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Framework: (2d)-stochastic growth models

Stochastic growth modeled by (irreversible) Markov chains with
local update rules.
Typical questions:

e stationary states (for interface gradients)

e space-time correlations of height fluctuations

e hydrodynamic limit

e formation of shocks

Main object of this talk: 2-dimensional models (lozenge tiling
dynamics) where these questions can be (partly) answered



Symmetric vs. asymmetric random dynamics

q#p

For d = 1: Symmetric vs. Asymmetric Simple Exclusion Process
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In both SSEP/ASEP, Bernoulli(p) are invariant.
For p # q, irreversibility (particle flux).



Generalization to (2 + 1) dimensions?




Interlaced particle configurations
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“single-flip dynamics”
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“Analog” of Bernoulli measures: Ergodic Gibbs measures

e Choose p = (p1, p2, p3) with p; € (0,1),p1 + p2 +p3 = 1.
There exists a unique translation invariant, ergodic Gibbs
measure 7, s.t. the density of horizontal, NW and NE

lozenges are p1, p2, p3-
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There exists a unique translation invariant, ergodic Gibbs
measure 7, s.t. the density of horizontal, NW and NE
lozenges are p1, p2, P3.

e Dimer-dimer correlations decay algebraically:
lecm; 1 ~le—e|?
7Tp( ecM, e’el\/l) ~ |e € ‘

[ M ”n
Free-fermion” measures.

e height function ~ massless Gaussian field: if [, p(x)dx =0,
€2 Z (ex)hy il /tp(x)X(x)dx
with (X(x)X(y)) =~z log[x — y|.



What is known for single-flip dynamics, p # g7

e Stationary states: unknown. Presumably very different from
7T/J‘ Numerical Slmulat|0ns [Forrest-Tang-Wolf Phys Rev A 1992] ShOW t024
growth of height fluctuations.



What is known for single-flip dynamics, p # g7

e Stationary states: unknown. Presumably very different from
7Tp. Numerical Slmulat|0ns [Forrest-Tang-Wolf Phys Rev A 1992] ShOW t024
growth of height fluctuations.

e totally asymmetric case (p = 1,q = 0): non-explicit
hydrodynamic limit (hyperbolic rescaling)

1
lim Zh(XL’ tL) = ¢(x, t) almost surely,

L—oo

where ¢ is Hopf-Lax solution of
oo+ V(Vo) =0

for some convex V().
Super-additivity method [Seppaldinen, Rezakhanloul]



A growth process with longer jumps
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Dynamics well defined?
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Some known results...

A. Borodin, P. L. Ferrari (CMP '14): p=1,g=0
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Some known results...

For some special intial conditions, B-F obtain hydrodynamic limit:
.1
lim —h(xL,7L) = ¢(x, 1),
L—oo L

where

9r¢ +v(Vp) =0,

and

1 sin(m0x @) sin(70x,9)
msin(m(1 — 9y ¢ — 94, ¢))

(Vo) =



Some known results...

..., Vlog t Gaussian fluctuations:

[h(xL,7L) — Eh(xL, TL)] = N(0,1/(27?))

1
Viog L

...and convergence of local statistics to those of a Gibbs measure.
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..and some new ones

Theorem 1 [F. T., Ann. Probab. 2017+
e Dynamics well defined if initial spacings grow sublinearly at
infinity.
e The Gibbs measures 7, are stationary.

e One has
Eﬂ'p(h(x7 t) - h(Xv 0)) = (CI - p)tv

with v(p) <0

e and fluctuations grow +/logarithmically:
P, (|h(x, t) — h(x,0) — (q — p)tv| > Ay/log t) = O(1/A%).

(S. Chhita, P. L. Ferrari, F.T., in preparation)



..and some new ones
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Theorem 2 [M. Legras, F. T., arXiv '17]
Totally asymmetric case: p=1,q=0.
e If the initial condition approximates a smooth profile:

1
||£n Zh(XL) = ¢o(x)

with 0 < Oy, 00 < 1,0 < Oy,00 < 1 and 0 < (Ox, o + Ox,00) < 1,
then

1
Iizn Zh(XL7 tL) = (b(X, t), t < Tshocks

where ¢(x,0) = ¢o(x) and 9:¢ + v(V¢) = 0.

e convergence to viscosity solution for t > Tspocks if initial profile
is convex.



Remarks on the hydrodynamic limit
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Remarks on the hydrodynamic limit

e v(-) has singularities

1 sin(m0x, @) sin(mOx, )
wsin(r(1 — O b — 9%,0))

Recall: v(V¢) =

e v(-) neither concave nor convex. Theorem cannot be obtained
by sub/super-additivity

e convex initial profile = viscosity solution has variational
expression (Hopf formula)

e Borodin-Ferrari initial condition: characteristics do not cross,
classical solution for all times. General initial condition:
singularities appear in finite time.

e in contrast with Borodin-Ferrari, we do not use “integrable
probability” methods.



