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Coin tosses and random walk

Toss a coin: Heads with probability p, Tails with probability 1` p.

Tails=", Heads=!

Repeated tosses  ! up-right path (Random Walk on Z2):

HHTHTTTHHTHT  !
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Classical results: LLN, CLT, LDP

X0 = 0, Xn=position on up-right path after n tosses/steps.

Xn ´ e1 = #H, Xn ´ e2 = n ` Xn ´ e1 = #T (up to toss n).

Law of Large Numbers (LLN): proportion of H ! probability of H

Xn=n! ‰ = pe1 + (1` p)e2 (almost surely):

Central Limit Theorem (CLT): fluctuations around the mean are order
p
n

Xn ` n‰q
p(1` p)n

! Ze1 ` Ze2 (in distribution), Z ‰Standard Normal.

Large Deviation Principle (LDP): P(proportion of H – s > p) ı e`nH(s)

`n`1 logPfXn ´ e1 – sng ! H(s) = s log
s
p

+ (1` s) log
1` s
1` p

H(s) = entropy of coin s relative to coin p.
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Conditioned random walk

Large deviations also tell us that X0;n = (X0; : : : ;Xn) conditioned on

Xn=n ı “ = se1 + (1` s)e2

converges (in distribution) to a random walk with probability of Heads = s.

New random walk still has CLT fluctuations (of size
p
n).
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Random walk in random environment

Take medium inhomogeneity into account.

Make p random and dependent on the number of heads and tails so far

#H = i; #T = j: next H has (random) probability pi;j .

Xn is now a Markov chain with transitions

PfXn+1 = x + e1 jXn = xg = px

PfXn+1 = x + e2 jXn = xg = 1` px ; x 2 Z2+:

x = (i; j) px

1
`

p
x

HHTHTT has probability
p0;0p1;0(1` p2;0)p2;1(1` p3;1)(1` p3;2)
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LLN, CLT, LDP

Assume ! = fpx : x 2 Z2g are independent identically distributed (i.i.d.).

Xn sees “fresh” environments.

If ! is averaged out, distribution of X0;1 is the same as that of a random
walk with probability of H = p̄ = E[p0] and probability of T = 1` p̄.

LLN: Xn=n! ‰ = p̄e1 + (1` p̄)e2.

Almost every environment fpx : x 2 Z2+g and almost every path X0;1.

Averaged CLT: if the environment is averaged out, then

Xn ` n‰q
p̄(1` p̄)n

! Ze1 ` Ze2 (in distribution), Z Standard Normal.
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LLN, CLT, LDP

Also, Quenched CLT (R-A, Seppäläinen ’05): for almost every
environment fpx : x 2 Z2+g

Xn ` n‰q
p̄(1` p̄)n

! Ze1 ` Ze2 (in distribution), Z Standard Normal.

Note: once environment is fixed, Xn is no longer a random walk
with i.i.d. increments.
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LLN, CLT, LDP

Averaged LDP: when environment is averaged out and s > p̄

`n`1 logPfXn ´ e1 – sng ! Ha(s) = s log
s
p̄

+ (1` s) log
1` s
1` p̄

:

Also, Quenched LDP (R-A, Seppäläinen, Yilmaz ’13):

for almost every environment ! = fpx : x 2 Z2+g

`n`1 logP!fXn ´ e1 – sng ! Hq(s):

Hq is deterministic but in general does not have an explicit expression

(though some variational formulas are available).

Hq(s) > Ha(s) unless s = p̄, in which case both = 0.
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Solvable model

Explicit computations are possible when px ‰ Beta(¸; ˛), ¸; ˛ > 0.

Example: Beta(1; 1)=Uniform(0; 1).

LLN velocity: p̄ = ¸
¸+˛

and ‰ = ¸e1+˛e2
¸+˛

.

Can also compute the quenched rate Hq(s) explicitly (later).
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KPZ fluctuation exponent

Barraquand and Corwin ’15 observed a connection to KPZ:

Theorem. For the Beta(¸; ˛) case

logP!fXn ´ e1 – sng + nHq(s)

ff(s)n1=3
!̀ GUE (in distribution)

(ff(s) is known explicitly in terms of polygamma functions  1 and  2).

Proved by Barraquand and Corwin ’15 for s far enough from p̄
then by Thiery and Le Doussal ’16 for all s 6= p̄.

Question: Does the path have the KPZ wandering exponent of 2=3?

But how could it? We know the CLT holds, both quenched and averaged!

