that λ ă α ă ρ.

Letting λÕ α and ρŒ α allows us to conclude that B “ B „ Expp1´ αq. This proves the limit in
(4.31) for px, yq “ pa, a` e1q. Proof of the limit for px, yq “ pa, a` e2q proceeds analogously. Since
a P Z2 was arbitrary, we have the limit in (4.31) for all nearest-neighbor pairs x, y.

An arbitrary increment y´ x can be decomposed into a sum of nearest-neighbor increments, and
then the limit follows for all pairs x, y by the additivity on the right-hand side of (4.31). Along the
way one also derives the additivity Bα

x,y `B
α
y,z “ Bα

x,z.

Part (ii). We need to verify the properties in Definition 4.1. We begin with the joint distribution
of Bα-increments along a down-right path.

Consider the joint distribution of k ` ` nearest-neighbor increments Bα
xi,xi`e1 and Bα

yj ,yj`e2 for

1 ď i ď k and 1 ď j ď `. Fix an origin u such that all xi and yj lie in the quadrant u ` Z2
ě0. We

use again the auxiliary processes given in (4.35) and (4.36).

The processes t qG
rλs
x,y : y ě x ě uu, t qG

rρs
x,y : y ě x ě uu, and tGx,y : y ě x ě uu all have the same

distribution because they are defined the same way from i.i.d. Exp(1) weights. Hence from part (i)
we can also conclude the existence of the almost sure limits

qBrλsx,y “ lim
nÑ8

pGrλsx,vn ´G
rλs
y,vnq and qBrρsx,y “ lim

nÑ8
pGrρsx,vn ´G

rρs
y,vnq @x, y P u` Z2

ě0.
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Then, first by distributional equality of processes,

P
 

Bα
xi, xi`e1 ď si, B

α
yj , yj`e2 ą tj @i P rks, j P r`s

(

“ P
 

B
rλs
xi, xi`e1 ď si, B

rλs
yj , yj`e2 ą tj @i P rks, j P r`s

(

ď P
 

Iλxi`e1 ď si, J
λ
yj`e2 ą tj @i P rks, j P r`s

(

The last step came from the inequalities (4.26) and (4.27) (the case of vn of those inequalities is the
right one to look at). Similarly, using the remaining two inequalities of (4.26) and (4.27), we deduce

P
 

Bα
xi, xi`e1 ď si, B

α
yj , yj`e2 ą tj @i P rks, j P r`s

(

“ P
 

B
rρs
xi, xi`e1 ď si, B

rρs
yj , yj`e2 ą tj @i P rks, j P r`s

(

ě P
 

Iρxi`e1 ď si, J
ρ
yj`e2 ą tj @i P rks, j P r`s

(

.

Assume in particular now that the edges txi, xi`e1u and tyj , yj`e2u lie on a given down-right path.
Then, part (i) of Theorem 3.1 applied to the processes (4.35) and (4.36) turns the bounds above into

ź

iPrks

F1´ρpsiq ¨
ź

jPr`s

p1´ Fρptjqq ď P
 

Bα
xi, xi`e1 ď si, B

α
yj , yj`e2 ą tj @i P rks, j P r`s

(

ď
ź

iPrks

F1´λpsiq ¨
ź

jPr`s

p1´ Fλptjqq.

Letting again λ Õ α and ρ Œ α shows that along a down-right path, the variables Bα
x, x`e1 and

Bα
y, y`e2 are independent with distributions Expp1´αq and Exppαq, respectively, as required by part

(a) of Definition 4.1.
Fix a down-right path Y in Z2. We verify the distributional properties on G´, Y and G` inside

an arbitrarily large rectangle.
Consider a large rectangle D “ tx : pM0, N0q ď x ď pM1, N1qu whose lower left and upper right

corners are pM0, N0q and pM1, N1q. The e1-edge variables Bα
pi,N1q,pi`1,N1q

for M0 ď i ď M1 ´ 1 on

the north boundary, the e2-edge variables Bα
pM1,jq,pM1,j`1q for N0 ď j ď N1´1 on the east boundary,

and the bulk variables ωx for pM0, N0q ď x ď pM1 ´ 1, N1 ´ 1q are mutually independent. (The ω-
variables are independent of the Bα-variables to their north and east because limit (4.31) constructs
a Bα-variable in terms of ω-weights to its north and east.)

In other words, the Bα-increments on the north and east boundaries and the ω-weights in the bulk
of the rectangle satisfy the properties of the I, J boundary weights and qω-bulk weights in Theorem
3.1. Next we show by a south and westward induction that the joint distribution of pXα, B, ωq is a
correct one.

We claim that the variables satisfy the equations

(4.37)

Xα
x`e1`e2 “ Bα

x`e2, x`e1`e2 ^B
α
x`e1, x`e1`e2

Bα
x, x`e1 “ ωx ` pB

α
x`e2, x`e1`e2 ´B

α
x`e1, x`e1`e2q

`

Bα
x, x`e2 “ ωx ` pB

α
x`e2, x`e1`e2 ´B

α
x`e1, x`e1`e2q

´.

In contrast with the iteration (3.11)–(3.13), the equations above proceed to the south and west.
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The first equation in (4.37) is definition (4.32). The second and third come from the limits (4.31).
For example,

Bα
x, x`e1 “ lim

nÑ8
rGx,vn ´Gx`e1, vns “ lim

nÑ8
rωx `Gx`e1, vn _Gx`e2, vn ´Gx`e1, vns

“ ωx ` lim
nÑ8

rGx`e2, vn ´Gx`e1, vns
`

“ ωx ` lim
nÑ8

“

pGx`e2, vn ´Gx`e1`e2, vnq ´ pGx`e1, vn ´Gx`e1`e2, vnq
‰`

“ ωx ` rB
α
x`e2, x`e1`e2 ´B

α
x`e1, x`e1`e2s

`.

By Lemma 3.2 and induction, for any down-right path from the upper left corner pM0, N1q to the
lower right corner pM1, N0q, inside the rectangle D, the Bα-increments on the path, the ω weights
below and to the left of the path, and the Xα weights above and to the right of the path, are all
independent with the correct marginal distributions stipulated in (4.2). Part (a) of Definition 4.1
has been verified.

It remains to check that equations (3.11)–(3.13) are satisfied.

Bα
x,x`e1 ^B

α
x,x`e2 “ lim

nÑ8
rGx,vn ´Gx`e1,vns ^ rGx,vn ´Gx`e2,vns

“ lim
nÑ8

rωx `Gx`e1,vn _Gx`e2,vn ´Gx`e1,vns ^ rωx `Gx`e1,vn _Gx`e2,vn ´Gx`e2,vns

“ ωx ` rGx`e2,vn ´Gx`e1,vns
` ^ rGx`e1,vn ´Gx`e2,vns

`

“ ωx.

