
COURSE NOTES ON THE KPZ FIXED POINT

DANIEL REMENIK

Abstract. These notes are a supplement to the lectures at the minicourse on the KPZ fixed
point given at the CIRM Research School “Random Structures in Statistical Mechanics and
Mathematical Physics” in March 2017. Much of the material is taken directly from the recent
paper [MQR17b] by Matetski, Quastel and the author; the aim here is to simplify and shorten
the presentation of the main results, stripping the arguments of many technical details and
focusing mostly on the key ideas leading to this development.

1. The KPZ fixed point

The aim of these notes is to present the recent development [MQR17b], where the KPZ
fixed point, a scaling invariant Markov process taking values in real valued functions which
look locally like Brownian motion, was constructed as limit of the totally asymmetric exclusion
process. The construction leads to an explicit Fredholm determinant formula for its transition
probabilities and to proofs of its main properties. We begin with some brief motivation.

1.1. The KPZ equation and universality class. The Kardar-Parisi-Zhang (KPZ) univer-
sality class is a broad collection of one-dimensional, asymmetric, randomly forced systems,
including stochastic interface growth on a one-dimensional substrate, directed polymer chains
in a random potential, driven lattice gas models, reaction-diffusion models in two-dimensional
random media and randomly forced Hamilton-Jacobi equations. It can be loosely characterized
by having local dynamics, a smoothing mechanism, slope dependent growth rate (lateral growth)
and space-time random forcing with rapid decay of correlations.

Models in this class present an unusual size and distribution of fluctuations. Thinking in terms
of the growth of a random one-dimensional interface, KPZ models exhibit interfaces moving
at a non-zero velocity proportional to time t, with fluctuations of size t1/3 and decorrelating
at a spatial scale of t2/3. The distribution of the fluctuations depends on the geometry of the
specific problem being studied, and it has been found that in many interesting cases they are
related to objects coming from random matrix theory (RMT). For background on the different
aspects of the study of this class and an account of some of the main developments in the
subject in the last fifteen years see the reviews [Cor12; Qua11; QR14; QS15].

The model which gives its name to this class is the Kardar-Parisi-Zhang equation [KPZ86],

∂tH = λ(∂xH)2 + ν∂2
xH +

√
Dξ, (1.1)

a canonical continuum equation for the evolution of a randomly growing one-dimensional
interface. It was predicted in [HH85; KPZ86] that the 1:2:3 rescaled solution

Hε(t, x) = ε1/2H(ε−3/2t, ε−1x) (1.2)

should have a non-trivial limiting behavior. The (conjectural) limit under this scaling is the
so-called KPZ fixed point, which is believed to be the universal limit for models on the KPZ
universality class under the KPZ (1:2:3) scaling, and should contain all the fluctuation behaviour
seen in this class. As a (conjectural) object, it was introduced non-rigorously in [CQR15], to
which we point (together with [MQR17b]) for further background. One can understand many
(but by no means all) of the main advances in the field as attempts to understand some aspects
of this limiting object (mostly restricted to a very special family of particular initial conditions).
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1.2. TASEP and the KPZ fixed point.

1.2.1. TASEP. Our starting point in the construction of the KPZ fixed point will be another
basic model in the KPZ universality class, the totally asymmetric exclusion process (TASEP).
We will introduce this model in more detail in Section 3, so for now describe it slightly informally.

Definition 1.1. (TASEP height function) The height function associated to TASEP is a
continuous time Markov process

(
ht(x)

)
x∈Z taking values in the space of simple random walk

paths, by which we mean continuous curves obtained by linearly interpolating the graph of
a function from Z to Z which moves up or down by one in each step. We think of this curve
as an interface growing (downwards) in time, according to the following dynamics: each local
maximum (∧) turns into a local minimum (∨) at rate one, that is if ht(z) = ht(z ± 1) + 1 then
ht(z) 7→ ht(z)− 2 at rate 1 (see Figure 1).

1.2.2. The KPZ fixed point. For each ε > 0 the 1:2:3 rescaled TASEP height function is1

hε(t,x) = ε1/2
[
h2ε−3/2t(2ε

−1x) + ε−3/2t
]
. (1.3)

The initial data corresponds to just rescaling h0 diffusively, hε(0,x) = ε1/2h0(2ε−1x) (the extra
2 is just a choice of normalization), and we allow h0 = h

(ε)
0 itself to depend on ε and assume

that
h0 = lim

ε→0
hε(0, ·) (1.4)

(in a sense to be specified later).

Definition 1.2. (The KPZ fixed point) We define the KPZ fixed point as the limit

h(t,x; h0) = lim
ε→0

hε(t,x). (1.5)

We will often omit h0 from the notation when it is clear from the context.

(Of course, one of the main points which we need to settle is that the limit (1.5) exists).
As we already mentioned, the KPZ fixed point h(t,x; h0) should be the 1:2:3 scaling limit

of all models in the KPZ universality class. This is known as the strong KPZ universality
conjecture. In these lectures (and in [MQR17b]) we only deal with TASEP, but our method
works for several variants of TASEP (which also have a representation through biorthogonal
ensembles, such as PushASEP as well as discrete time TASEPs and PNGs); this is the content
of [MQR17a].

1.2.3. Earlier work. TASEP has been one of the most heavily studied models in the KPZ class,
and much effort has been devoted to the study of the distributional limit (1.5) for a few, very
special, choices of initial data h0.

Example 1.3. (Step) The most basic case is the step initial data h0(x) = −|x| (the name
step comes from the derivative of h0), in which case it is known that hε(2,x) converges to the
Airy2 process A2(x) [PS02; Joh03], which has one-point marginals given by the Tracy-Widom
GUE distribution [TW94]. In this case we have that h(0, ·) goes to d0, where du is the narrow
wedge at u, which is the function du(u) = 0, du(x) = −∞ for x 6= u. So we have

h(1,x; d0) + x2 = A2(x). (1.6)

1There is a difference between the scalings chosen in (1.3) and in the current arXiv version of [MQR17b],
where the analogous definition was done with t replaced by t/2 on the right hand side. The present choice is
better, because it makes the usual Airy processes arise at time t = 1 at the fixed point level (instead of t = 2),
and because it matches a natural choice of parameters for (1.1); it will be the scaling used in the upcoming
revised version of that paper. This difference means that, when referencing [MQR17b] in these notes, some
constants will be off by a factor of 2 (for example, in that paper we defined St,x = ex∂

2− t
6
∂3

), but this does not
affect the arguments in any other way.
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rate 1

Figure 1. The height function associated to TASEP. A particle moving to the
right corresponds to a local maximum of the height function moving down to
turn into a local minimum (see also Definition 3.1).

Example 1.4. (Flat) Another case is that of flat initial data h0(x) = 1 for even x, h0(x) = 0
for odd x, interpolated lineraly in between. Here we have convergence to the Airy1 process A1(x)
[Sas05; BFPS07], which has one-point marginals given by the Tracy-Widom GOE distribution
[TW96], and so we have

h(1,x; 0) = A1(x). (1.7)

Example 1.5. (Stationary) The other basic case corresponds to starting with h0 coming
from sampling a double-sided simple symmetric random walk path, which yields h(1,x;B) with
B a double-sided Brownian motion with diffusion coefficient 2; this is known as the Airystat
process [BFP10] (the name stationary comes from the fact that TASEP is invariant under the
product measure initial initial condition associated to this choice of h0).

What has made these cases tractable is the fact that exact formulas were available for
TASEP, which were derived using the very special properties of these initial conditions. The
same methods also yield formulas for the three mixed cases corresponding to putting one of
these initial conditions on one side of the origin and another on the other.

Our main result will show that the limit (1.5) exists, in a suitable sense, for all suitable h0.

1.3. State space and topology. The state space in which we will show that (1.5) holds and
where (1.4) will be assumed to hold (in distribution) will be the following:

Definition 1.6. (UC functions) We define UC as the space of upper semicontinuous
functions h : R→ [−∞,∞) with h(x) ≤ C(1 + |x|) for some C <∞.

We will endow this space with the topology of local UC convergence. This is the natural
topology for lateral growth, and will allow us to compute h(t,x; h0) in all cases of interest2.
In order to define this topology, recall that h is upper semicontinuous (UC) if and only if its
hypograph

hypo(h) = {(x,y) : y ≤ h(x)}
is closed in [−∞,∞)× R. Slightly informally, local UC convergence can be defined as follows:

Definition 1.7. (Local UC convergence) We say that
(
hε
)
ε
⊆ UC converges locally in

UC to h ∈ UC if there is a C > 0 such that hε(x) ≤ C(1 + |x|) for all ε > 0 and for every
M ≥ 1 there is a δ = δ(ε,M) > 0 going to 0 as ε→ 0 such that the hypographs Hε,M and HM
of hε and h restricted to [−M,M ] are δ-close in the sense that

∪(t,x)∈Hε,M
Bδ((t,x)) ⊆ HM and ∪(t,x)∈HM

Bδ((t,x)) ⊆ Hε,M .

