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Aim: weak KPZ universality

Want convergence of weakly asymmetric (1+1)-dimensional growth
models to KPZ equation

drh = Ah+ (9ch)? + €.

Examples of models:

e Exclusion type dynamics (variants of WASEP);
@ Zero range processes;

@ interacting Brownian motions (Ginzburg-Landau V¢ model):

dx/ = ((% +¢) V/(FH) — (% —¢€) V'(rj)) dt+dw/; #=x —x1;
@ Hairer-Quastel model:

Orv = Av + eF(0xv) + 1.
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Different descriptions of KPZ

Orh = Ah +|0,h|? + €.

h(t,-) has Brownian regularity, so |0xh|> =7
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Different descriptions of KPZ

Oth = Ah + |0.h|* + €.

h(t,-) has Brownian regularity, so [0, h|? =7

@ Cole-Hopf transformation: Bertini-Giacomin (1997) set h := log w
Orw = Aw + w¢

(1t6 SPDE, w > 0 by Mueller (1991)). Equation for e’ but not for h.

@ Hairer (2013), Friz-Hairer (2014), Gubinelli-P. (2017), Kupiainen-Marcozzi (2016):
rough paths / regularity structures / paracontrolled distributions /
renormalization group approach control solution h as continuous
functional of “polynomials” of &.

@ Martingale approach: Goncalves-Jara (2014), Gubinelli-Jara (2013),
Gubinelli-P. (2015), based on stationarity and time-reversal.
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Different descriptions of KPZ

Oth = Ah + |0.h|* + €.

h(t,-) has Brownian regularity, so [0, h|? =7

@ Cole-Hopf transformation: Bertini-Giacomin (1997) set h := log w
Orw = Aw + w¢

(1t6 SPDE, w > 0 by Mueller (1991)). Equation for e’ but not for h.

@ Hairer (2013), Friz-Hairer (2014), Gubinelli-P. (2017), Kupiainen-Marcozzi (2016):
rough paths / regularity structures / paracontrolled distributions /
renormalization group approach control solution h as continuous
functional of “polynomials” of &.

@ Martingale approach: Goncalves-Jara (2014), Gubinelli-Jara (2013),
Gubinelli-P. (2015), based on stationarity and time-reversal.

For convergence we need analogous description of approximating system!
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Martingale problem for the KPZ equation

Orth = Ah+|0ch)? + ¢

@ Try to implement martingale problem: for p € §
M(e) = he) = i) — [ hi(ap)ds = [ o) ds

should be continuous martingale with (M(¢)): = [|¢]|7,t.
e h supported on non-differentiable functions, so [, |0xhs|?(¢) ds =7
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Martingale problem for the KPZ equation

Orh = Ah + |0xh]? + ¢

Try to implement martingale problem: for o € §

M() = h(g) — ho(e) - /0 ha(Ap)ds — /O |0haP () ds

should be continuous martingale with (M(¢)): = [|¢]|7,t.

h supported on non-differentiable functions, so [, |0xhs|?(¢) ds =7

Possible solution: restrict to measures supported on modelled /
paracontrolled distributions ( “smooth in new topology" ).

For convergence: difficult to verify that limit points satisfy this.

Softer condition than modelled / paracontrolled which still gives
well-posedness?
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© Energy solutions and their uniqueness
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From martingale problem to energy solutions
Consider u = Oxh, solution to Burgers equation

Ot = Au+ Oy u® + 0iE;

has invariant probability distribution; recover KPZ easily.
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From martingale problem to energy solutions
Consider u = Oxh, solution to Burgers equation

Ot = Au+ Oy u® + 0iE;

has invariant probability distribution; recover KPZ easily.
o O,u? ill-defined.

e Naively: forp € S
M(2) = ule) — () = [ ws(ap)is +1im [ (oo s (00)ds

cont. martingale, (M(¢)): = 2||0xp||2,t. No chance for uniqueness.
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From martingale problem to energy solutions
Consider u = Oxh, solution to Burgers equation

et = Au + Oy t® + O4E;

has invariant probability distribution; recover KPZ easily.
e O, u? ill-defined.

o Naively: for p € S

M(2) = ule) — () = [ ws(ap)is +1im [ (oo s (00)ds

cont. martingale, (M(¢)): = 2||0xp||2,t. No chance for uniqueness.
@ Gongalves-Jara (2014): energy solution if additionally

EH /St ((pn * ur)?(0xp) — (pm * “r)z(axso))dr’z} _lt—s]

~ nAm

= u(p) — M(¢p) has zero quadratic varation (Dirichlet process), get
[t6 formula (e.g. Russo-Vallois).
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Funaki-Quastel strategy
Energy solution: martingale solution to

et = AU + Oy t® + O4E;

with u(p) — M(p) of zero quadratic variation.
e Existence trivial;
@ no way to compare two energy solutions, uniqueness?
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Funaki-Quastel strategy
Energy solution: martingale solution to
Ot = Au+ Ou® + 0iE;

with u(p) — M(p) of zero quadratic variation.
e Existence trivial;
@ no way to compare two energy solutions, uniqueness?
@ Inspired by Funaki-Quastel (2015): 1€ = 0. * u. 1td: w® = e
dwi =Awedt + wi(do Mg
016 * (0x02)) — [(u5)? — 152D d)

-1 ¢
U golves
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Funaki-Quastel strategy
Energy solution: martingale solution to
Ot = Au+ Ou® + 0iE;

with u(p) — M(p) of zero quadratic variation.
e Existence trivial;

@ no way to compare two energy solutions, uniqueness?

