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Local Behavior of Airy Processes

The Airy Process

It describes spatial fluctuations in a wide range of growth
models, where each particular Airy process arising in each
case depends on the geometry of the initial profile.

Last-Passage Percolation (Exponential)

It is an example of a growth model where the limit fluctuations
are described by Airy processes.
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» w={wjj:i+j>0}iid Exp(1)rv,;
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Last-Passage Percolation

Point to point last-passage percolation time:
» w={wjj:i+j>0}iid Exp(1)rv,;
» C*X:={z€Z: (z,-z) <x};
» 4(x) = { up-right paths from (z, —z) to x };

> z € O L5(X) 1= MaXrenz(x) Xyer Wy-



Last-Passage Percolation

Figure: An up-right path from 0 to x.



Last-Passage Percolation

Figure: An up-right path from 0 to x



Last-Passage Percolation

Last-passage percolation time with an initial profile:

> b:Z—RU{—00}, with b(0) = 0;



Last-Passage Percolation

Last-passage percolation time with an initial profile:
» b:Z - RU{-oc0}, withb(0) =0;

> LP(X) := MaXyecx {b(z) + LZ(x)}.
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Last-Passage Percolation

Narrow Wedge

Let
0 fork=0

W(k):{ —o00 fork #£0,

Then L¥(x) = LO(x).



Last-Passage Percolation

Narrow Wedge

Let
0 fork=0

wik) = { —o00 fork #£0,
Then L¥(x) = LO(x).

Flat
Let
f(k)=0,VkeZ.

Then Lf(x) = max,ccex L(X).



Last-Passage Percolation

Stationary
Let

fork =0,
S LG fork >0,

sp(k) =4 0

where ¢; = Ci(p) " Exps(1 — p) — Expy(p), and Exp; is
independent of Exp,.



Last-Passage Percolation

Stationary
Let

sp(k) = fork=0,

0
S LG for k > 0,

where ¢; = Ci(p) " Exps(1 — p) — Expy(p), and Exp; is
independent of Exp,.

Mixed
Mixed profiles can be obtained by placing one condition on
each half of Z.



LPP Limit Fluctuations

ForueR bin2/3 2/
H};(u):L[Z/“”/]”_M,
24/371/3

where [x], = (n+ [x],n— |x]).




LPP Limit Fluctuations

ForueR
LP[22/3un?/3], — 4n
24/371/3 ’

Hy(u) =
where [x], = (n+ [x],n— |x]).

iMpso0 HY (U) %2 Ag(u) — u? (narrow wedge).

iMoo Hi(U) = Ay (u) (flat).
S1/2(u) dISll

v

v

v

liMp_oo u) (stationary).

v

Ao(
liMn 00 HI(U) 2 Aj(u) (Mixed).
) E An(u) (

Ap(u) (KPZ fixed point).

v

limp_oo HO(u



LPP Limit Fluctuations

Integrable Systems

The distribution of exponential LPP times can be written as
Fredholm determinant of a certain operator (solvable model),
and convergence to exact formulas can be obtained through
asymptotic analysis.
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Integrable Systems

The distribution of exponential LPP times can be written as
Fredholm determinant of a certain operator (solvable model),
and convergence to exact formulas can be obtained through
asymptotic analysis.
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LPP Limit Fluctuations

Coupling Method

Construct joint realizations of the process starting from different
profiles but with the same environment w. Prove fluctuation
results by comparing the evolution of the system with its
equilibrium regime. It does not provide exact formulas for
limiting distributions but it does provide critical exponents,
functional tightness and asymptotic local fluctuations.