See [MQR17b, Sec. 3.1] for more details. We will also use an analogous space LC, made of
lower semicontinuous functions:

Definition 1.8. (LC functions and local convergence) We let

LC =
{
g : −g ∈ UC

}
.

2Actually the bound h(x) ≤ C(1 + |x|) which we are imposing here and in [MQR17b] on UC functions is
not as general as possible, but makes the arguments a bit simpler and it suffices for most cases of interest (see
also [MQR17b, Foot. 9]).
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We endow this space with the topology of local LC convergence which is defined analogously to
local UC convergence, now in terms of epigraphs,

epi(g) = {(x,y) : y ≥ g(x)}.

Explicitly, gε converges locally in LC to g if and only if −gε −→ −g locally in UC.

1.4. Operators. In order to state our main result we need to introduce several operators,
which will appear in the explicit Fredholm determinant formula for the fixed point.

Definition 1.9. (Projections) For a fixed vector a ∈ RM and indices n1 < . . . < nM we
introduce the functions

χa(nj , x) = 1x>aj , χ̄a(nj , x) = 1x≤aj ,

which we also regard as multiplication operators acting on the spaces L2({t1, . . . , tM}×R) and
`2({n1, . . . , nM} × Z). We will use the same notation if a is a scalar, writing

χa(x) = 1− χ̄a(x) = 1x>a.

We think of χa as a projection from L2(R) to L2((a,∞)) (and analogously in the vector case).

Our basic building block is the following (almost) group of operators:

Definition 1.10. We define

St,x = exp{x∂2 − t
3 ∂

3}, x, t ∈ R2 \ {x < 0, t = 0},

which satisfy
Ss,xSt,y = Ss+t,x+y (1.8)

as long as all subscripts avoid {x < 0, t = 0}.

We can think of these as unbounded operators with domain C∞0 (R).

Remark 1.11. In these notes we will not worry about precise statements (or proofs) justifying
the convergence of kernels as needed in each step. So for example, at this particular point we
will not worry about making the domains and analytical properties of the St,x precise).

But it is not even clear whether the operators make any sense for x < 0, t 6= 0 (notice that
for t = 0 they clearly don’t). The fact that they do can be checked using the following explicit
representation for the operators: St,x acts by convolution

St,xf(z) =

∫ ∞
−∞

dy St,x(z, y)f(y) =

∫ ∞
−∞

dy St,x(z − y)f(y),

with convolution kernel St,x(z, y) = St,x(z − y) given by

St,x(z) =
1

2πi

∫
〈
dw e

t
3
w3+xw2−zw = t−1/3e

2x3

3t2
+ zx

t Ai(t−1/3z + t−4/3x2) (1.9)

for t > 0 together with

S−t,x = (St,x)∗ or S−t,x(z, y) = S−t,x(z − y) = St,x(y − z) (1.10)

for t < 0, where 〈 is the positively oriented contour going in straight lines from e−iπ/3∞ to
eiπ/3∞ through 0 and Ai is the Airy function Ai(z) = 1

2πi

∫
〈 dwe

1
3
w3−zw.

Remark 1.12. The fact that these operators make sense is just a generalization of the fact
that e−x∂2Ai is well defined for all x ∈ R, which has been used extensively in the field (see e.g.
[BFPS07; QR13; QR16]), and corresponds simply to taking x = 1 in the above definition.
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From (1.10) we get directly the identity

(St,x)∗St,−x = I.

Definition 1.13. (Hit operators) For g ∈ LC we define the operator

S̄
epi(g)
t,x (v, u) = EB(0)=v

[
St,x−τ (B(τ ), u)1τ<∞

]
=

∫ ∞
0

PB(0)=v(τ ∈ ds)St,x−s(B(τ ), u)

where B(x) is a Brownian motion with diffusion coefficient 2 and τ is the hitting time of the
epigraph of g|[0,∞). Note that, trivially,

S̄
epi(g)
t,x (v, u) = St,x(v, u) for v ≥ g(0). (1.11)

If h ∈ UC, there is a similar operator S̄hypo(h)
t,x with the same definition, except that now τ is

the hitting time of the hypograph of h and S̄
hypo(h)
t,x (v, u) = St,x(v, u) for v ≤ h(0).

One way to think of S̄epi(g)
t,x (v, u) is as a sort of asymptotic tranformed transition “probability”

for the Brownian motion B to go from v to u hitting the epigraph of g (note that g is not
necessarily continuous, so hitting g is not the same as hitting epi(g); in particular, B(τ ) ≥ g(τ )
and in general the equality need not hold). To see what we mean, write

S̄
epi(g)
t,x = lim

T→∞
St,x−TS̄

epi(g),T with S̄epi(g),T(v, u) = EB(0)=v

[
S0,T−τ (B(τ ), u)1τ≤T

]
(1.12)

and note that S̄epi(g),T(v, u) is nothing but the transition probability for B to go from v at
time 0 to u at time T hitting epi(g) in [0,T].

Definition 1.14. (Epi/hypo operators) For g ∈ LC and x ∈ R we define

K
epi(g)
t = I− (St,x − S̄

epi(g−x )
t,x )∗χ̄g(x)(St,−x − S̄

epi(g+x )
t,−x ), (1.13)

where
g+
x (y) = g(x + y), g−x (y) = g(x− y).

Note that the projection χ̄g(x) can be removed from (1.13), thanks to (1.11).
There is another operator which uses h ∈ UC, and hits “from above”,

K
hypo(h)
t = I− (St,x − S̄

hypo(h−x )
t,x )∗χh(x)(St,−x − S̄

hypo(h+x )
t,−x ), (1.14)

As above, St,x − S̄
epi(gx)
t,x may be thought of as a sort of asymptotic transformed transition

probability for a Brownian motion B, started at time 0, not to hit epi(g|[0,∞)). Therefore
K

epi(g)
t may be thought of as the same sort of asymptotic transformed transition probability

for B, in this case hitting epi(g), which is built out of the product of left and right “no hit”
operators.

Remark 1.15. Note that in this description the point x at which g is split in (1.13) plays
absolutely no role; the operator Kepi(g)

t actually does not depend on the choice of x, and this
fact will be used at a crucial step in the derivation. This was proved in [QR16] (see the next
remark), essentially by using the representation given in (1.12).

Remark 1.16. For t = 1, I − K
epi(g)
t is the Brownian scattering operator introduced in

[QR16]. In that paper we derived, under an assumption which is widely believe to hold but
which currently escapes rigorous treatment (namely that the partially asymmetric exclusion
process with step initial data converges to the Airy2 process) explicit formulas for the one-point
marginals of the limit of the rescaled solution of the KPZ equation, (1.2). These formulas
coincide with those which follow from the KPZ fixed point formulas to be given below, which
provides further (non-rigorous) confirmation of the strong KPZ universality conjecture.
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1.5. Existence and formulas for the KPZ fixed point. We are ready to state the main
result of [MQR17b] (Theorem 4.1 in that paper), which proves the existence of the KPZ fixed
point h(t,x) and characterizes its distribution for each t ≥ 0.

Theorem 1.17. (KPZ fixed point formula) Fix h0 ∈ UC. Let h(ε)
0 be initial data for the

TASEP height function such that the corresponding rescaled height functions hε0 (1.3) converge
to h0 locally in UC as ε→ 0. Then the limit (1.5) for h(t,x) exists (in distribution) locally in
UC and is given as follows: for any g ∈ LC,

P(h(t,x) ≤ g(x), x ∈ R) = det
(
I−K

hypo(h0)
t/2 K

epi(g)
−t/2

)
L2(R)

. (1.15)

The determinant on the right hand side of (1.15) is the Fredholm determinant on the Hilbert
space L2(R), which may be defined as follows: for K an operator with integral kernel K(x, y),

det(I −K) =
∑
n≥0

(−1)n

n!

∫
Rn

dx1 · · · dxn det[K(xi, xj)]
n
i,j=1 .

For background on Fredholm determinants we refer to [Sim05] or [QR14, Sec. 2].

Remark 1.18. The fact that the Fredholm determinant in the formula is finite is a consequence
of the fact that there is a (multiplication) operator M such that MK

hypo(h0)
t/2 K

epi(g)
−t/2 M

−1 is
trace class (this fact is proved in [MQR17b, Sec. B.1]). However, as we already mentioned, in
these lectures we will omit all these issues.

Note that (1.15) gives a lot more information about the distribution of the fixed point
than finite-dimensional distributions. This type of “continuum statistics” formulas have been
previously derived for Airy and related processes in [CQR13; QR13; BCR15; NR15; NR16]. In
our case it is crucial that we have such a general formula, for it will allow us to prove that the
fixed point is a Markov process. However, the formulas for the finite dimensional distributions
from which Theorem 1.17 will follow are interesting and useful in themselves, so we state them
here:

Theorem 1.19. (KPZ fixed point finite dimensional distributions) Let h0 ∈ UC and
choose x1 < x2 < · · · < xM . Then

Ph0(h(t,x1) ≤ a1, . . . , h(t,xM ) ≤ aM )

= det
(
I− χaK

hypo(h0)
t,ext χa

)
L2({x1,...,xM}×R)

(1.16)

= det
(
I−K

hypo(h0)
t,xM

+ K
hypo(h0)
t,xM

e(x1−xM )∂2χ̄a1e
(x2−x1)∂2χ̄a2 · · · e(xM−xM−1)∂2χ̄aM

)
L2(R)

(1.17)

where

K
hypo(h0)
t,ext (xi, ·;xj , ·) = −e(xj−xi)∂

2
1xi<xj + e−xi∂

2
K

hypo(h0)
t exj∂

2
(1.18)

and

K
hypo(h0)
t,x = e−x∂

2
K

hypo(h0)
t ex∂

2
(1.19)

with K
hypo(h0)
t the kernel defined in (1.14).