This verifies (3.11) (at x instead of at x´ e1 ´ e2).
By definition (4.32) and the additivity of Bα,

Bα
x´e1, x “ Bα

x´e1, x ^B
α
x´e2, x ` pB

α
x´e1, x ´B

α
x´e2, xq

`

“ Xα
x ` pB

α
x´e1´e2, x´e2 ´B

α
x´e1´e2, x´e1q

`.

This is (3.12). Equation (3.13) is verified in a similar manner. �

Lemma 4.10. Fix a countable dense subset D Ă p0, 1q. Then there exists an event Ω0 of full proba-
bility such that the following holds for each ω P Ω0.

(i) For each ρ P D the process tBρ
x,ypωqux,yPZ2 is well-defined by the limits in (4.31) for the

specific sequence vn “ tnξpρqu. These processes satisfy the following inequalities:

(4.38)
Bλ
x,x`e1pωq ď Bρ

x,x`e1pωq

and Bλ
x,x`e2pωq ě Bρ

x,x`e2pωq for all x P Z2 and λ ă ρ in D.

(ii) For each α P p0, 1q, and any sequence un in Z2 such that |un|1 Ñ8 and

(4.39) lim
nÑ8

un
|un|1

“ ξpαq “

ˆ

p1´ αq2

p1´ αq2 ` α2
,

α2

p1´ αq2 ` α2

˙

,

we have these bounds:

(4.40)

sup
λPD:λăα

Bλ
x,x`e1 ď lim

nÑ8
rGx,un ´Gx`e1,uns

ď lim
nÑ8

rGx,un ´Gx`e1,uns ď inf
ρPD:ρąα

Bρ
x,x`e1

and

(4.41)

sup
ρPD:ρąα

Bα
x,x`e2 ď lim

nÑ8
rGx,un ´Gx`e2,uns

ď lim
nÑ8

rGx,un ´Gx`e2,uns ď inf
λPD:λăα

Bα
x,x`e2 .
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Proof. Define Ω0 to be the event on which the limits in (4.31) hold for each ρ P D, for the specific
sequence vn “ tnξpρqu. Then fix ω P Ω0. Let 0 ă λ ă α ă ρ ă 1 be such that λ, ρ P D. Let un be
any sequence in Z2 such that |un|1 Ñ 8 and (4.39) holds. Let bn “ |un|1. Then (4.33) implies that
for large n,

(4.42) tbnξpρqu ¨ e1 ă un ¨ e1 ă tbnξpλqu ¨ e1 and tbnξpλqu ¨ e2 ă un ¨ e2 ă tbnξpρqu ¨ e2.

Then Lemma 4.5 gives the bounds

Gx,tbnξpλqu ´Gx`e1,tbnξpλqu ď Gx,un ´Gx`e1,un ď Gx,tbnξpρqu ´Gx`e1,tbnξpρqu

and

Gx,tbnξpρqu ´Gx`e2,tbnξpρqu ď Gx,un ´Gx`e2,un ď Gx,tbnξpλqu ´Gx`e2,tbnξpλqu.

All the inequalities claimed follow by taking nÑ8. �

Proof of Theorem 4.2. We start with a countable dense subset D Ă p0, 1q, the processes Bλ for λ P D
defined by the limits

(4.43) Bλ
x,y “ lim

nÑ8
rGx,tnξpλqu ´Gy,tnξpλqus

on the event Ω0 of full probability given in Lemma 4.10. For each λ P D, from Lemma 4.9 we know
the additivity

(4.44) Bλ
x,y `B

λ
y,z “ Bλ

x,z

and that with Xλ
x “ Bλ

x´e1,x ^ Bλ
x´e2,x the process tXλ

x , B
λ
x´e1,x, B

λ
x´e2,x, ωx : x P Z2u is an

exponential-λ last-passage system as described in Definition 4.1.
Let Ω1 be the subset of Ω0 on which

(4.45)

sup
λPD:λăγ

Bλ
x,x`e1 “ Bγ

x,x`e1 “ inf
ρPD:ρąγ

Bρ
x,x`e1

and sup
ρPD:ρąγ

Bρ
x,x`e2 “ Bγ

x,x`e2 “ inf
λPD:λăγ

Bλ
x,x`e2 for all γ P D.

Event Ω1 has full probability because of the monotonicity and control of distributions: for example,
for the first equality in (4.45) reason as follows: by (4.38)

sup
λPD:λăγ

Bλ
x,x`e1 “ lim

DQλÕγ
Bλ
x,x`e1 ď Bγ

x,x`e1 ,

but by Lemma 4.9(b) and the convergence of distributions, both limDQλÕγ B
λ
x,x`e1 and Bγ

x,x`e1 have
Expp1 ´ γq distribution. Hence they agree almost surely. By discarding another zero probability
event we can assume that Ω1 is invariant under translations.

In order to prove that Bγ is a stationary cocycle (Definition 2.6) for γ P D, it remains to check the
stationarity Bγ

x,ypθzωq “ Bγ
z`x,z`y. We apply bounds (4.40)–(4.41) to the sequence un “ tnξpγqu` z

that satisfies (4.39) with limit ξpγq. Together with (4.45) these bounds give (with an extension by
additivity) almost sure equalities

Bγ
x,y “ lim

nÑ8
rGx, tnξpγqu`z ´Gy, tnξpγqu`zs

for any fixed z and all x, y. Consequently

Bγ
x`z,y`z “ lim

nÑ8
rGx`z, tnξpγqu`z ´Gy`z, tnξpγqu`zs “ lim

nÑ8
rGx, tnξpγqu ´Gy, tnξpγqus ˝ θz

“ Bγ
x,y ˝ θz.

We have now checked that Bγ is a cocycle for each γ P D.
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We take the step to general α P p0, 1q. For each α P p0, 1q define processes Xα and Bα by taking
right limits from values in D: set for each ω P Ω1 and x, y P Z
(4.46) pXα

x pωq, B
α
x,ypωqq “ lim

DQλŒα
pXλ

x pωq, B
λ
x,ypωqq.

These limits exist for nearest-neighbor pairs x, y by the monotonicity in (4.38), and extend to all
pairs x, y by additivity on the right. The limit for Xα

x pωq comes along as a function by virtue of the
definition Xλ

x pωq “ Bλ
x´e1,xpωq ^B

λ
x´e2,xpωq which is then also preserved to the limit.