What is going on?!
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Conditioned RWRE

What happens if we condition on Xn ı n“ for “ 6= ‰?
(i.e. on an atypical fraction of H)

Subtlety: order of conditioning and averaging

Annealed: average environment first (and get a classical random walk)
then condition.
New process is another (classical) random walk. Nothing new.

Quenched: fix a typical environment and then condition.
What is the resulting process? (Not a classical random walk)

Averaged: average out the environment in the above.
What is the resulting process? (Again, not a classical random walk)
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Busemann function

Theorem (Balázs, R-A, Seppäläinen ’16). For almost every choice of the
environment ! = fpx : x 2 Z+g, limit

B“(x ; y ) = lim
n!1

»
logP!(Xn ı n“ jX0 = x)` logP!(Xn ı n“ jX0 = y )

–

exists

and Hq(s) = `sE[B“(0; e1)]` (1` s)E[B“(0; e2)]
where “ = se1 + (1` s)e2:

e`B
“(0;x) is a harmonic function:

e`B
“(0;x) = pxe`B

“(0;x+e1) + (1` px )e`B
“(0;x+e2):

This comes from the Markov property

P!(Xn ı n“ jX0 = x) = pxP!(Xn ı n“ jX0 = x+e1)+(1`px )P!(Xn ı n“ jX0 = x+e2)

(then divide by P!(Xn ı n“ jX0 = 0) and take n!1).
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Quenched conditioned RWRE

Define ı“ as a Doob transform of p by the harmonic function e`B
“(0;x):

ı
“
x ;x+e1 = px

e`B
“(0;x+e1)

e`B“(0;x)
and ı

“
x ;x+e2 = (1` px )

e`B
“(0;x+e2)

e`B“(0;x)
:

(They do add up to 1.)

Theorem (Balázs, R-A, Seppäläinen ’16). For almost every choice of the
environment ! = fpx : x 2 Z+g, the quenched distribution of X0;m,
conditional on Xn ı n“, converges as n!1 to that of a Markov chain
with transitions ı“.

Note: “ = ‰ gives B‰ ” 0 and ı‰ ” p.

So, if “ 6= ‰, the new process is another random walk in a stationary
but very correlated random environment.
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Distribution of ı“

In the solvable Beta(¸; ˛) case we can identify ı“ explicitly

:

Fix a parameter – > 0 (depending on “).

Let fUke1 : k – 0g be i.i.d. Beta(¸ + –; ˛).

Let fV`1ke2 : k – 0g be i.i.d. Beta(–; ¸).

Let fp̌x : x 2 N2g be i.i.d. Beta(¸; ˛).

All three families are mutually independent.
U

V

p̌
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Distribution of ı“

For the rest of the edges of Z2+ define Us and Vs via induction

U0 =
p̌V + (1` p̌)U

V
; V 0 =

p̌V + (1` p̌)U
U

:

And define ı“x ;x+e1 =
Vx ` 1
Vx ` Ux

2 (0; 1) and ı“x ;x+e2 = 1` ı“x ;x+e1.

U

V

p̌ U0

V 0

ı“

1` ı“

Lemma: (U0;V 0; ı“) has the same distribution as (U;V ; p̌).

Corollary: fı“x+y ;x+y+e1 : y 2 Z2+g has the same distribution as for x = 0.
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Bijection between velocity “ and boundary parameter –

– 2 [0;1] is in one-to-one correspondence with “ via

“1 =
 1(–)`  1(¸ + –)

 1(–)`  1(¸ + ˛ + –)
2
» ¸

¸ + ˛
; 1
–
; “2 = 1` “1

with – = 0() “ = e1 and – =1() “ = ‰ = ( ¸
¸+˛

; ˛
¸+˛

).

 1 is the trigamma function:  1 = (log Γ)00.

For rest of velocities, “1 2 [0; ¸
¸+˛

], switch role of Us and Vs.



Formula for quenched rate

(B“(0; e1);B“(0; e2)) ‰ (logU0; logV0) with parameter –(“).

Hq(s) = `sE[B“(0; e1)]` (1` s)E[B“(0; e2)] (“ = se1 + (1` s)e2)

= `sE[logU]` (1` s)E[logV ]

= s 0
“
¸ + ˛ + –(“)

”
+ (1` s) 0

“
–(“)

”
`  0

“
¸ + –(“)

”
for s 2 [ ¸

¸+˛
; 1].

(For s 2 [0; ¸
¸+˛

) switch the role of the axes.)