The kernel in (1.16) is usually referred to as an extended kernel (note that the Fredholm
determinant is being computed on the “extended L2 space” L2({x1, . . . ,xM} ×R)). The kernel
appearing after the second hypo operator in (1.17) is sometimes referred to as a path integral
kernel [BCR15], and should be thought of as a discrete, pre-asymptotic version of the epi
operators (on a finite interval).
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Remark 1.20. The fact that e−x∂2Khypo(h0)
t ex∂

2 makes sense is not entirely obvious, but
follows from the fact that Khypo(h0)

t equals

(St,x)∗χg(x)St,−x + (S̄
epi(g−x )
t,x )∗χ̄g(x)St,−x + (St,x)∗χ̄g(x)S̄

epi(g+x )
t,−x − (S̄

epi(g−x )
t,x )∗χ̄g(x)S̄

epi(g+x )
t,−x ,

together with the group property (1.8) and the definition of the hit operators.

2. Properties of the KPZ fixed point

In this section we present the main properties of the KPZ fixed point, as well as a sketch of
the proof of some of them.

2.1. Markov property. The sets Ag = {h ∈ UC : h(x) ≤ g(x), x ∈ R}, g ∈ LC, form a
generating family for the Borel sets B(UC). Hence from (1.15) we can define the fixed point
transition probabilities ph0(t, Ag):

Lemma 2.1. For fixed h0 ∈ UC and t > 0, the measure ph0(t, ·) defined above is a probability
measure on UC.

Sketch of the proof. It is clear from the construction that Ph0(h(t,xi) ≤ ai, i = 1, . . . , n) is
non-decreasing in each ai and is in [0, 1]. We need to show then that this quantity goes to 1
as all ai’s go to infinity, and to 0 if any ai goes to 0. The first one is standard, and relies on
the inequality |det(I−K)− 1| ≤ ‖K‖1e‖K‖1+1 (with ‖ · ‖1 denoting trace norm). The second
limit is in general very hard to show for a formula given in terms of a Fredholm determinant,
but it turns out to be rather easy in our case, because the multipoint probability is trivially
bounded by Ph0(h(t,xi) ≤ ai), and then one can use the skew time reversal symmetry and
affine invariance of the fixed point (Prop. 2.8(ii,v)) to compare this to the one-point marginals
of the Airy2 process. See [MQR17b, Sec. 4.2] for the details. �

Theorem 2.2. The KPZ fixed point
(
h(t, ·)

)
t>0

is a (Feller) Markov process taking values in
UC.

The proof is based on the fact that h(t,x) is the limit of hε(t,x), which is Markovian. To
derive from this the Markov property of the limit requires some compactness, which in our
case is provided by Theorem 2.4 below (see [MQR17b, Sec. 4.2] for more details).

2.2. Regularity and local Brownian behavior. Up to this point we only know that the
fixed point is in UC, but by the smoothing mechanism inherent to models in the KPZ class
one should expect h(t, ·) to at least be continuous for each fixed t > 0. The next result shows
that h(t, ·) is actually locally Hölder β for any β < 1/2.

Definition 2.3. (Local Hölder spaces) Let C = {h : R→ [−∞,∞) continuous with h(x) ≤
C(1 + |x|) for some C <∞}. We define the local Hölder norm

‖h‖β,[−M,M ] = sup
x1 6=x2∈[−M,M ]

|h(x2)− h(x1)|
|x2 − x1|β

and the local Hölder spaces

C β = {h ∈ C with ‖h‖β,[−M,M ] <∞ for each M = 1, 2, . . .}.
The topology on UC, when restricted to C , is the topology of uniform convergence on compact
sets. UC is a Polish space and the spaces C β are compact in UC.

Theorem 2.4. (Space regularity) Fix t > 0, h0 ∈ UC and initial data h(ε)
0 for the TASEP

height function such that hε0 −→ h0 locally in UC as ε → 0. Then for each β ∈ (0, 1/2) and
M <∞,

lim
A→∞

limsup
ε→0

P(‖hε(t)‖β,[−M,M ] ≥ A) = lim
A→∞

P(‖h‖β,[−M,M ] ≥ A) = 0.
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The proof proceeds through an application of the Kolmogorov continuity theorem, which
reduces regularity to two-point functions, and is based on the arguments introduced in [QR13]
for the Airy1 and Airy2 processes, and depends heavily on the representation (1.17) for the
two-point function in terms of path integral kernels. We skip the details.
Theorem 2.5. (Local Brownian behavior) For any initial condition h0 ∈ UC h(t,x) is
locally Brownian in x in the sense that for each y ∈ R, the finite dimensional distributions of

b+
ε (x) = ε−1/2(h(t,y + εx)− h(t,y)) and b−ε (x) = ε−1/2(h(t,y − εx)− h(t,y))

converge, as ε↘ 0, to Brownian motions with diffusion coefficient 2.

Very brief sketch of the proof. The proof is based again on the arguments of [QR13]. One uses
(1.17) and Brownian scale invariance to show that

P
(
h(t, εx1) ≤ u +

√
εa1, . . . , h(t, εxn) ≤ u +

√
εan

∣∣ h(t, 0) = u
)

= E
(
1B(xi)≤ai,i=1,...,n φ

ε
x,a(u,B(xn))

)
for some explicit function φεx,a(u,b). The Brownian motion appears from the product of heat
kernels in (1.17), while φεx,a contains the dependence on everything else in the formula (the
Fredholm determinant structure and h0 through the hypo operator Khypo(h0)

t ). Then one shows
that φεx,a(u,b) goes to 1 in a suitable sense as ε→ 0. �

Proposition 2.6. (Time regularity) Fix x0 ∈ R and initial data h0 ∈ UC. For t > 0,
h(t,x0) is locally Hölder α in t for any α < 1/3.

The proof uses the variational formula for the fixed point, we sketch it in Section 2.5.

2.3. Symmetries and invariance. The KPZ fixed point satisfies a number of properties
which follow directly from the construction. The first one is the 1:2:3 scaling invariance, which
we state separately since it lies at the heart of our interest in this object (and justifies the name
of the process, which is fixed, in distribution, under 1:2:3 rescaling).
Proposition 2.7. (1:2:3 scaling invariance)

αh(α−3t, α−2x;αh0(α−2x))
dist
= h(t,x; h0), α > 0.

This property follows straightforwardly from Definition 1.2 (and Theorem 1.17).
Proposition 2.8 (Symmetries of h).

(i) (Skew time reversal) P
(
h(t,x; g) ≤ −f(x)

)
= P

(
h(t,x; f) ≤ −g(x)

)
, f, g ∈ UC;

(ii) (Shift invariance) h(t,x + u; h0(x + u))
dist
= h(t,x; h0);

(iii) (Reflection invariance) h(t,−x; h0(−x))
dist
= h(t,x; h0);

(iv) (Affine invariance) h(t,x; f(x) + a + cx)
dist
= h(t,x; f(x + 1

2ct)) + a + cx + 1
4c

2t;
(v) (Preservation of max) h(t,x; f1 ∨ f2) = h(t,x; f1) ∨ h(t,x; f2).

Proof. (ii) and (iii) follow directly from the fact that the TASEP height function satisfies
exactly the same properties.

(i) is slightly more delicate, but it also follows easily from the analog property for TASEP,
which is perhaps most easily seen by using the graphical representation for TASEP, see e.g.
[Lig85], to couple TASEP starting with height profile g at time 0 and running to time t with
another copy of TASEP, started now with height profile −f at time t and running backwards
to time 0.

(v) also follows from the exact same property for TASEP, which can be proved by showing that
if h1(t, x) and h2(t, x) are two copies of TASEP coupled again using the graphical representation
and such that h1(0, x) ≥ h2(0, x) for all x then h1(t, x) ≥ h2(t, x) for all x and all t.

(iv) can be also be proved from TASEP, but it is easier to use the variational formula
provided in Theorem 2.15, so we postpone the proof until Section 2.5. �
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2.4. Airy processes. We show here how to recover (at time t = 1) the known Airy1, Airy2

and Airy2→1 processes from Theorem 1.17. The first two actually follow from the third (which
interpolates between the two), so we do the computation only in that case.

Definition 2.9. The UC function du(u) = 0, du(x) = −∞ for x 6= u, is known as a narrow
wedge at u (we already used this function in (1.6)).