Extend these functions in some arbitrary way outside Ω1. By the arguments given above, we have
not altered these functions on Ω1 if α happens to lie in D. The properties of both Definitions 2.6 and
4.1 are preserved by the limits: Bα is a stationary cocycle and tXα

x , B
α
x´e1,x, B

α
x´e2,x, ωx : x P Z2u is

an exponential-α last-passage system. We have verified part (i) of the theorem.

Inequalities (4.5) are valid on the event Ω1 simultaneously for all λ, ρ P D and preserved by the
limit in (4.46). Part (ii) is proved.

For part (iii), fix 0 ă α ă 1 and let Ω
pαq
2 be the intersection of the event Ω1 above (which is

contained in the event Ω0 of Lemma 4.10) with the event on which

(4.47) sup
λPD:λăα

Bλ
x,x`e1 “ inf

ρPD:ρąα
Bρ
x,x`e1 and sup

ρPD:ρąα
Bα
x,x`e2 “ inf

λPD:λăα
Bα
x,x`e2 .

The equalities above hold with probability 1 by the argument used already above. First, by mono-
tonicity inequality ď holds in both equalities above. Then the suprema and infima are limits, and
the left- and right-hand sides of the equalities above are equal in distribution. Hence the left- and
right-hand sides agree almost surely.

The coincidence of the lower and upper bounds in (4.40)–(4.41) imply that the claimed limit in
(4.7) holds for nearest-neighbor pairs x, y. Extend to all x, y by additivity. This completes the proof
of Theorem 4.2. �

5. Fluctuation exponent for the corner growth model with exponential weights

Return to the point-to-point last-passage process defined as before in (3.1) by

Gx,y “ max
x‚PΠx,y

|y´x|1
ÿ

k“0

ωxk

with i.i.d. Exp(1) weights pωxq and the maximum over up-right paths from x to y. In Theorem 3.4
we proved the law of large numbers

lim
NÑ8

N´1G0,tNξu “ gpppξq ”
`

a

ξ1 `
a

ξ2

˘2
.

for ξ P r0,8q2. The next result states that the fluctuation exponent of G0,tNξu is 1{3, as predicted
by Kardar-Parisi-Zhang (KPZ) universality.

Theorem 5.1. Fix ξ P R2
ą0. There exists a constant 0 ă C “ Cpξ, pq ă 8 such that for N ě 1 and

1 ď p ă 3{2,

(5.1) C´1Np{3 ď E
“

|G0,tNξu ´Ngpξq|
p
‰

ď CNp{3.

Currently this theorem is not proved in these notes. It is a consequence of the fluctuation bounds
for the increment-stationary last-passage process Gρ to which we now turn.

We recall the setting from Section 3. The parameter 0 ă ρ ă 1 of the boundary weights is fixed.
We are given mutually independent random variables

(5.2) tωx, Iie1 , Jje2 : x P Z2
ą0, i, j P Zą0u
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with marginal distributions

(5.3) ωx „ Expp1q, Iie1 „ Expp1´ ρq, and Jje2 „ Exppρq.

The last-passage process Gρ0,x is defined for x ě 0 by Gρ0,0 “ 0,

(5.4) Gρ0,me1 “
m
ÿ

i“1

Iie1 and Gρ0, ne2 “
n
ÿ

j“1

Jje2 ,

and then for x “ pm,nq P Z2
ą0,

(5.5) Gρ0, x “ max
1ďkďm

!

k
ÿ

i“1

Iie1 `Gke1`e2, x

)

ł

max
1ď`ďn

!

ÿ̀

j“1

Jje2 `G`e2`e1, x

)

.

Ga,x inside the braces is the last-passage value defined in (3.1) for i.i.d. Expp1q weights.
We do not have a closed form expression for VarrGρ0,pm,nqs but we can access it well enough to

show that it obeys the fluctuation exponent 1{3 characteristic of the KPZ class. However, there in an
extra twist. Notice in (5.3) that the boundary weights ωie1 and ωje2 are larger on average than the
bulk weights tωxuxPZ2

ą0
. This implies that the boundaries are attractive to the maximizing path. It

turns out that only when we take the point x to infinity in the characteristic direction cpp1´ρq2, ρ2q,
the pull of the boundaries balance out and Gρ0,x obeys KPZ fluctuations. Otherwise the boundaries

swamp the effects of the percolation and Gρ0,x obeys the classical central limit theorem.
Let N be a scaling parameter that increases to 8. We consider the point-to-point last-passage

percolation from 0 to a point pm,nq “ pmpNq, npNqq that is taken to infinity as N Ñ 8. Let κN
denote the deviation of pm,nq from the characteristic direction:

(5.6) κN “ |m´Np1´ ρq
2 | ` |n´Nρ2 |.

Theorem 5.2. Assume weight distributions (5.3) and κN ď a0N
2{3 for some constant a0. Then D

constant 0 ă C “ Cpρ, a0q ă 8 such that

(5.7) C´1N2{3 ď VarrGρ0,pm,nqs ď CN2{3 for N ě 1.

We prove the upper bound in the theorem above completely and the lower bound for the case
where κN is bounded by a constant.

As a fairly immediate corollary we obtain the behavior in off-characteristic directions. For con-
creteness, we state the result for the case where the horizontal direction is abnormally large.

Corollary 5.3. Assume weight distributions (5.3). Suppose m,n Ñ 8. Define parameter N by
n “ Nρ2, and assume that

N´α
`

m´Np1´ ρq2
˘

Ñ c1 ą 0 as m,nÑ8

for some α ą 2{3. Then as m,nÑ8,

N´α{2
 

Gρ0,pm,nq ´ EpGρ0,pm,nqq
(

converges in distribution to a centered normal distribution with variance c1p1´ ρq
´2.

Proof. Recall that overline means centering of a random variable.

N´α{2G
ρ
0,pm,nq “ N´α{2G

ρ
0,ptNp1´ρq2u, tNρ2uq ` N´α{2

m
ÿ

i“tNp1´ρq2u`1

Īpi,nq

The mean square of the first term on the right is of order N´α ¨N2{3 and hence in the limit vanishes
in L2 and in probability. The second term is a sum of approximately c1N

α mean zero i.i.d. terms
with variance Er Ī2

pi,nqs “ p1´ ρq
´2. This sum gives the normal limit, by the CLT. �
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6. Proof of the fluctuation exponent for the stationary process

This proof was originally presented in article [3], which itself was based on the earlier work [4] on
increasing sequences among planar Poisson points.