LPP Limit Fluctuations

Coupling Method

Construct joint realizations of the process starting from different
profiles but with the same environment w. Prove fluctuation
results by comparing the evolution of the system with its
equilibrium regime. It does not provide exact formulas for
limiting distributions but it does provide critical exponents,
functional tightness and asymptotic local fluctuations.
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LPP Limit Fluctuations

Local Convergence
For a broad class of initial profiles b

im e /2 (Ap(ex) — An(0)) " V2B(x)

where B is a standard Brownian Motion.
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Local Convergence
For a broad class of initial profiles b

im e /2 (Ap(ex) — An(0)) " V2B(x)

where B is a standard Brownian Motion.
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Local Convergence

Exit point
Define
Z°(x) := maxargmax {b(z) + L*(x)} ,

ZECx

so that LP(x) = b (Z°(x)) + LZ*®)(x).



Local Convergence

Exit point
Define
Z°(x) := maxargmax {b(z) + L*(x)} ,

zeCx
so that LP(x) = b (Z°(x)) + LZ*®)(x).

Spatial fluctuations

Define S b[]
Lb[un?/3], — L°[0],

bl .

Ap(u) = 53/271/3

,uelo,C],

so that
HS(u) = HY(0) +21/8A%(22/3y).



Local Convergence

Theorem (arXiv:1704.01903)
Assume that

lim limsup P (\Zb[an/S]n| > rn2/3) =0. (1)

r—-00 naoco

Then {AY : n> 1} is tight (cadlag Skorohod), and any weak
limit A® is continuous almost surely. Furthermore,

im e 12AP(ex) " B(x) )

(functional convergence), where (B(x),x € R) is a standard
two-sided Brownian Motion.



Coupling Method

Checking (1)
Notice that

{Zb[O]n > u} = {Hz > U : b(2) + L?[0], = Lb[O]n}



Coupling Method

Checking (1)
Notice that

{Zb[O]n > u} - {az > U b(z) + L2[0], = Lb[O],,}
Since

LZ[0] < L*[0]p — 5,(2) and L[0], = LO[0], < L°[0],.
we have that

{zb[O],, > u} c {Hz > Ut s,(2) = b(2) < L¥[0], — LO[O],,},



Coupling Method

Checking (1)

Thus,
P (Z°[0]n > u) < P(ab(u) < L[0]n — L°[0]n) ,
where
ap(u) == mp(u) + (s, b)(u),
(sp, b)(U) :=sp(u) — b(u),
and

m®(u) := min {(sp,b)(z) — (s, b)(U) 1 2 > u} .



Coupling Method

Checking (1)

P(Z°10]n > u) < P(af(u) < L*[0],— L°[0],)

2,1/3
IP’(LO[O]n—4n§—rZ )
,

IN

241/3
+ P<ag(u)gnp[o1,,—4n+r” >
Gy



Coupling Method

Checking (1)

2,.1/3
P(---) < IP’(LSP[O],,—4n2Ea';(u)—2rCn >
;

r2nt/3
+ P (ag(u) < Eag(u) e ,




Coupling Method

Checking (1)

2,.1/3
P(-) < IE”<Lsf’[01n—IELSP[01nzA—Zrcn )
1

r2nl/3
+ P <a];(u) < Eaz(u) s ,

where
N(p, u, n) := 4n — EL*[0], + Ea)(u) .



Coupling Method

Checking (1)

General strategy: for nand u = rn?/3 fixed, choose p(u, n) to
produce
op21/3

C1

1/3‘

> cor’n



Coupling Method

Checking (1)
General strategy: for nand u = rn?/3 fixed, choose p(u, n) to

produce
or2nt1/3

C1

> cren'/3 .