Example 2.10. (Airy2 process) Narrow wedge initial data leads to the Airy2 process [PS02;
Joh03]:

h(1,x; du) + (x− u)2 = A2(x)

(which we already stated in (1.6)).

Example 2.11. (Airy1 process) Flat initial data h0 ≡ 0 leads to the Airy1 process [Sas05;
BFPS07]:

h(1,x; 0) = A1(x)

(which we already stated in (1.7)).

Example 2.12. (Airy2→1 process) Wedge or half-flat initial data hh-f(x) = −∞ for x < 0,
hh-f(x) = 0 for x ≥ 0, leads to the Airy2→1 process [BFS08b]:

h(1,x; hh-f) + x21x<0 = A2→1(x).

To get this formula we will show that the finite dimensional distributions match, by computing
the kernel on the right hand side of (1.16) with h−0 ≡ −∞ and h+

0 (x) ≡ 0. One can also start
directly from Theorem 1.17 (see [MQR17b, Sec. 4.4]).

It is straightforward to check that S̄hypo(h−0 )
t,0 ≡ 0. On the other hand, as in [QR16, Prop. 3.6]

one checks that for v ≥ 0,

S̄
hypo(h+0 )
t,0 (v, u) =

∫ ∞
0

Pv(τ0 ∈ dy)St,−y(0, u) = St,0(−v, u),

which gives, with % the reflection operator %f(x) = f(−x),

K
hypo(h0)
t = I− (St,0)∗χ0[St,0 − %St,0] = (St,0)∗(I + %)χ̄0St,0.

This yields (using (1.18) and (1.19))

K
hypo(hh-f)
t,ext (xi, ·;xj , ·) = −e(xj−xi)∂

2
1xi<xj + S0,−xi(St,0)∗(I + %)χ̄0St,0S0,xi

= −e(xj−xi)∂
2
1xi<xj + (St,−xi)

∗(I + %)χ̄0St/2,xi
.

Choosing t = 1 and using (1.9) yields that the second term on the right hand side equals

K
hypo(hh-f)
t,ext (xi, u;xj , v) =

∫ 0

−∞
dλ e−2x3

i /3−xi(u−λ)Ai(u− λ+x2
i )e

2x3
j/3+xj(v−λ)Ai(v− λ+x2

j )

+

∫ 0

−∞
dλ e−2x3

i /3−xi(u+λ)Ai(u+ λ+ x2
i )e

2x3
j/3+xj(v−λ)Ai(v − λ+ x2

j )

which, after a simple conjugation, gives the kernel for the Airy2→1 process [BFS08b, App. A].

2.5. Variational formulas and the Airy sheet.

Definition 2.13. (Airy sheet)

A(x,y) = h(1,y; dx) + (x− y)2

is called the Airy sheet [CQR15]. Fixing either one of the variables, it is an Airy2 process in
the other. We also write

Â(x,y) = A(x,y)− (x− y)2.
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Remark 2.14. The KPZ fixed point inherits from TASEP a canonical coupling between the
processes started with different initial data (using the same “noise”). It is this the property
that allows us to define the two-parameter Airy sheet.
It is natural to wonder whether the fixed point formulas at our disposal determine the joint
probabilities P(A(xi,yi) ≤ ai, i = 1, . . . ,M) for the Airy sheet. Unfortunately, this is not the
case. In fact, the most we can compute using our formulas is P(Â(x,y) ≤ f(x) + g(y), x,y ∈
R) = det

(
I−K

hypo(−g)
1 K

epi(f)
−1

)
. Suppose we want to compute the two-point distribution for

the Airy sheet P(Â(xi,yi) ≤ ai, i = 1, 2) from this. We would need to choose f and g taking two
non-infinite values, which yields a formula for P(Â(xi,yj) ≤ f(xi) + g(yj), i, j = 1, 2), and thus
we need to take f(x1) + g(y1) = a1, f(x2) + g(y2) = a2 and f(x1) + g(y2) = f(x2) + g(y1) = L
with L→∞. But {f(xi) + g(yj), i, j = 1, 2} only spans a 3-dimensional linear subspace of R4,
so this is not possible.

The preservation of max property allows us to write an important variational formula for
the KPZ fixed point in terms of the Airy sheet (analogous to Hopf’s formula for certain
Hamilton-Jacobi equations), which was conjectured in [CQR15]:

Theorem 2.15. (Airy sheet variational formula)

h(t,x; h0) = sup
y

{
h(t,x; dy) + h0(y)

} dist
= sup

y

{
t1/3Â(t−2/3x, t−2/3y) + h0(y)

}
. (2.1)

In particular, the Airy sheet satisfies the semi-group property: If Â1 and Â2 are independent
copies and t1 + t2 = t are all positive, then

sup
z

{
t

1/3
1 Â

1(t
−2/3
1 x, t

−2/3
1 z) + t

1/3
2 Â

2(t
−2/3
2 z, t

−2/3
2 y)

}
dist
= t1/3Â1(t−2/3x, t−2/3y).

Proof. Let hn0 be a sequence of initial conditions taking finite values hn0 (yni ) at yni , i = 1, . . . , kn,
and −∞ everywhere else, which converges to h0 in UC as n→∞. By repeated application of
Prop. 2.8(v) (and the easy fact that h(t,x; h0 + a) = h(t,x; h0) + a for a ∈ R) we get

h(t,x; hn0 ) = sup
i=1,...,kn

{
h(t,x; dyn

i
) + hn0 (yni )

}
,

and taking n→∞ yields the result (the second equality in (2.1) follows from scaling invariance,
Proposition 2.7). �

One of the interests in this variational formula is that it leads to proofs of properties of the
fixed point, as we already mentioned in earlier sections.

Proof of affine invariance, Proposition 2.8(iv). The fact that the fixed point is invariant under
translations of the initial data is straightforward, so we may assume a = 0. By Theorem 2.15
we have

h(t,x; h0 + cx)
dist
= sup

y

{
t1/3A(t−2/3x, t−2/3y)− t−1(x− y)2 + h0(y) + cy

}
= sup

y

{
t1/3A(t−2/3x, t−2/3(y + ct/2))− t−1(x− y)2 + h0(y + ct/2) + cx + c2t/4

}
dist
= sup

y

{
t1/3Â(t−2/3x, t−2/3y) + h0(y + ct/2) + cx + c2t/4

}
= h(t,x; h0(x + ct/2)) + cx + c2t/4.

�

Sketch of the proof of time regularity, Theorem 2.6. Fix α < 1/3 and choose β < 1/2 so that
β/(2− β) = α. By the Markov property it is enough to assume that h0 ∈ C β and check the
Hölder-α regularity at time 0. By space regularity of the Airy2 process (proved in [QR13], but
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which also follows from Theorem 2.4) there is an R <∞ a.s. such that |A2(x)| ≤ R(1 + |x|β),
and making R larger if necessary we may also assume |h0(x)−h0(x0)| ≤ R(|x−x0|β + |x−x0|).
From the variational formula (2.1), |h(t,x0)− h(0,x0)| is then bounded by

sup
x∈R

(
R(|x− x0|β + |x− x0|+ t1/3 + t(1−2β)/3|x|β)− 1

t (x0 − x)2
)
.

The supremum is attained roughly at x− x0 = t−η with η such that |x− x0|β ∼ 1
t (x0 − x)2.

Then η = 1/(2− β) and the supremum is bounded by a constant multiple of tβ/(2−β) = tα, as
desired. �

3. Full solution for TASEP

Our goal is to obtain a full solution for TASEP (by which we mean an explicit formula for
its finite dimensional distributions) which is suitable for asymptotics in the form needed in
(1.5). We begin with a more precise description of the process.

3.1. The model.

Definition 3.1. (TASEP) The totally asymmetric simple exclusion process consists of
particles at positions · · · < Xt(2) < Xt(1) < Xt(0) < Xt(−1) < Xt(−2) < · · · on Z∪{−∞,∞}
performing totally asymmetric nearest neighbour random walks with exclusion: each particle
independently attempts jumps to the neighbouring site to the right at rate 1, the jump being
allowed only if that site is unoccupied (see [Lig85] for the non-trivial fact that the process with
an infinite number of particles makes sense).

We follow the standard practice of ordering particles from the right; for right-finite data the
rightmost particle is labelled 1, unless indicated otherwise. Let

X−1
t (u) = min{k ∈ Z : Xt(k) ≤ u}

denote the label of the rightmost particle which sits to the left of, or at, u at time t. The
TASEP height function associated to Xt is given for z ∈ Z by

ht(z) = −2
(
X−1
t (z − 1)−X−1

0 (−1)
)
− z, (3.1)

which fixes h0(0) = 0. This is the height function which we already introduced in Section 1.2
(one can check directly that the dynamics induced on ht by the particle dynamics coincide
exactly with the dynamics specified there). We will find formulas for the finite dimensional
distributions of Xt; (3.1) will allow us to use those formulas to compute the limit (1.5).

3.2. The master equation and Schütz’s formula3. The first step is to solve the master
equation for TASEP in order to obtain a formula for its transition probabilities. We will work
only in the case where TASEP starts with a finite number N ≥ 2 of particles.