(Barraquand and Corwin ’15 got this formula first, by a more direct
computation.)
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KPZ behavior of averaged conditioned RWRE

Because of the correlations in the environment, averaging the new RWRE
does not give a classical RW (nor a Markov chain).

So the average CLT does not come as before.

Furthermore, the aforementioned quenched CLT does not apply (as it was
proved for i.i.d. environment, later improved to allow some mixing).

Theorem: For “ 6= ‰, 9C ; c: 8n 2 N and b large,

EPı“fjXn ` n“j – bn2=3g » Cb`3

and

EPı“ [jXn ` n“j] – cn2=3:

Complements the aforementioned results saying KPZ fluctuations exponent
(for logP!(Xn ı n“)) is 1/3.
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KPZ behavior in some other RWREs

There is an earlier result with a KPZ wandering exponent for a RWRE

:

The limit of Seppäläinen’s inverse gamma polymer,
pinned to go in a given direction.

This is again a random walk in a very correlated random environment
and its path has fluctuation exponent 2/3
(Georgiou, R-A, Seppäläinen, Yilmaz ’15).

But it is different from the one described in this talk, even though Beta
random variables appear in its description too!

In both models, solvability comes from the Beta-Gamma algebra. Namely:

If A is Gamma(a + b; c) and B is an independent Beta(a; b), then AB and
A(1` B) are independent Gamma(a; c) and Gamma(b; c).
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Existence of Busemann limit: coupling

For – > 0 recall the system of edge variables U and V .

Denote them by U– and V –.

Can couple all of them (through uniform random variables) so that
U– is increasing in –, V – is decreasing in –, and the two are continuous.

Define p–x =
U–x (V –

x ` 1)

V –
x ` U–x

2 (0; 1).

Theorem: fp–x : x 2 Z2+g are i.i.d. Beta(¸; ˛) random variables
(regardless of –!).

So we can use these as transitions for the Beta RWRE.
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Existence of Busemann limit: cocycle

Given “, let – = –(“) and define

B“(x ; x + e1) = logU–x and B“(x ; x + e2) = logV –
x :

The inductive definition of the Us and Vs ensures the cocycle property:

B“(x ; x + e1) + B“(x + e1; x + e1 + e2)

= B“(x ; x + e2) + B“(x + e2; x + e1 + e2).

Can then define B“(0; x) for all x 2 Z2+ by adding over edge-values along
any up-right path from 0 to x.

Then define B“(x ; y ) = B“(0; y )` B“(0; x) and we have
the cocycle property: B“(x ; y ) + B“(y ; z) = B“(x ; z).
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Existence of Busemann limit: dual polymer

Take “, – = –(“), x 2 N2 and consider the rectangle with corners 0 and x.

Define edge weights ffu;u+e1 = p–u and ffu;u+e2 = 1` p–u inside
and ffu;u+e1 = eB

“(u;u+e1), ffu;u+e2 = eB
“(u;u+e2), on north and east boundaries

Lemma:
X

x0=0;xn=x

n`1Y
i=0

ffxi ;xi+1 = eB
“(0;x).

0

x

1` p–

p–

eB
“

eB
“

Note how path x0;n accumulates a product of p’s and (1` p)’s,
until it hits the north-east boundary.

I.e. B“(0; x) is almost the same as logP!(Xn = x j;X0 = 0).

Remark: This connects the RWRE to a polymer with boundary conditions,
which leads to the KPZ wandering exponent.
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Lemma:
X

x0=0;xn=x

n`1Y
i=0

ffxi ;xi+1 = eB
“(0;x).

0

x

1` p–

p–

eB
“

eB
“

Note how path x0;n accumulates a product of p’s and (1` p)’s,
until it hits the north-east boundary.

I.e. B“(0; x) is almost the same as logP!(Xn = x j;X0 = 0).

Remark: This connects the RWRE to a polymer with boundary conditions,
which leads to the KPZ wandering exponent.
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Existence of Busemann limit: comparison lemma

By a monotonicity of B“(0; x) in the edge weights ff the above gives:

Lemma: With probability one, for n large and ”0 ´ e1 < “ ´ e1 < ” ´ e1
B”(0; e1) » logP!(Xn ı n“ jX0 = 0)` logP!(Xn ı n“ jX1 = e1) » B”0(0; e1):

“
”0

”

Now take n!1 then ” and ”0 ! “ to get that

limflogP!(Xn ı n“ jX0 = 0)` logP!(Xn ı n“ jX1 = e1)g

exists (almost surely) and equals B“(0; e1). �
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