The first step towards the proof of Theorem 5.2 is an explicit formula that ties together VarrGρ0,pm,nqs

and the amount of weight the maximizing path collects on the boundary.
For a given x, the last-passage problem (5.5) has an almost surely unique maximizing path x̄‚ “

px̄kq
n
k“0 from x̄0 “ 0 to x̄n “ x that satisfies Gρ0,x “

řn
k“1 ωx̄k , where we utilized the notational

convention on the axes that ωke1 “ Ike1 and ω`e2 “ J`e2 . For r “ 1, 2, define the exit time (or exit
point) of this path from the er axis by

(6.1) τr “ maxtk ě 0 : x̄k ¨ e3´r “ 0u, r “ 1, 2.

If the first step of the path x̄‚ from the origin is er, then 1 ď τr ď x ¨ er and τ3´r “ 0. In other
words, almost surely exactly one of τ1 and τ2 is positive (but which one is positive varies with the
realization of the weights ω).

Further, introduce the sums of weights along the axes:

S1,k “

k
ÿ

i“1

Iie1 and S2,` “
ÿ̀

j“1

Jje2 .

Then Sr,τr is the amount of weight that the maximizing path collects on the er-axis. Again, for
each weight configuration ω, exactly one of S1,τ1 and S2,τ2 is positive and the other one zero. When
necessary for distinguishing processes with different boundary weights (5.3), these variables will be
adorned with superscripts, as in τρr and Sρr,k.

Next we state the variance formula for the last-passage value in the increment-stationary CGM.

Theorem 6.1. Assume weight distributions (5.3).

(6.2)

VarrGρ0,pm,nqs “ ´
m

p1´ ρq2
`
n

ρ2
`

2

1´ ρ
ErS1,τ1s

“
m

p1´ ρq2
´
n

ρ2
`

2

ρ
ErS2,τ2s.

We skip the proof of this lemma for now. It involves explicit computations with exponential
distributions and covariances.

This section proves Theorem 5.2. The section is divided into an upper bound proof and a lower
bound proof.

6.1. Upper bound. We couple the boundary variables for two different parameters 0 ă ρ ă λ ă 1
as follows:

(6.3) Iλie1 “
1´ ρ

1´ λ
Iρie1 ą Iρie1 and Jλje2 “

ρ

λ
Jρje2 ă Jρje2 .

From this follows for example that τλ1 ě τρ1 and τλ2 ď τρ2 , and also

(6.4) Sλ1,` ´ S
ρ
1,` ď Sλ1,k ´ S

ρ
1,k for 0 ď ` ď k.

We begin with auxiliary lemmas.

Lemma 6.2. Let 0 ă ε ă 1. Then there exists a constant C “ Cpεq such that, for ε ď ρ ă λ ď 1´ ε,

VarrGλ0,pm,nqs ď VarrGρ0,pm,nqs ` Cmpλ´ ρq.
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Proof. From (6.3)

Sλ2,τ2 “

τλ2
ÿ

j“1

Jλje2 ď

τρ2
ÿ

j“1

Jλje2 “
ρ

λ

τρ2
ÿ

j“1

Jρje2 “
ρ

λ
Sρ2,τ2 .

Using the second line of (6.2),

VarrGλ0,pm,nqs “
m

p1´ λq2
´

n

λ2
`

2

λ
ErSλ2,τ2s

ď
p1´ ρq2

p1´ λq2
¨

m

p1´ ρq2
´
ρ2

λ2
¨
n

ρ2
`
ρ2

λ2
¨

2

ρ
ErSρ2,τ2s

“
ρ2

λ2
¨ VarrGρ0,pm,nqs `

m

p1´ ρq2

ˆ

p1´ ρq2

p1´ λq2
´
ρ2

λ2

˙

ď VarrGρ0,pm,nqs ` Cmpλ´ ρq. �

Lemma 6.3. Let 0 ă ε ă 1. Then there exists a constant C “ Cpεq such that, for ε ď ρ ď 1´ ε,

(6.5) ErSρ1,τ1s ď C
`

Erτρ1 s ` 1q.

We skip the proof of the above lemma.
The main estimate for the upper bound in (5.7) is contained in the next proposition.

Proposition 6.4. Consider the increment-stationary CGM Gρ0,pm,nq with weight distributions (5.3)

for a given 0 ă ρ ă 1. Let κN be defined by (5.6). Three positive constants a0, a1 and N0 are given
and the assumption is that

(6.6) κN ď a0N
2{3 and m ď a1N for N ě N0.

Then there exist constants c2, c3 ă 8 such that the following two bounds hold:

(6.7) Ptτρ1 ě `u ď c3

´ N2

`3
` p1` a0q

N8{3

`4

¯

for N ě N0 and 1_ c2κN ď ` ď m

and

(6.8) Erpτρ1 q
q s ď

`

c2a0 `
c3

3´ q

¯

N2q{3 for N ě N0 and 1 ď q ă 3.

The functional dependencies of the constants c2, c3 on the parameters is as follows:

(6.9) c2 “ c2pρq and c3 “ c3pa1, ρq.

Furthermore, c2 and c3 are locally bounded functions of their arguments.

The upper variance bound in (5.7) follows from a combination of (6.2), assumption (5.6), (6.5),
and (6.8) for q “ 1.

Proof of Proposition 6.4. Consider N ě N0 so that the assumptions are in force. Assume that, for
some 0 ă c2 ă 8, the integer ` satisfies

1_ c2κN ď ` ď m ď a1N.

The proof will choose c2 “ c2pρq large enough. Let 0 ă r ă 1 be a constant that will be set small
enough in the proof. Let

(6.10) λ “ ρ`
r`

N
.

We take r “ rpa1, ρq at least small enough so that ra1 ă
1
2p1´ ρq. This guarantees that for N ě 1,

λ P pρ, 1`ρ
2 q is also a legitimate parameter for an increment-stationary CGM.
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In the first inequality below use Sλ1,k ` Gpk,1q,pm,nq ď Gλ0,pm,nq. In the last inequality below use

(6.4).

Ptτρ1 ě `u “ Pt Dk ě ` : Sρ1,k `Gpk,1q,pm,nq “ Gρ0,pm,nq u

ď Pt Dk ě ` : Sλ1,k ´ S
ρ
1,k ď Gλ0,pm,nq ´G

ρ
0,pm,nq u

ď PtSλ1,` ´ S
ρ
1,` ď Gλ0,pm,nq ´G

ρ
0,pm,nq u(6.11)

Next we compute and bound the means of the random variables in the probability above. First

ErSλ1,` ´ S
ρ
1,`s “ `

´ 1

1´ λ
´

1

1´ ρ

¯

“
`

p1´ λqp1´ ρq
pλ´ ρq “

1

p1´ λqp1´ ρq
¨
r`2

N

Introduce the quantities

(6.12) κ1
N “ m´Np1´ ρq2 and κ2

N “ n´Nρ2

that satisfy (with κN as in (5.6))

|κ1
N | ` |κ

2
N | ď κN .

Then the LPP values.