Define the Weyl chamber ΩN = {(x1, . . . , xN ) ∈ ZN : x1 > · · · > xN} and for x, y ∈ ΩN

consider the transition probabilities

P
(N)
t (x, y) = P(Xt = x|X0 = y).

Then P (N)
t satisfies the master equation (or Kolmogorov forward equation)

d

dt
P

(N)
t (x, y) =

(
L(N)

)∗
P

(N)
t (x, y), P

(N)
0 (x, y) = 1y=x (3.2)

where the infinitesimal generator of the process L(N) is given, for F : ΩN −→ R, by

L(N)F (x) =

N∑
k=1

1xk−1−xk>1∇kF (x),

3The reader may choose to skip directly to Section 3.4; this and the next sections are not strictly needed in
the derivation of the fixed point.
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with x0 =∞ and ∇kF (x) = F (x1 . . . , xk + 1, . . . , xN )− F (x).
The master equation for TASEP was solved by Schütz [Sch97]. He used the Bethe ansatz

[Bet31], which in our case means the idea of rewriting (3.2) as an equation without the exclusion
constraint (that is, the factor 1xk>xk+1

) together with suitable boundary conditions. Explicitly,
if for fixed y ∈ ΩN the function u(N)

t : ZN −→ R solves

d

dt
u

(N)
t =

N∑
k=1

∇∗ku
(N)
t , u

(N)
0 (x) = 1y=x, (3.3)

(where ∇∗kF (x) = F (x1 . . . , xk − 1, . . . , xN )− F (x)) with the boundary conditions

∇∗ku
(N)
t (x) = 0 when xk = xk+1 + 1, (3.4)

then when restricted to the Weyl chamber, u(N)
t coincides with P (N)

t , that is

P
(N)
t (x, y) = u

(N)
t (x) ∀ x ∈ ΩN .

Theorem 3.2. (Schütz’s formula [Sch97])

P
(N)
t (x, y) = det(Fi−j(t, xN+1−i − yN+1−j))1≤i,j≤N (3.5)

with

Fn(t, x) =
(−1)n

2πi

∮
Γ0,1

dw
(1− w)−n

wx−n+1
et(w−1), (3.6)

where Γ0,1 is any simple loop oriented anticlockwise which includes w = 0 and w = 1.

The argument of [Sch97] shows how this remarkable solution can be derived, and the method
turns out to work for other similar processes (see for instance [BFP07; BF08; BFS08a]).
However, once one has the explicit solution it is not hard to check that it satisfies (3.3)-(3.4),
so this is the proof we present4.

Proof of Theorem 3.2. The proof is based only on the following identities, which follow directly
from (3.6):

∂tFn(t, x) = ∇∗Fn(t, x), Fn(t, x) = −∇Fn+1(t, x), (3.7)
where ∇F (x) = F (x+ 1)− F (x), ∇∗F (x) = F (x− 1)− F (x).

Define the column vectors

Hi(t, x) =
(
Fi−1(t, x− yN ), · · · , Fi−N (t, x− y1)

)T
.

Then, denoting by u(N)
t (x) the right-hand side of (3.5), we can write

∂tu
(N)
t (x) =

N∑
k=1

det
[
. . . , ∂tHk(t, xN+1−k), . . .

]
=

N∑
k=1

det
[
. . . ,∇∗Hk(t, xN+1−k, t), . . .

]
=

N∑
k=1

∇∗k det
[
Fi−j(t, xN+1−i − yN+1−j)

]
,

where we used the multilinearity of the determinant. This gives the first equation in (3.3).
To get the boundary conditions (3.4), take xk = xk+1 + 1 and use again the multilinearity of

the determinant to get

∇∗k det
[
H1(t, xN ), . . . ,HN (t, x1)

]
= det

[
. . . , HN−k(t, xk+1),∇∗HN+1−k(t, xk), . . .

]
= 0

because ∇∗HN+1−k(t, xk) = −∇HN+1−k(t, xk − 1) = −∇HN+1−k(t, xk) = HN−k(t, xk).

4We thank K. Matetski for this short proof, which to the best of our knowledge is not available in this exact
form in the literature.
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To get the initial condition we write first, n ≥ 0,

F−n(0, x) =
(−1)n

2πi

∮
Γ0

dw
(1− w)n

wx+n+1
,

which in particular implies that F−n(0, x) = 0 for x < −n and x > 0, and F0(0, x) = 1x=0. In the
case xN < yN , since y ∈ ΩN we have xN < yk for all k = 1, . . . , N −1 and xN −yN+1−j < 1− j.
This yields F1−j(xN − yN+1−j , 0) = 0 and thus the determinant in (3.5) vanishes, because the
matrix contains a row of zeros. If xN ≥ yN then we have xk > yN for all k = 1, . . . , N − 1,
and all entries of the first column in the matrix from (3.5) vanish, except the first entry which
equals 1xN=yN . Repeating this argument for xN−1, xN−2 and so on, we see that the matrix is
upper-triangular with indicator functions 1XN−i+1=yN−i+1 in the diagonal, which gives us the
claim. �

3.3. The non-intersecting line ensemble representation. Schütz’s formula itself is not
well-suited for asymptotics, but the remarkable fact that it is given by a determinant opens
up an avenue for its treatment. In a breakthrough by Sasamoto [Sas05], which was pursued
and extended rigorously in [BFPS07], he realized that the finite dimensional distributions for
TASEP can be expressed in terms of a “signed” non-intersecting line ensemble, as follows. Let
GTN be the set of Gelfand-Tsetlin patterns x̄ given as

GTN =
{
x̄ji ∈ Z, 1 ≤ i ≤ j ≤ N : x̄j+1

i < x̄ji ≤ x̄
j+1
i+1

}
(see Figure 2). For y ∈ ΩN define the (signed) weight

WN (x̄; y) =
( N∏
n=2

det
(
φ(x̄n−1

i , x̄nj )
)

1≤i,j≤n

)
det
(
F−j(t, x̄

N
i+1 − yN−j)

)
0≤i,j<N (3.8)

with φ(x1, x2) = 1x1>x2 . WN defines a signed measure on GTN . We think of it as describing,
after normalization, the evolution of

(
(x̄ji )i=1,...,j

)
j=1,...,N

(of course this makes no sense since
the measure is not positive; it is meant only as intuition). We are thinking now of j as time,
which has nothing to do with the “real” TASEP time, which is just the parameter t in the
formula. The statement can then be expressed as follows:

Theorem 3.3 ([BFPS07]). For x, y ∈ ΩN ,

P
(N)
t (x, y) =

∑
x̄∈GTN:xi1=xi, i=1,...,N

WN (x̄; y).

In other words, TASEP at time t can be identified with the evolution of the first particle in
the Gelfand-Tsetlin pattern (x̄1

1, . . . , x̄
N
1 ) (that is, the leftmost diagonal in Figure 2), and P (N)

t

can be obtained as a (signed) marginal of WN . The proof of this result is based on applying
the second equality of (3.7) and the multilinearity of the determinant repeatedly on Schütz’s
formula and then employing a clever symmetrization argument, see [BFPS07] for the details.

3.4. Biorthogonal ensembles. The key point is that from the form of (3.8), [Sas05; BFPS07]
could recognize that the correlation functions associated to the “random” Gelfand-Tsetlin
pattern x̄ should be determinantal, and that one could then apply a suitable version of the
Eynard-Mehta theorem [EM98] (see [BFPS07, Lem. 3.4]) to obtain a Fredholm determinant
formula for the finite dimensional distributions of TASEP (this step is crucial, and far from
trivial, but we refer to [BFPS07] for the details). We describe the result next.

Definition 3.4. Consider a decreasing sequence of integers
(
X0(k)

)
k≥1

(the TASEP initial
condition). Given a fixed n ∈ Z>0, we define two families of functions on the integers

(
Ψn
k

)
k≤n−1

and
(
Φn
k

)
k=0,...,n−1

as follows:

Ψn
k(x) =

1

2πi

∮
Γ0

dw
(1− w)k

2x−X0(n−k)wx+k+1−X0(n−k)
et(w−1) (3.9)
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Figure 2. Visualization of a Gelfand-Tsetlin pattern in GT4.

where Γ0 is any simple loop, anticlockwise oriented and contained in D, which includes w = 0
but does not include w = 1, while the functions Φn

k(x), k = 0, . . . , n− 1, are defined implicitly
by

(1) The biorthogonality relation
∑

x∈Z Ψn
k(x)Φn

` (x) = 1k=`;
(2) 2−xΦn

k(x) is a polynomial of degree at most n− 1 in x.

Additionally, we define the following stochastic matrix:

Definition 3.5. Let
Q(x, y) =

1

2x−y
1x>y.

We have, for m ≥ 1,

Qm(x, y) =
1

2x−y

(
x− y − 1

m− 1

)
1x≥y+m.