A heuristic link with 2D KPZ equation

One expects (in some sense) height fluctuations in stationary state
7, to be described by
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with W a space-time white noise and Q, the Hessian of v(p).
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One expects (in some sense) height fluctuations in stationary state
7, to be described by

deh(t,x) = Ah(t,x) + Vh(t,x) - Q,Vh(t,x) + W(t,x)

with W a space-time white noise and Q, the Hessian of v(p).

NB: very singular equation, unclear how to give math meaning



A heuristic link with 2D KPZ equation

Recall:
e for the single-flip dynamics, v(-) unknown but concave:
signature of Q, is (—, —). “Isotropic KPZ equation”

e B-F dynamics. From explicit form of v(-), signature of Q,, is
(4, —). “Anisotropic KPZ equation”
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A heuristic link with 2D KPZ equation

Wolf [PRL '91] predicted:

e Anisotropic case: non-linearity irrelevant, fluctuations grow
~ +/logt as if Q, =0 (Stochastic Heat Equation).
Supported by Theorem 1

e Isotropic case: non-linearity relevant, fluctuations grow like t¥,
some non-trivial exponent v > 0.
simulations: v ~ 0.24

e Joint work with A. Borodin and I. Corwin [CMP 2017+]: a
variant of the (2 + 1)-d growth process in the AKPZ class for
which convergence to the stochastic heat equation can be
proven



Towards the Stochastic Heat Equation

One can generalize the model: rates depend on a parameter
r € [0,1) and (in a special way) on the distances between a
particle and its six neighbors
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Theorem 3 [Corwin-Toninelli, ECP 2016]: explicit stationary
measure of Gibbs type.




Towards the Stochastic Heat Equation

For r = e=¢ — 1, with 1 /e rescaling of time and particle distances,
particle positions z, have Gaussian fluctuations.

Theorem 4 [Borodin-Corwin-Toninelli, CMP 2016+]:
e(z«(t/e) — z.(0)) — Vt

and

Ve(ze(t/e) — z¢(0) — gt Vt) = &t

and & ¢ (< height fluctuations w.r.t. deterministically growing
profile) solve a linear system of SDEs.



Towards the Stochastic Heat Equation

In that limit, space-time correlations can be computed:

E [éx,t fy,s] —E [fx,t] E [éy,s]



Towards the Stochastic Heat Equation

Along a special direction U € R? (“characteristics”)

]E X S S - E X E S S
g%-‘rﬁ% §g+\;375:| |:§tg+\/37§:| |:€g+jgz5:|

tends as 0 — 0 to C(s, t,x — y), the space-time correlation of the
2d SHE

dth=Ah+ W, h(0,x) =0.
For all other directions U’, correlations = 0 if t — s >> \/t.

Remark: A similar behavior expected for growth models in the
Anisotropic KPZ class. E.g. the Borodin-Ferrari dynamics.
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Conclusions

e study of fluctuations for single-flip version of the growth
process is too hard (no known stationary measures)...

e ..but “natural” longer-jump versions can be analyzed in detail
(some “integrable structure” behind)

e Caveat: long-jump and single-flip versions are in two different
universality classes (AKPZ/KPZ)



Thanks!
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0@ @

Seppilidinen '96: if spacing between particle 1 and n is o(n?), then
dynamics well defined.

Lozenge dynamics ~ infinite set of coupled Hammersley processes.
Comparison: lozenges move less than HP particles
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Ideas Il: Fluctuations

p=1q¢=0

A={1L,..., L}?

Let Qn(t) = 2 xen(hx(t) — hx(0)).

CiQu(e) = (Ve NN, () = En,




|deas II: Fluctuations
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Ideas Il: Fluctuations

Recall

((QA(T) = (@n(T)))?) = O(T?L*log L).
If L =1, we get the (useless) bound \/(1)(T)?) = O(T

How to do better?

Neglecting the small (logarithmic) fluctuations in 7,, we have

QAMT) = (Q(T)) ~ L2(T).
If we choose L = T we get then /(¢ = O(Vlog T

wished.
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Ideas IllI: From the torus to the infinite graph

Difficulty: show that “information does not propagate
instantaneously” = coupling between torus dynamics and infinite
volume dynamics

Key fact:

Lemma: The probability of seeing an inter-particle gap > log R
within distance R from the origin before time 1 is O(R~K) for
every K.