(6.13)

ErGλ0,pm,nq ´G
ρ
0,pm,nqs “ m

´ 1

1´ λ
´

1

1´ ρ

¯

` n
´ 1

λ
´

1

ρ

¯

“

´ m

p1´ λqp1´ ρq
´

n

λρ

¯

pλ´ ρq

“ N
´ 1´ ρ

1´ λ
´
ρ

λ

¯

pλ´ ρq `
´ κ1

N

p1´ λqp1´ ρq
´
κ2
N

λρ

¯

pλ´ ρq

“
N

λp1´ λq
pλ´ ρq2 `

´ κ1
N

p1´ λqp1´ ρq
´
κ2
N

λρ

¯

pλ´ ρq

“
r2`2

λp1´ λqN
`

´ κ1
N

p1´ λqp1´ ρq
´
κ2
N

λρ

¯r`

N

ď
r2`2

λp1´ λqN
`

1

p1´ λqp1´ ρq ^ λρ
¨
r`2

c2N

The last inequality came from κN ď `{c2.
Comparison of the means shows that if we choose c2 large enough and then r small enough, both

as functions of pλ, ρq, then for a large enough constant c3 “ c3pλ, ρq,

ErSλ1,` ´ S
ρ
1,`s ą ErGλ0,pm,nq ´G

ρ
0,pm,nqs `

r`2

c3N
.

Since the range λ P pρ, 1`ρ
2 q is determined by ρ, the dependence on λ can be dropped and we have

c2 “ c2pρq, r “ rpa1, ρq and c3 “ c3pρq.
We continue from line (6.11). Below we subsume r, a1, ρ, λ dependent factors into a constant

C “ Cpa1, ρq. Along the way we use Lemma 6.2, Theorem 6.1, (6.12), κN ď c´1
2 `, m ď a1N , and
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Lemma 6.3.

Ptτρ1 ě `u ď P
!

Sλ1,` ´ S
ρ
1,` ď Gλ0,pm,nq ´G

ρ
0,pm,nq ´

r`2

c3N

)

ď P
!

Sλ1,` ´ S
ρ
1,` ď ´

r`2

2c3N

)

` P
!

Gλ0,pm,nq ´G
ρ
0,pm,nq ě

r`2

2c3N

)

ď
CN2

`4
VarrSλ1,` ´ S

ρ
1,`s `

CN2

`4
VarrGλ0,pm,nq ´G

ρ
0,pm,nqs

ď
CN2

`3
`
CN2

`4
`

VarrGλ0,pm,nqs ` VarrGρ0,pm,nqs
˘

ď
CN2

`3
`
CN2

`4
`

VarrGρ0,pm,nqs `mpλ´ ρq
˘

“
CN2

`3
`
CN2

`4

´

´
m

p1´ ρq2
`
n

ρ2
`

2

1´ ρ
ErSρ1,τ1s ` a1N ¨

r`

N

¯

ď
CN2

`3
`
CN2

`4
`

Erτρ1 s ` `
˘

ď
CN2

`3
`
CN2

`4
Erτρ1 s.(6.14)

Now use the assumption κN ď a0N
2{3. Let b “ c2a0 ` 1 ` C, with C as above. This ensures

bN2{3 ě c2κN which lets us use the bound above for integers ` ě bN2{3. By adjusting the constant
C in the front we can apply the bound to all real ` ě bN2{3.

Erτρ1 s “
ż 8

0
Ppτρ1 ě sq ds ď bN2{3 ` C

ż 8

bN2{3

´N2

s3
`
N2

s4
Erτρ1 s

¯

ds

“ bN2{3 `
CN2{3

2b2
`

C

3b3
Erτρ1 s ď bN2{3 ` 1

2N
2{3 ` 1

3Erτ
ρ
1 s.

From this we obtain the bound

Erτρ1 s ď
`

c2pρqa0 ` C1pa1, ρq
˘

N2{3

and thereby (6.8) has been proved for q “ 1. Substituting this bound back into line (6.14) gives

Ptτρ1 ě `u ď C2

´ N2

`3
` p1` a0q

N8{3

`4

¯

for a constant C2 “ C2pa1, ρq, verifying (6.7). Another integration with b “ c2pρqa0 ` 1`C2 proves
(6.8) for 1 ă q ă 3:

Erpτρ1 q
qs “

ż 8

0
Ppτρ1 ě sq qsq´1 ds ď bN2{3 ` C2

ż 8

bN2{3

`

N2sq´4 ` p1` a0qN
8{3sq´5

˘

ds

“ bN2{3 `
C2b

q´3

3´ q
N

2
3
q `

C2

b4´q
p1` a0qN

2
3
q ď

´

c2pρqa0 `
C3

3´ q

¯

N2q{3

where we summarized the pa1, ρq-dependent constants into C3 “ C3pa1, ρq. This completes the proof
of Proposition 6.4, with c3 defined as the constant that appears in front of the right-hand sides of
(6.7)–(6.8). �

6.2. Lower bound. The parameter 0 ă ρ ă 1 of the increment-stationary LPP process is fixed.
Let N be the scaling parameter that is sent to infinity, and define the endpoint of the point-to-point
LPP process by

pm,nq “
`

tNp1´ ρq2u, tNρ2u
˘

going in the characteristic direction for ρ. We prove the lower bounds on the right and left tail stated
in the theorem below.
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Theorem 6.5. There exist constants 1 ă a1pρq, a2pρq, N0pρ, sq ă 8 such that, for s ě a2pρq and
N ě N0pρ, sq,

(6.15) P
 

ω : Gρ0,pm,nq ě ErGρ0,pm,nqs ` sN
1{3

(

ě e´a1pρqs
3{2
.

Furthermore, there exist constants 0 ă a3pρq, a4pρq, N1pρ, tq ă 8 such that, for 0 ă t ď a3pρq and
N ě N1pρ, tq,

(6.16) P
 

ω : Gρ0,pm,nq ď ErGρ0,pm,nqs ´ tN
1{3

(

ě a4pρqt
2.

This gives the lower variance bound in (5.7) for the case when κN is bounded:

VarrGρ0,pm,nqs “ E
“`

G0,pm,nq ´ EρrG0,pm,nqs
˘2 ‰

ě s2N2{3 ¨ e´a1pρqs
3{2
.