Moreover Q and Qm are invertible:

Q−1(x, y) = 2 · 1x=y−1 − 1x=y, Q−m(x, y) = (−1)y−x+m2y−x
(

m

y − x

)
. (3.10)

A crucial identity is that for all m,n ∈ Z

Qn−mΨn
n−k = Ψm

m−k. (3.11)

Theorem 3.6. (Biorthogonal ensemble formula for TASEP [BFPS07]) Suppose that
TASEP starts with particles labeled 1, 2, . . . (so that, in particular, there is a rightmost particle)
and let 1 ≤ n1 < n2 < · · · < nM ≤ N . Then for t > 0 we have

P(Xt(nj) ≥ aj , j = 1, . . . ,M) = det(I − χ̄aKtχ̄a)`2({n1,...,nM}×Z) (3.12)

where

Kt(ni, xi;nj , xj) = −Qnj−ni(xi, xj) +

nj∑
k=1

Ψni
ni−k(xi)Φ

nj

nj−k(xj), (3.13)

with the Ψn
k ’s and the Φn

k ’s given as in Definition 3.4.

Remark 3.7.

1. We are assuming in the theorem that X0(j) < ∞ for all j ≥ 1; particles at −∞ are
allowed.

2. The [BFPS07] result is stated only for initial conditions with finitely many particles, but
the extension to right-finite (infinite) initial conditions is straightforward because, given
fixed indices n1 < n2 < · · · < nM , the distribution of

(
Xt(n1), . . . , Xt(nM )

)
does not

depend on the initial positions of the particles with indices beyond nM .
3. In (3.13) we have conjugated the kernel Kt from [BFPS07] by 2x for convenience. The

additional X0(n− k) in the power of 2 in the Ψn
k ’s is there also for convenience and is

allowed because it just means that the Φn
k ’s have to be multiplied by 2X0(n−k).
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Our goal is to find the Φn
k ’s explicitly for any initial data. These functions had been computed

previously only for very special initial conditions.

3.5. TASEP path integral kernel. Formula (3.12) is what we called an extended kernel
formula after Theorem 1.19. There is aso a path integral kernel formula, which is useful to
explain the intuition behind the next step in our derivation. It is given as follows:

P(Xt(nj) ≥ aj , j = 1, . . . ,M)

= det
(
I −K(nm)

t (I −Qn1−nmχa1Q
n2−n1χa2 · · ·Qnm−nm−1χam)

)
L2(R)

, (3.14)

where
K

(n)
t = Kt(n, ·;n, ·).

This formula follows from the framework of [BCR15] (or rather a minor variation of it, see
[MQR17b, App. A.2]) applied to (3.12).

TASEP satisfies the skew time reversibility property

Pf (ht(x) ≤ g(x), x ∈ Z) = P−g(ht(x) ≤ −f(x), x ∈ Z) , (3.15)

the subscript indicating the initial data. In other words, the height function evolving backwards
in time is indistiguishable from minus the height function. Now suppose we have the solution
(3.13) for step initial data centered at x0, which means h0 is the peak −|x−x0| (we actually do
have this solution, it is the starting point in the computation of the limit (1.6)). The multipoint
distribution at time t is given by (3.14), but we can use (3.15) to reinterpret it as the one-point
distribution of ht at x0, starting from an (arbitrary) series of peaks, and this gives us directly
the one-point distribution for TASEP with any initial condition.

At first sight it looks like we are done, since we can compute now the multipoint kernel from
the one-point kernel (using (3.11) and (3.13)) through

Qnj−niK
(nj)
t =

nj−1∑
k=0

Ψni
ni−nj+k ⊗ Φ

nj

k = Kt(ni, ·;nj , ·) +Qnj−ni1ni<nj .

But notice that we have used the distributional identity (3.15) to obtain the one-point formula,
so we actually don’t have yet a formula forK(n)

t (but only an equality of Fredholm determinants).
Instead of trying to use these facts directly, it turns out to be easier to use them to guess the
formula for the Φn

k ’s.
The key is to recognize the kernel Q as the transition probabilities of a random walk (which is

why we conjugated the [BFPS07] kernel by 2x) and then χa1Qn2−n1χa2 · · ·Qnm−nm−1χam(x, y)
as the probability that this walk goes from x to y in nm − n1 steps, staying above a1 at time
n1, above a2 at time n2, etc. Based on this intuition we obtained in [MQR17b] a formula for
Φn
k in terms of the solution of certain boundary value problem for a backwards heat equation

involving Q. This is the content of the next result.

3.6. Explicit biorthogonalization.

Definition 3.8. Let

Rt(x, y) =
1

2πi

∮
Γ0

dw
et(w−1)

2x−ywx−y+1
= e−t

tx−y

2x−y(x− y)!
1x≥y. (3.16)

Rt is invertible, with

R−1
t (x, y) =

1

2πi

∮
Γ0

dw
et(1−w)

2x−ywx−y+1
= et

(−t)x−y

2x−y(x− y)!
1x≥y. (3.17)

Note that by Cauchy’s residue theorem we have Ψn
0 = RtδX0(n), where δy(x) = 1x=y, so from

(3.11) we have
Ψn
k = RtQ

−kδX0(n−k). (3.18)
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Theorem 3.9. Fix 0 ≤ k < n and consider particles at X0(1) > X0(2) > · · · > X0(n). Let
hnk(`, z) be the unique solution to the initial–boundary value problem for the backwards heat
equation 

(Q∗)−1hnk(`, z) = hnk(`+ 1, z) ` < k, z ∈ Z; (3.19a)

hnk(k, z) = 2z−X0(n−k) z ∈ Z; (3.19b)
hnk(`,X0(n− k)) = 0 ` < k. (3.19c)

Then
Φn
k(z) = (R∗t )

−1hnk(0, ·)(z) =
∑
y∈Z

hnk(0, y)Rt−1(y, z).

Here Q∗(x, y) = Q(y, x) is the kernel of the adjoint of Q (and likewise for R∗t ).

Remark 3.10. It is not true that Q∗hnk(`+ 1, z) = hnk(`, z). In fact, in general Q∗hnk(k, z) is
divergent.

Before the proof we need:

Lemma 3.11. With the definitions in the above theorem, 2−xhnk(0, x) is a polynomial of degree
at most k.

Proof. We proceed by induction. By (3.19b), 2−xhnk(k, x) is a polynomial of degree 0. Assume
now that h̃nk(`, x) = 2−xhnk(`, x) is a polynomial of degree at most k − ` for some 0 < ` ≤ k.
By (3.19a) and (3.10) we have

h̃nk(`, y) = 2−y(Q∗)−1hnk(`− 1, y) = h̃nk(`− 1, y − 1)− h̃nk(`− 1, y) (3.20)

Taking x ≥ X0(n− `+ 1) and summing (3.20) gives h̃nk(`− 1, x) = −
∑x

y=X0(n−`+1)+1 h̃
n
k(`, y)

thanks to (3.19c), which by the inductive hypothesis is a polynomial of degree at most k− `+ 1

in x. Similarly, taking x < X0(n − ` + 1) we get h̃nk(` − 1, x) =
∑X0(n−`+1)

y=x+1 h̃nk(`, y), which
again is a polynomial of degree at most k − `+ 1. The two polynomials are the same, as can
be checked for instance from Faulhaber’s formula, whence the claim follows. �

Proof of Theorem 3.9. Note first that the dimension of ker(Q∗)−1 is 1, and it consists of the
function 2z. This allows us to march forwards from the initial condition hnk(k, z) = 2z−X0(n−k)

uniquely solving the boundary value problem hnk(`,X0(n− k)) = 0 at each step and thus get
the existence and uniqueness. The details are left as an exercise.

We need to show that the proposed Φn
k ’s satisfy conditions (1) and (2) of Definition 3.4. We

check the biorthogonality first. Using (3.18) we get∑
z∈Z

Ψn
` (z)Φn

k(z) =
∑

z1,z2∈Z

∑
z∈Z

Rt(z, z1)Q−`(z1, X0(n− `))hnk(0, z2)R−1
t (z2, z)

=
∑
z∈Z

Q−`(z,X0(n− `))hnk(0, z) = (Q∗)−`hnk(0, X0(n− `))

(exercise: justify the application of Fubini here). We want to show that the last expression equals
1k=`. Consider first ` ≤ k. Then we may use the boundary condition hnk(`,X0(n− k)) = 1k=`,
which is both (3.19b) and (3.19c), to get

(Q∗)−`hnk(0, X0(n− `)) = hnk(`,X0(n− `)) = 1k=`.

Next for ` > k we use (3.19a) and 2z ∈ ker (Q∗)−1:

(Q∗)−`hnk(0, X0(n− `)) = (Q∗)−(`−k−1)(Q∗)−1hnk(k,X0(n− `)) = 0.