Apply Chebyshev’s inequality

Var L*¢[0],  , Var a';(u)
P(-)< C5,4,-,2/3 1 rap2/3



Coupling Method

Flat Profile (1)
Forb=f=0,

and

A = 4n—EL*[0],+ Ead(u)

o, 1 2p— 1 0
- <4 p(1—p)>n+p(1—p)u+E oY)
_ (4p( —p)p—(11)_np4)r (20—1)U+Em2(u)
(4p(1 —p) = V)n+(@p—Mu
4 P




Coupling Method

Flat Profile (1)

Take
(un)—lnLi
pLu, Ny > an’
to get
4p(1 —p)—1)n+(2p—1)u
R RS TR TR
s 1-p
16 p(2p—1)
> fn1/3 4 173



Coupling Method

Flat Profile (1)

Use that,
: VarL*#[0], _ . VarL*/2[0],
P e =P T PATS Gt
and that
Var a2(u) Cs 16¢,
limsup —%— < limsu
n~>oop n2/3 o n~>oop n2/3(2p - 1)2 - r



Proof of the Theorem

Lemma (Local Comparison)
Take a joint realization (L%, L2). Letk < landn>1. If

Z*[lln < Z%[Kln

then
Lb1 [Nl — L b1 [K]n < L b2 [Nln— Lb2[k],,.



Proof of the Theorem

Figure: Z%[k], = 3



Proof of the Theorem

Figure: Z%[/],=-2



Proof of the Theorem

Figure: Geodesic Crossing ¢



Proof of the Theorem

Proof of Local Comparison
Set z, = Z2[k],,. By superaddivity,

L[], > ba(22) + L2[M]n > ba(22) + L2(€) + L(c, []n) -

Since
ba(22) + L2(c) — L*[k]n = —L(c, [K]n),

thus

ba(22) + L7(c) + L(e, [/]n) — L**[K]n
L(e, []n) = L(e; [K]n)-

L%2[],, — LP2[K],

v



Proof of the Theorem

Proof of Local Comparison
By superaddivity,

—L(c, [Kln) > L"(c) — L"'[K]n,
and hence

L%2[1], — LP2[K], L(e, [N1n) — L(c, [K]n)

>
> L(c, [Mn) + L*(€) — L*'[K]n
= 1], — LY [K]n.



Proof of the Theorem

Local Equilibrium Sandwich
Choose

1
pnzgima

to have that

2% [CrPP3), < 2°(0], and Z°[CrP3), < Z%4 (0],

with high probability:

Ri(r) :=limsupP ({(3)}°) - 0, as r — co.

n—oo



Proof of the Theorem

Local Equilibrium Sandwich

Let . .

Lo [ur?/3], — LPa [0]n> — m s un?/3
23/271/3 :

Bi(u) = (
On the event (3),

B, (v) — By (u) = 3vV2(v — u)r < AY(v) — AY(u),
and

Ab(v) — Ab(u) < Bf(v) - B (u) +3V2(v - u)r,

forall u,v € [0, C].



Proof of the Theorem

Local Equilibrium Sandwich
On the event (3),

W, (6) < max { Wy (), WBn+(6)} +3v/20r,
where

Wx(d) =  sup  |X(u)—X(v)I.

u,vel[0,Cl, lu—v|<é



Proof of the Theorem

Local Equilibrium Sandwich
Fix g € (0,1) and set

r=r;:=6" >500,as 5,0,

then
lim lim sup P (WN”,((S) > n) =0,

00 p—oo

which implies tightness, and continuity of weak limits.



Proof of the Theorem

Local Limit (2)
Set X¢(x) := ¢~ 1/2X(ex). On the event (3),

B “(v) — By “(u) — 8V2(v — u)e'2r < A (v) — AN (u),
and
AYE(v) — A (u) < BIE(v) — B (u) + 3vV2(v — u)e'?r .

forall u,v € [0, C].



Proof of the Theorem

Local Limit (2)
Then

P (Wye (8) > 1) < 2P (WB(é) > — 3\@561/%) +R(r).