In this proof also we perturb the parameter of the boundary weights. Introduce a quantity r ą 0
which, in the end, will be a constant multiple of s1{2. Define another parameter for the increment-
stationary CGM by

λ “ ρ`
r

N1{3
.

To guarantee that λ P pρ, 1`ρ
2 q we assume that

N ě N0 “ N0pρ, rq “ 8
`

r
1´ρ

˘3
.

N0 will be increased along the proof, but remains a function of ρ and r.

Notational comment. In this section we find it convenient to attach the parameters ρ and λ to the
measure P and the expectation E and variance Var to indicate which distribution is placed on the
boundary variables. We denote all the weights now by ωx and the last-passage value G0,x is defined
by

G0,x “ max
x0,nPΠ0,x

n
ÿ

k“1

ωxk

with maximum over paths that satisfy x0 “ 0 and xn “ x with n “ |x|1. Under Pρ the distributions
are as in (5.3) but without the I and J notation, namely

(6.17) ωx „ Expp1q for bulk vertices x P Z2
ą0, ωie1 „ Expp1´ ρq, and ωje2 „ Exppρq.

Pλ0,pm,nq is the probability distribution of the weights on the rectangle r0, pm,nqs. 4

For N P Zą0 and r ą 0 define the event

(6.18) AN,r “
 

p1´ ρqrN2{3 ď τ1 ď 4ρ´1rN2{3
(

.

Variable τ1 is the exit time from the e1-axis of the maximizing path from 0 to pm,nq, defined by
(6.1). We develop a lower bound for the probability of AN,r under Pλ0,pm,nq, that is, for the increment-

stationary process with parameter λ, restricted to the rectangle r0, pm,nqs. Note that this rectangle
is not of the characteristic shape for λ, and we take advantage of this in the proof.

Lemma 6.6. There exists a constant C1 “ C1pρq such that the bound below holds for r ě 1 and
N ě N0:

(6.19) Pλ0,pm,nqpAN,rq ě 1´ C1r
´3

Proof. We derive first an upper bound for Pλ0,pm,nqtτ1 ą 4ρ´1rN2{3u. Define

rm “
X

Nρ2λ´2p1´ λq2
\
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so that prm,nq points in the characteristic direction for λ, up to an Op1q error κN coming from integer
parts. Furthermore,

m´ rm ď N
`

p1´ ρq2 ´ ρ2λ´2p1´ λq2
˘

` 1 “ N
λ` ρ´ 2λρ

λ2
pλ´ ρq ` 1

ď 2ρ´1rN2{3

for N ě N0pρ, rq, for a suitably chosen N0pρ, rq. By Lemma A.2 in the appendix, and then by the
upper bound (6.7),

Pλ0,pm,nqtτ1 ą 4ρ´1rN2{3u “ Pλ0,p rm,nqtτ1 ą 4ρ´1rN2{3 ´ pm´ rmqu

ď Pλ0,p rm,nqtτ1 ą 2ρ´1rN2{3u ď
c4

r3

where c4 “ c4pρq contains c3 from (6.7).

Next we derive an upper bound for Pλ0,pm,nqtτ1 ă p1´ ρqrN
2{3u. Let

(6.20) pm̄, n̄q “
`

tNp1´ λq2u, tNλ2u
˘

point in the characteristic direction λ. Bound these differences:

m´ m̄ ě Npp1´ ρq2 ´ p1´ λq2q ´ 1 “ Npλ´ ρqp2´ ρ´ λq ´ 1 “ p2´ ρ´ λqrN2{3 ´ 1

ě p1´ ρqrN2{3

and

n̄´ n ě Npλ2 ´ ρ2q ´ 1 “ Npλ´ ρqpρ` λq ´ 1 ě ρrN2{3,

again for large enough N relative to pρ, rq. By Lemma A.3 in the appendix, and then by the upper
bound (6.7),

Pλ0,pm,nq
 

τ1 ă p1´ ρqrN
2{3

(

ď Pλ0,pm,nq
 

τ1 ă m´ m̄
(

“ Pλ0,pm̄,n̄q
 

τ2 ą n̄´ n
(

ď Pλ0,pm̄,n̄q
 

τ2 ą ρrN2{3
(

ď
c5

r3

where c5 “ c5pρq contains c3 from (6.7).
Combine the bounds:

Pλ0,pm,nq
 

p1´ ρqrN2{3 ď τ1 ď 4ρ´1rN2{3
(

“ 1´ Pλ0,pm,nqtτ1 ą 4ρ´1rN2{3u ´ Pλ0,pm,nqtτ1 ă p1´ ρqrN
2{3u

ě 1´ C1r
´3. �

Computing as in (6.13),

(6.21)

EλrG0,pm,nqs ´ EρrG0,pm,nqs “ m
´ 1

1´ λ
´

1

1´ ρ

¯

` n
´ 1

λ
´

1

ρ

¯

“
N

λp1´ λq
pλ´ ρq2 `

"

tNp1´ ρq2u´Np1´ ρq2

p1´ λqp1´ ρq
´

tNρ2u´Nρ2

λρ

*

pλ´ ρq

“
r2N1{3

λp1´ λq
`Op1q ¨

r

N1{3
ě c6r

2N1{3

where c6 “ c6pρq ą 0 is a constant chosen small enough to satisfy the inequality above for all N ě N0

and r ě 1.
Let ΛN denote the set of paths x‚ P Π0,pm,nq that satisfy x1 “ e1 and xk¨e2 ą 0 for k ą t4ρ´1rN2{3u.

In other words, the path stays on the x-axis for a while after leaving the origin, but does not
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stay on the x-axis beyond the point t4ρ´1rN2{3ue1. For any given weights tωxu on the rectangle
t0, . . . ,mu ˆ t0, . . . , nu, let

(6.22) G0,pm,nqpΛN q “ max
x‚PΛN

m`n
ÿ

k“1

ωxk

denote the LPP value whose maximum is restricted to the paths in ΛN . Observe that G0,pm,nqpΛN q “
G0,pm,nq if event AN,r of (6.18) occurs for weights tωxu. (This would be true even if the lower bound

in AN,r would be relaxed to τ1 ě 1 instead of τ1 ě p1´ ρqrN
2{3.)

We derive our second probability bound. Define the event

(6.23) BN,r “
 

ω : G0,pm,nqpΛN q ě EρrG0,pm,nqs `
1
2c6r

2N1{3
(

.

Lemma 6.7. There exists a constant C2 “ C2pρq such that the bound below holds for r ě 1 and
N ě N0:

(6.24) Pλ0,pm,nqpBN,rq ě 1´ C2r
´3.