Next we show that 2−xΦn
k(x) is a polynomial of degree at most k in x. By (3.16) we have

2−xΦn
k(x) =

∑
y≥0

e−t
ty

y!
2−(x+y)hnk(0, x+ y).
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This sum is absolutely convergent, so we may compute the (k + 1)-th derivate in x of the
right hand side by taking the derivative inside the sum and use the fact that 2−zhnk(0, z) is a
polynomial of degree at most k to deduce that dk+1

dxk+1 [2−xΦn
k(x)] = 0 as desired. �

3.7. Representation of the kernel below the curve as a transition probability with
hitting.

Definition 3.12. (Geometric random walks) We denote by B∗m a random walk with
transition probabilities given by Q∗ (that is, B∗m has Geom[1

2 ] jumps strictly to the right). We
also introduce, for 0 ≤ ` ≤ k ≤ n− 1, the stopping times

τ `,n = min{m ∈ {`, . . . , n− 1} : B∗m > X0(n−m)},

with the convention that min ∅ =∞.
Similarly, we denote by Bm a random walk with transition probabilities given by Q (that is,
Bm has Geom[1

2 ] jumps strictly to the left), and introduce the stopping time

τ = min{m ≥ 0 : Bm > X0(m+ 1)}. (3.21)

Lemma 3.13. For z ≤ X0(n− `) we have

hnk(`, z) = PB∗
`−1=z

(
τ `,n = k

)
.

Proof. It is easy to see that hnk(`, z) satisfies (3.19b) and (3.19c). On the other hand, for
z ≤ X0(n− `− 1) it also satisfies (3.19a) and it is given by 2z times a polynomial in z of degree
at most n− 1. Exercise: conclude the proof by using Lemma 3.11. �

Definition 3.14. We write

G0,n(z1, z2) =

n−1∑
k=0

Qn−k(z1, X0(n− k))hnk(0, z2),

with hnk the solution of (3.19), so that

K
(n)
t = RtQ

−nG0,nR
−1
t .

Lemma 3.15. For z2 ≤ X0(n),

G0,n(z1, z2) = PB∗
−1=z2

(
τ0,n < n, B∗n−1 = z1

)
(3.22)

(which is the probability for the walk starting at z2 at time −1 to end up at z1 after n steps,
having hit the curve

(
X0(n−m)

)
m=0,...,n−1

in between).

Proof. From the memoryless property of the geometric distribution we have for all z ≤ X0(n−k)
that

PB∗
−1=z

(
τ0,n = k, B∗k = y

)
= 2X0(n−k)−yPB∗

−1=z

(
τ0,n = k

)
, (3.23)

and as a consequence we get, for z2 ≤ X0(n),

G0,n(z1, z2) =
n−1∑
k=0

PB∗
−1=z2

(
τ0,n = k

)
(Q∗)n−k(X0(n− k), z1)

=

n−1∑
k=0

∑
z>X0(n−k)

PB∗
−1=z2

(
τ0,n = k, B∗k = z

)
(Q∗)n−k−1(z, z1)

= PB∗
−1=z2

(
τ0,n < n, B∗n−1 = z1

)
.

�
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3.8. Polynomial extension above the curve. To finish our derivation of our TASEP
solution we need to extend the result of Lemma 3.15 to all values of z2. We will do this by
extending our formula polynomally.

Definition 3.16. (Polynomial extension of Qn) Let

Q(n)(y1, y2) =
1

2πi

∮
Γ0

dw
(1 + w)y1−y2−1

2y1−Ty2wn
=

(y1 − y2 − 1)n−1

2y1−y2(n− 1)!
, (3.24)

where (x)k = x(x− 1) · · · (x− k + 1) for k > 0 and (x)0 = 1 is the Pochhammer symbol. For
each fixed y1, 2−y2Qn(y1, y2) extends in y2 to a polynomial 2−y2Q(n)(y1, y2) of degree n − 1.
We have

Q(n)(y1, y2) = Qn(y1, y2) for y1 − y2 ≥ 1 (3.25)
and

Q−1Q(n) = Q(n)Q−1 = Q(n−1) for n > 1, but Q−1Q(1) = Q(1)Q−1 = 0.

Remark 3.17. Q(n)Q(m) is divergent, so the Q(n) are no longer a group like the Qn.

Lemma 3.18. For all z1, z2 ∈ Z we have, for τ as in Definition 3.12,

G0,n(z1, z2) = EB0=z1

[
Q(n−τ)(Bτ , z2)1τ<n

]
.

Proof. From Lemma 3.11 and its definition, 2−z2G0,n(z1, z2) is a polynomial in z2 for every
fixed z1, and thus it is enough to check that the right hand side of (3.18) is a polynomial in z2

and coincides with (3.22) for all z2 ≤ X0(n).
From (3.22) we have, for z2 ≤ X0(n),

G0,n(z1, z2) = PB∗
−1=z2

(
τ0,n ≤ n− 1, B∗n−1 = z1

)
= PB0=z1

(
τ ≤ n− 1, Bn = z2

)
=

n−1∑
k=0

∑
z>X0(k+1)

PB0=z1

(
τ = k, Bk = z

)
Qn−k(z, z2) = EB0=z1

[
Qn−τ

(
Bτ , z2

)
1τ<n

]
. (3.26)

Note that we reversed the direction of the walk in this formula. Crucially, on the right hand
side z2 appears as an argument inside the expectation, and not as the inital condition. So we
may replace the Qn−τ in the expectation by Q(n−τ) to obtain a formula given as a polynomial
in z2. To finish the proof we need to check that the resulting (extended) formula coincides with
the right hand side of (3.26) below the curve, which can be checked easily using the last equality
in (3.26): all we need to check is that χX0(k+1)Q(n−k)χ̄X0(n) = χX0(k+1)Q

n−kχ̄X0(n), which
follows from X0(k + 1)−X0(n) > n− k − 1 and (3.25) (see [MQR17b] for the details). �

3.9. Main formula for TASEP. We need to introduce the discrete version of the operators
in Definitions 1.10 and 1.13. In the first case we need two discrete versions:

Definition 3.19. We let

St,−n(z1, z2) = (et/2RtQ
−n)∗(z1, z2) =

1

2πi

∮
Γ0

dw
(1− w)n

2z2−z1wn+1+z2−z1 e
t(w−1/2), (3.27)

St,n(z1, z2) = e−t/2Q(n)R−1
t (z1, z2) =

1

2πi

∮
Γ0

dw
(1− w)z2−z1+n−1

2z1−z2wn
et(1/2−w) (3.28)

(where we used (3.9) and (3.18) for the first one, and (3.17) and (3.24) together with a residue
computation for the second one).

Definition 3.20. (Discrete hit operator)

S̄epi◦ (X0)
t,n (z1, z2) = EB0=z1 [St,n−τ (Bτ , z2)1τ<n] . (3.29)
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Note that τ (defined in (3.21)) is the hitting time of the strict epigraph of the curve
(
X0(k +

1)
)
k=0,...,n−1

by the random walk Bk; the strict epigraph of
(
g(m)

)
m≥0

is the set

epi◦ (g) =
{

(m, y) : m ≥ 0, y > g(m)
}
.

The following formula now follows directly from the above arguments and the last two
definitions:

Theorem 3.21. (TASEP formula for right-finite initial data) Assume that initially we
have X0(j) =∞ for all j ≤ 0, X0(1) <∞. Then for 1 ≤ n1 < n2 < · · · < nM and t ≥ 0,

P(Xt(nj) > aj , j = 1, . . . ,M) = det(I − χ̄aKtχ̄a)`2({n1,...,nM}×Z) , (3.30)

where
Kt(ni, ·;nj , ·) = −Qnj−ni1ni<nj + (St,−ni)

∗S̄epi◦ (X0)
t,nj

. (3.31)

The path integral version (3.14) also holds.

Remark 3.22. Note that, by definition, S̄epi◦ (X0)
t,nj

= St,nj (y, z) for y > X0(1), so (3.31) can
also be written as

Kt(ni, ·;nj , ·) = −Qnj−ni1ni<nj + (St,−ni)
∗χX0(1)St,nj + (St,−ni)

∗χ̄X0(1)S̄
epi◦ (X0)
t,nj

. (3.32)

Example 3.23. (Step initial data) Consider TASEP with step initial data, X0(i) = −i for
i ≥ 1. If we start the random walk in (3.29) from B0 = z1 below the curve, i.e. z1 ≤ −1, then
the random walk clearly never hits the epigraph. Hence, χ̄X0(1)S̄

epi(X0)
t,n ≡ 0 and the last term

in (3.32) vanishes. For the second term in (3.32) we have, from (3.27) and (3.28),

(St,−ni)
∗χX0(1)St,nj (z1, z2) =

1

(2πi)2

∮
Γ0

dw

∮
Γ0

dv
(1− w)ni(1− v)nj+z2

2z1−z2wni+z1+1vnj

et(w+v−1)

1− v − w
,

which is exactly the formula previously derived in the literature (see e.g. [Fer15, Eq. 82]).

Example 3.24. (Periodic initial data) Consider now TASEP with periodic initial data
X0(i) = 2i, i ∈ Z. One can obtain a formula for the kernel in this case by approximation,
considering first the finite periodic initial data X0(i) = 2(N − i) for i = 1, . . . , 2N . The
computation is much more involved than in the previous example, but can be carried out
explicitly (see [MQR17b]) and leads to

K
(n)
t (z1, z2) = − 1

2πi

∮
1+Γ0

dv
vz2+2m

2z1−z2(1− v)z1+2m+1
et(1−2v),

which coincides with the kernel derived (modulo the conjugation 2z2−z1 and after a simple
change of variables) in [BFPS07, Thm. 2.2].