If we now set r. := ¢ %, with 5 € (0,1/2), then

limsup P (Wpb.(6) > n) < 2P (Wpg(d) > 1) ,
€l0

and hence
limlimsup P (Wb, (0) >n) =0,
640 €0

which implies tightness of A<,



Proof of the Theorem

Local Limit (2)
For finite dimensional convergence,

B (A () <x}) < B(rf, {Blu) < x+3vad2 )

I

R1(r€),

_l’_

and

P (. (A" (u) < x})

vV
=
/N
=
—
FE
IN
2<
CO

N
~

I\)

E
H’_/
N—



Other results (in preparation)

The coupling method also allow us to prove:

» Time ergodicity of space increments of the KPZ fixed point.
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Other results (in preparation)

The coupling method also allow us to prove:
» Time ergodicity of space increments of the KPZ fixed point.
» Decorrelation for large times of space increments;

» An Airy sheet is locally an additive Brownian motion;



Ergodicity of space increments of the KPZ fixed point

Let b 2/3 b[ ]
L°Tun?/°]pt — L°[0] ¢
b .
Ad(u,t) = 2372173 €[0,€],
so that
HY(u, t) = H3(0) +21/8Ab(2273u, 1) .
Recall that

A1/2('7t) diét Im A1/2( t)7

is a Brownian Motion for all t > 0.



Ergodicity of space increments of the KPZ fixed point

Theorem
Denote

dc(f,g) = sup [f(x)—g(x)|.
x€[0,C]

Consider a joint weak limit (AP(-, t), A/2(-, 1)) of the
last-passage percolation model. Then,

lim P (do(A"2(-,1), A%, 1) > n) =0,

foralln > 0.



Proof of Ergodicity

Lemma (Attractiveness)
Assume that by (/) — by (k) < bao(/) — bo(k) for all k < /. Then

L [ln — L [Kln < L%{/]n — L[K]n,

forall k < I.



Proof of Ergodicity

Proof
Denote
zy = 2" [l and z := Zb2[k],,.

If z; < 2o then it follows by local comparison.



Proof of Ergodicity

Proof
Denote
zy = 2" [l and z := Zb2[k],,.

If z; < 2o then it follows by local comparison.
Now, L2[/], — LP2[k], — (L*'[/]n — L"1[K],) equals
L=[lln = (b2(21) + Lz [) + (L [Kln— (b1(22) + Lz,[K]n))
+ (b2(z1) —b2(z2)) — (b1(z1) —b1(22)) >0,

if zy > zo. (Use super-additivity for the first two terms, and the
assumption for hte third one.)



Proof of Ergodicity

Set §; := Ct2/3 and

1,6
+
Pt = Zin1/3’

where « € (0,1/2). Let E(n, t) denote the event
{ZP;’[O]LmJ > Z°[CrP?) 4 and ZPnt[CrP/3) 4 < Zb[O]Lth} ,

and write R(t) :=limsup,_, .. P(E(n,t)€). Then, under
Assumption 1,
lim R(t)=0.

t—o0



Proof of Ergodicity

We couple the stationary regimes in such way that initially they
are ordered. One can do it by setting

G0 = gy Bxpra(1/2) = 5o (1/2).

Thus, by attractiveness,
AP (1) < AV (u,t) < A (u, t).

forall u € [0, CJ.



Proof of Ergodicity

By local comparison, on the event E(n, t),
AP (U t) < Ab(u,t) < A””‘(u, 1),
for all u € [0, C], and hence, on the event E(n, ),
1AV (U, b) — Ab(u, )| < AP(u, t) — APni(u,t),

forallu € [0, C].



Proof of Ergodicity

Attractiveness implies that
0 < APni(u, t) — APi(u, t) < APni(C, t) — APni(C, 1)
which yields to

sup |Ay2(u,t) — Ab(u, t)| < APre(C, 1) — APne(C, 1)
uelo,C]



Proof of Ergodicity

Since Cn?/3 = §4(tn)?/3
E (8%:(C.1) ~ A71(C. 1)) < 6 CV25}/2 0

we finally get that,

limsup P (dC(A:,/Z(., 1), Ab(-, 1)) > 77) <R+ 9=
n—oo n
Recall that
lim R(t) =0 and §; = Ct~2/3.

t—o00