Proof. Since by (6.21)

EρrG0,pm,nqs `
1
2c6r

2N1{3 ď EλrG0,pm,nqs ´
1
2c6r

2N1{3,

we can bound the complementary probability as follows. Constant C changes from line to line.
Below we use Lemma 6.2.

Pλ0,pm,nqpB
c
N,rq “ Pλ0,pm,nq

 

G0,pm,nqpΛN q ă EρrG0,pm,nqs `
1
2c6r

2N1{3
(

ď Pλ0,pm,nq
 

G0,pm,nqpΛN q ă EλrG0,pm,nqs ´
1
2c6r

2N1{3
(

ď Pλ0,pm,nq
 

G0,pm,nq ă EλrG0,pm,nqs ´
1
2c6r

2N1{3
(

` Pλ0,pm,nqpA
c
N,rq

ď
C

r4N2{3
VarλrG0,pm,nqs `

C1

r3

ď
C

r4N2{3

`

VarρrG0,pm,nqs `mpλ´ ρq
˘

`
C1

r3

ď
C

r4
`
C1

r3
ď
C2

r3
. �

With the preliminary work done, we turn to the proof of Theorem 6.5.

Proof of Theorem 6.5. We construct a coupling of three environments. Let ωρ and ωλ denote envi-
ronments as described in (6.17) with parameters ρ and λ. We assume that these environments
are coupled so that in the bulk, for x P Z2

ą0, ωρx “ ωλx “ ωx, while the boundary variables
tωρie1 , ω

ρ
je2
, ωλie1 , ω

λ
je2

: i, j P Zą0u are mutually independent.

Construct a mixed environment pω as follows:

pωie1 “ ωλie1 for 1 ď i ď t4ρ´1rN2{3u

and pωx “ ωρx for x R
 

ie1 : 1 ď i ď t4ρ´1rN2{3u
(

.

Thus in the bulk all weights agree and are i.i.d. Exp(1): for x P Z2
ą0, pωx “ ωρx “ ωλx “ ωx. On the

boundary pω follows ωλ on the segment that is relevant for the event BN,r and elsewhere pω follows

ωρ. Note that ωλ P BN,r iff pω P BN,r.
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Let the distributions of the three environments ωρ, ωλ and pω, restricted to the rectangle t0, . . . ,muˆ

t0, . . . , nu, be denoted by Pρ0,pm,nq, P
λ
0,pm,nq and pP0,pm,nq, respectively. These are all probability mea-

sures on the product space Rt0,...,muˆt0,...,nu` . The Radon-Nikodym derivative

fN pωq “
dpP0,pm,nq

dPρ0,pm,nq
pωq “

t4ρ´1rN2{3u
ź

i“1

λ

ρ
e´pλ´ρqωie1

is a product of the Radon-Nikodym derivatives of the exponential single weight marginal distributions
on that segment of the boundary where ωρ and pω differ. Computation of the mean square gives

Eρ0,pm,nqrf
2
N s “

ˆ

λ2

ρ2

ż 8

0
e´2pλ´ρqsρe´ρs ds

˙t4ρ´1rN2{3u

“

ˆ

λ2

ρp2λ´ ρq

˙t4ρ´1rN2{3u

“ exp

"

t4ρ´1rN2{3u

„

2 log
´

1`
r

ρN1{3

¯

´ log
´

1`
2r

ρN1{3

¯

*

ď e4r3ρ´3
.

Now fix r ě 1 large enough relative to C2 “ C2pρq from (6.24) so that C2r
´3 ă 1.

1´ C2r
´3 ď Pλ0,pm,nqpBN,rq “ pP0,pm,nqpBN,rq “ Eρ0,pm,nqr1BN,rfN s

ď
 

Pρ0,pm,nqpBN,rq
(1{2 Eρ0,pm,nqrf

2
N s

(1{2

ď
 

Pρ0,pm,nqpBN,rq
(1{2

e2r3ρ´3
.

Since G0,pm,nq ě G0,pm,nqpΛN q, from this comes the lower bound

(6.25)

Pρ0,pm,nq
 

ω : G0,pm,nq ě EρrG0,pm,nqs `
1
2c6r

2N1{3
(

ě Pρ0,pm,nq
 

ω : G0,pm,nqpΛN q ě EρrG0,pm,nqs `
1
2c6r

2N1{3
(

ě e´4r3ρ´3`

1´ C2r
´3
˘2
.

To complete the proof of inequality (6.15) of Theorem 6.5, set s “ 1
2c6r

2 and let a1pρq, a2pρq be
suitable functions of ρ, c6 and C2.

To prove the second inequality (6.16), abbreviate temporarily X “ G0,pm,nq ´ EρrG0,pm,nqs and
first derive this estimate from inequality (6.15):

0 “ EρrXs “ EρrX`s ´ EρrX´s ě sN1{3e´a1pρqs
3{2
´ EρrX´s “ 2tN1{3 ´ EρrX´s

where we set
t “ 1

2s e
´a1pρqs3{2 .

Note that for s ě a2pρq as in the statement of Theorem 6.5, t is bounded above by some constant
a3pρq but can be arbitrarily small. Next,

2tN1{3 ď EρrX´s “ EρrX´, X´ ă tN1{3 s ` EρrX´, X´ ě tN1{3 s

ď tN1{3 `
`

EρrpX´q2s
˘1{2`PρtX´ ě tN1{3u

˘1{2

ď tN1{3 `
`

VarρrG0,pm,nqs
˘1{2`PρtX´ ě tN1{3u

˘1{2

From which we deduce, together with the upper variance bound from Theorem 5.2, for some constant
a4pρq,

PρtX´ ě tN1{3u ě a4pρqt
2.

This inequality is the same as (6.16). This completes the proof of Theorem 6.5. �
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Appendix A. Coupling LPP processes

We first prove a lemma for deterministic weights. Fix a point a P Z2. Suppose boundary weights
tωa`ker : k P Zą0, r P t1, 2uu on the south and west boundaries of a ` Z2

ě0 and bulk weights
tωxuxPa`Z2

ą0
are given. Put an irrelevant weight ωa “ 0 in the corner a. Let Ga,x denote the LPP

value for points x P a ` Z2
ě0 and let πa,x‚ be a maximizing path from a to x. (If it is not unique,

make an arbitrary choice.)
Let b ě a on Z2. On the lattice b` Z2

ě0, put a corner weight ηb “ 0 and define boundary weights

(A.1) ηb`ker “ Ga, b`ker ´Ga, b`pk´1qer for k P Zą0 and r P t1, 2u.