Remark 3.25. It is possible to write a similar formula for TASEP with two-sided infinite
initial data (see [MQR17b, Thm. 2.6]), but the result is much more complicated from the point
of view of asymptotics than (3.30).

4. From TASEP to the KPZ fixed point

We will only sketch this part. In particular, for simplicity we will mostly only address the
case of one-sided initial data for the fixed point, which means

h0(x) = −∞ ∀ x > 0.

This corresponds to right-finite TASEP initial data as in Theorem 3.21, and in fact any such
h0 can be approximated in UC by right-finite TASEP initial data Xε

0 .
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4.1. Scaling and asymptotics. Our goal is to take such a sequence of initial data Xε
0 and

compute

Ph0(h(t,xi) ≤ ai, i = 1, . . . ,M)

= lim
ε→0

PX0

(
X2ε−3/2t(

1
2ε
−3/2t− ε−1xi − 1

2ε
−1/2ai + 1) > 2ε−1xi − 2, i = 1, . . . ,M

)
(the equality comes from (1.3), (3.1) and (1.5)). We therefore want to consider Theorem 3.21
with

t = 2ε−3/2t, ni = 1
2ε
−3/2t− ε−1xi − 1

2ε
−1/2ai + 1 (4.1)

(and with ai = 2ε−1xi − 2).

Lemma 4.1. Under the scaling (4.1) and assuming that ε1/2
(
Xε

0(ε−1x) + 2ε−1x− 1
)
−→

−h0(−x) as ε→ 0 in LC, if we set zi = 2ε−1xi + ε−1/2(ui + ai)− 2 and y′ = ε−1/2v, then we
have, as ε↘ 0,

Sεt,xi
(v, ui) := ε−1/2St,−ni(y

′, zi) −→ St,xi(v, ui), (4.2)

S̃εt,−xj
(v, uj) := ε−1/2St,nj (y

′, zj) −→ St,−xj (v, uj), (4.3)

S̄
ε,epi(−h−0 )
t,−xj

(v, uj) := ε−1/2S̄epi◦ (X0)
t,nj

(y′, zj) −→ S̄
epi(−h−0 )
t,−xj

(v, uj) (4.4)

pointwise, where h−0 (x) = h0(−x) for x ≥ 0.

The first two limits follow from standard arguments (although in [MQR17b] we need detailed

estimates which are slightly involved). The main point is that the limit of S̄ε,epi(−h−0 )
t,−xj

can be
computed naturally: essentially one uses the asymptotics of Sεt,−xj

together with the fact that,
under our scaling, the random walk B goes to the Brownian motion B.

Sketch of the proof of Lemma 4.1. From (3.27),

St,−ni(zi, y) =
1

2πi

∮
Γ0

eε
−3/2F (3)+ε−1F (2)+ε−1/2F (1)+F (0)

dw,

where

F (3) = t
[
(2w − 1) + 1

2 log(1−w
w )
]
, F (2) = −xi log 4w(1− w),

F (1) = (ui − v − 1
2ai) log 2w − 1

2ai log 2(1− w), F (0) = log 8w2.
(4.5)

The leading term has a double critical point at w = 1/2, so we introduce the change of variables
w 7→ 1

2(1− ε1/2w̃), which leads to

ε−3/2F (3) ≈ t
3 w̃

3, ε−1F (2) ≈ xiw̃
2, ε−1/2F (1) ≈ −(ui − v)w̃.

We also have F (0) ≈ log(2), which cancels the prefactor 1/2 coming from the change of variables.
In view of (1.9), this gives (4.2). (4.3) follows in the same way, now using (3.28).

Now define the scaled walk Bε(x) = ε1/2
(
Bε−1x + 2ε−1x− 1

)
for x ∈ εZ≥0, interpolated

linearly in between, and let τ ε be the hitting time by Bε of epi(−hε(0, ·)−). By Donsker’s
invariance principle [Bil99], Bε converges locally uniformly in distribution to a Brownian motion
B(x) with diffusion coefficient 2, and therefore the hitting time τ ε converges to τ as well.
(3.28) and (4.3) now show that, modulo explicit estimates, (4.4) should hold. �

Theorem 4.2. (One-sided fixed point formulas) Let h0 ∈ UC with h0(x) = −∞ for
x > 0. Then given x1 < x2 < · · · < xM and a1, . . . ,aM ∈ R, we have, for h(t,x) given as in
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(1.5),

Ph0(h(t,x1) ≤ a1, . . . , h(t,xM ) ≤ aM )

= det
(
I− χaK

hypo(h0)
t,ext χa

)
L2({x1,...,xM}×R)

(4.6)

= det
(
I−K

hypo(h0)
t,xM

+ K
hypo(h0)
t,xM

e(x1−xM )∂2χ̄a1e
(x2−x1)∂2χ̄a2 · · · e(xM−xM−1)∂2χ̄aM

)
L2(R)

,

(4.7)

where K
hypo(h0)
t,x was defined in Definition 1.14.

Proof. We have ni < nj for small ε if and only if xj < xi and in this case we have, under our
scaling,

ε−1/2Qnj−ni(zi, zj) −→ e(xi−xj)∂2(ui, uj),

as ε↘ 0. From this and the above lemma we obtain the following limiting formula:

Ph0(h(t,x1) ≤ a1, . . . , h(t,xM ) ≤ aM ) = det(I− χ̄aKlimχ̄a)L2({x1,...,xM}×R)

with
Klim(xi, ui;xj , uj) = −e(xi−xj)∂2(ui, uj)1xi>xj + (St,xi)

∗S̄
epi(−h−0 )
t,−xj

(ui, uj).

We may turn the above projections χ̄−a into χa by changing variables ui 7−→ −ui in the kernel.
If we additionally replace the Fredholm determinant of the kernel by that of its adjoint to get

det
(
I− χaK̃limχa

)
with K̃lim(ui, uj) = Klim(xj ,−uj ;xi,−ui).

Now

St,x(−u, v) = (St,x)∗(−v, u) and S̄
epi(−h−0 )
t,x (v,−u) = (S̄

hypo(h−0 )
t,x )∗(u,−v),

so
K̃lim = −e(xj−xi)∂

2
1xi<xj + (S̄

hypo(h−0 )
t,−xi

)∗St,xj = K
hypo(h0)
t,ext .

This gives the extended kernel formula 4.6. The path integral version 4.7 follows from the
framework of [BCR15]. �

4.2. From one-sided to two-sided formulas. In the last result we assumed h0(x) = −∞
for x > 0. Obtaining from this a formula for general h0 ∈ UC involves two separate arguments:

1. For h0 ∈ UC let hL0 (x) = h0(x)1x≤L − ∞ · 1x>L. Then we need to compute the limit
of (4.6)/(4.7) as L → ∞ with initial data hL0 . To this end we use shift invariance (which
follows directly from that of TASEP) to translate this into a problem involving a (shifted)
initial condition which is −∞ on the positive axis. The kernels appearing in the Fredholm
determinants now involve some shifts by L, but in view of Remark 1.15 it is possible to rewrite
them in such a way that they look exactly like those in (4.6)/(4.7) but with h0 replaced by
hL0 , and so essentially all one needs is to show that S̄hypo(hL0 )

t,x −→ S̄
hypo(h0)
t,x , which was shown

essentially in [QR16]. See [MQR17b, Sec. 3.4] for the details.
2. We need to show that the limit we get in the previous point is in fact the same as the
limit we would get for TASEP with an initial height profile hε0 going to h0 in UC as ε → 0.
This amounts to considering a truncated version hε,L0 of hε0 which goes to hL0 , taking ε → 0
and L→∞, and then showing that the limits can be interchanged. This can be justified by
showing that the error we incur at the level of TASEP by replacing hε0 by hε,L0 can be bounded
by something that goes to 0 with L → ∞, uniformly in ε. This is the content of the finite
speed of propagation result in [MQR17b, Lem. 3.2].

These arguments lead in [MQR17b, Sec. 3.4] to Theorem 1.19 above.
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4.3. Continuum limit. The last step in order to get to (1.15) is to compute a continuum
limit in the ai’s of the path integral formula (1.17) on the full line. By this we mean that we
take g ∈ UC, let x1, . . . ,xM be a fine mesh of [−R,R], take M →∞ with ai = g(xi) to obtain
a continuum statistics formula, and finally take R→∞. To this end one notes that, with these
choices, e(x1−xM )∂2 becomes e−2R∂2 (which makes sense when applied after Khypo(h0)

t ) while

χ̄a1e
(x2−x1)∂2χ̄a2 · · · e(xM−xM−1)∂2χ̄aM (u1, u2)

−−−→
ε→0

PB(`1)=u1

(
B(s) ≤ g(s) ∀ s ∈ [`1, `2], B(`2) ∈ du2

)
/du2,

that is, the transition probability for B not to hit epi(g). This establishes the connection with
the hit operator Kepi(g)

t . For the details, and in particular the computation of the R→∞ limit
(which is essentially contained already in [QR16]) see [MQR17b, Sec. 3.5].
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