In the bulk use ηx “ ωx for x P b ` Z2
ą0. Denote the LPP process in b ` Z2

ě0 that uses weights
tηxuxPb`Z2

ě0
by

(A.2) rGb,x “ max
x‚PΠb,x

|x´b|1
ÿ

i“0

ηxi , x P b` Z2
ě0.

Lemma A.1. Let a ď b ď v in Z2. Then Ga,v “ Ga,b` rGb,v. The restriction of any maximizing path

for Ga,v to b ` Z2
ě0 is part of a maximizing path for rGb,v. The edges in the interior of b ` Z2

ě0 of

any maximizing path for rGb,v extend to a maximizing path for Ga,b.

Proof. If v “ b ` ker (that is, v is on the boundary of b ` Z2
ě0) the situation is straightforward.

Suppose v ą b coordinatewise. Suppose a maximal path from a to v enters b ` Z2
ą0 by taking the

step from x “ b ` ker to y “ b ` ker ` e3´r. Suppose a maximal path for rGb,v enters b ` Z2
ą0 by

taking the step from rx “ b` `es to ry “ b` `es ` e3´s. Then

Ga,v “ Ga,x `Gy,v “ Ga,b `
k
ÿ

i“1

ηb`ier `Gy,v

ď Ga,b ` rGb,v “ Ga,b `
ÿ̀

i“1

ηb`ies `Gry,v

“ Ga,rx `Gry,v ď Ga,v.

Thus the inequalities above are in fact equalities. �

Write P0,v for the probability measure of the LPP process in the rectangle r0, vs with boundary
and bulk weights (5.3).

Lemma A.2. Let 1 ď k ă k ` ` ď m. Then P0,pm,nqpτ1 ě k ` `q “ P0,pm´k,nqpτ1 ě `q.

Proof. Take a “ 0, b “ pk, 0q and v “ pm,nq in Lemma A.1. Then, under P0,pm,nq, the LPP process
rGb,x in rb, vs has the same distribution, modulo the translation of the origin to b, as an LPP process
under P0,pm´k,nq. By Lemma A.1 the maximizing paths from a and b to v agree in their portions
inside rk ` 1,ms ˆ r0, ns. �

Lemma A.3. Let 1 ď m̄ ă m and 1 ď n ă n̄. Then P0,pm,nqpτ1 ă m´ m̄q “ P0,pm̄,n̄qpτ2 ą n̄´ nq.

Proof. We couple these LPP processes as follows. Let

a “ pm̄´m, 0q, a1 “ p0, n´ n̄q and v “ pm̄, nq.

The origin 0 takes the role of b in Lemma A.1.
Let i.i.d. Exp(1) weights tωxuxPZ2 be given. Then place independent boundary edge weights with

distributions dictated by (5.3) on the south and west boundaries of the lattice region pa ` Z2
ě0q Y

pa1 ` Z2
ě0q:
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(a) On horizontal boundary edges put Exp(1´ ρ) weights σpi´1qe1,ie1 for m̄´m` 1 ď i ď 0 and
σa1`pi´1qe1, a1`ie1 for i P Zą0.

(b) On vertical boundary edges put Exp(ρ) weights σpj´1qe2, je2 for n ´ n̄ ` 1 ď j ď 0 and
σa`pj´1qe2, a`je2 for j P Zą0.

Next consider two LPP processes that emanate from a and a1 and use the boundary weights
described above in (a) and (b): Ga,y for points y on the y-axis, and Ga1,x for points x on the x-axis.
(The restriction put on y implies that Ga,y does not need boundary weights on the x-axis beyond the
interval ra, 0s, and similarly Ga1,x does not need boundary weights on the y-axis beyond the interval
ra1, 0s.) Let these processes define boundary weights on Z2

ě0: ηpi´1qe1, ie1 “ Ga1, ie1 ´Ga1,pi´1qe1 and
ηpj´1qe2, je2 “ Ga, je2 ´Ga,pj´1qe2 for i, j P Zą0.

Now consider three LPP processes with lower left corners a, 0 and a1:

(i) rGa,x uses boundary weights σpi´1qe1, ie1 for m̄´m` 1 ď i ď 0 and ηpi´1qe1, ie1 for i P Zą0 on
the horizontal axis emanating from a and σa`pj´1qe2, a`je2 for j P Zą0 on the vertical axis
emanating from a.

(ii) rG0,x uses boundary weights ηpi´1qe1, ie1 and ηpj´1qe2, je2 on the standard axes emanating from
0.

(iii) rGa1,x uses boundary weights σa1`pi´1qe1, a1`ie1 for i P Zą0 on the horizontal axis emanating

from a1 and weights σpj´1qe2, je2 for n ´ n̄ ` 1 ď j ď 0 and ηpj´1qe2, je2 for j P Zą0 on the

vertical axis emanating from a1.

Let rP denote the probability measure under which this coupling has been constructed, that is, the
probability measure of the independent weights ωx and σx, x`ek .

Let A be the event that the (a.s. unique) maximal path for rGa,v does not go through the origin.

Let B the event that the (a.s. unique) maximal path for rGa1,v goes through the point e2. Lemma

A.1 applies to the pair rGa,v and rG0,v, and also to the pair rGa1,v and rG0,v. Thus the maximizing

paths for rGa,v and rGa1,v agree from that point onwards at which they exit the y-axis. Both A and
B are equivalent to the statement that this point is strictly above the origin on the y-axis. Hence
A “ B.

On the other hand, LPP processes t rGa, a`xuxPZ2
ě0

and t rGa1, a1`xuxPZ2
ě0

both have the same dis-

tribution as the LPP process tGρxuxPZ2
ě0

with stationary increments. Event A is equivalent to the

condition that the maximizing path for rGa,v takes at most m´ m̄´ 1 consecutive e1-steps from a,
which is the same as τ1 ă m´ m̄ for Gρ0,pm,nq. Similarly, event B says that the maximizing path for

rGa1,v takes at least n̄´n`1 consecutive e2-steps from a1, which for Gρ
pm̄,n̄q is the same as τ2 ą n̄´n.

Thus

P0,pm,nqpτ1 ă m´ m̄q “ rPpAq “ rPpBq “ P0,pm̄,n̄qpτ2 ą n̄´ nq. �
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[6] Nicos Georgiou, Firas Rassoul-Agha, Timo Seppäläinen, and Atilla Yilmaz. Ratios of partition functions
for the log-gamma polymer. Ann. Probab., 43(5):2282–2331, 2015.

[7] James B. Martin. Limiting shape for directed percolation models. Ann. Probab., 32(4):2908–2937, 2004.
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