) . 1
o Inspired by Funaki-Quastel (2015): uf = . % u. Itd: w® = e% ¥° solves

dwi =Awedt + wi(do Mg
(0 (0 % (0xuz)) — [(uf)? — (|61 D) de).

Lemma (Uniqueness criterion)
If forc e R

[ w0 )~ [ ~ 5Dt — [ wacdt
0 0

then u = Oy log w for unique solution 0w = Aw + w€ + cw.
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How to check uniqueness criterion?

@ Uniqueness criterion needs control of additive functional

/0. wi (97 (0= + (Oxuf)) — [(uF)? = [10:]172])de

T
- /0 & 0er3 (15, w (Du2)) — [(te # 62)% — [|6e )l

@ How to control additive functionals of energy solutions? First consider
Markov processes.
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Intermezzo: Martingale trick

X Markov, generator £, Xy ~ p stationary.
e symmetric Ls = (£ + L£*)/2, antisymmetric L5 = (L — L*)/2.
e X; = X7_; Markov w/ generator L* = L5 — La.
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Intermezzo: Martingale trick

X Markov, generator £, Xy ~ p stationary.
e symmetric Ls = (£ + L£*)/2, antisymmetric L5 = (L — L*)/2.
e X; = X7_; Markov w/ generator L* = L5 — La.

@ Dynkin's formula (It6): .

F(X7) — F(Xo) — /0 LF(X5)ds = ME,
F(%7) - F(Ro) — /0 " Lt F(R)ds = WE,

get
;
—/ 2LsF(Xs)ds = ME + MIE.
0

o (MF), = fot(ﬁl:2 —2FLF)(Xs)ds = fot(ﬁst —2FLsF)(Xs)ds, so

|
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/ LoF(X.)ds
0

P
] < TPPE(|(LsF? = 2FLsF)(Xo) /).



Martingale trick for Burgers equation

Ot = Au+ Oyu® + OiE.

Formally:

@ Space white noise invariant.
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Martingale trick for Burgers equation

Ot = Au+ Oyu® + OiE.

Formally:
@ Space white noise invariant.
e symmetric Ls = (L + L£*)/2, antisymmetric L4 = (L — L*)/2.

@ Ls generator of co-dim Ornstein-Uhlenbeck process

O X = DX + D&
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Martingale trick for Burgers equation

et = Au + O u® + OE.
Formally:
@ Space white noise invariant.
e symmetric Ls = (L + L£*)/2, antisymmetric L4 = (L — L*)/2.

@ Ls generator of co-dim Ornstein-Uhlenbeck process
0: X = AX + 0x€.

— martingale trick should bound EH 5 ESF(us)dsm via white noise and
OU-generator Ls.
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Gubinelli-Jara solution

Gubinelli-Jara (2013): stationary energy solution
e = Au + Oyt® + OiE.
is FB-solution if d; = ut_; energy solution of
Orli = Ni1—Dy 0% + D,E.

Gubinelli-Jara (2013): existence of FB-solutions, martingale trick works.
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Gubinelli-Jara solution

Gubinelli-Jara (2013): stationary energy solution
e = Au + Oyt® + OiE.
is FB-solution if d; = ut_; energy solution of

Orli = Ni1—Dy 0% + D,E.

Gubinelli-Jara (2013): existence of FB-solutions, martingale trick works.

o = control [; F(us)ds if we solve co-dim Poisson eq.
LsG=F in L?(white noise).
@ L2(white noise) Gaussian Hilbert space = chaos expansion:

F=>In(fy) for f, € *(R")
n

Lsln(gn) = In(Agn) = solve Ag, = f,.

Reduces problem to finite-dim PDE!
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Bounds for Burgers nonlinearity

u FB-solution to
et = Au + Oy t® + OE.

@ Martingale trick + chaos decomposition: bound EH fot F(us)dsm;

e F(u) = 0xu? = sharp bounds on Burgers nonlinearity;
o get [;(0xu?)(p)ds € C3/*~ for p € S — but not better!
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Bounds for Burgers nonlinearity

u FB-solution to
et = Au + Oy t® + OE.

Martingale trick + chaos decomposition: bound EH fot F(us)dsm;

F(u) = Oxu? = sharp bounds on Burgers nonlinearity;
get [o(0xuZ)(p)ds € C3/4= for p € S - but not better!

Consequence: u — u(p) not in domain of generator.

Open problem: describe Burgers generator.
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Uniqueness of FB-solutions |

@ Uniqueness criterion: need control of
RPN
70+ 00 — [ 8. = e el

o Problem: (0;(d * (0xu?)) — [(ur * 6-)* — [|6<[|7.]) in second chaos,
but ea;luf*ég((?;l(ée * (Oxuf)) — [(ue % 55)2 — H<5€Hi2]) not!
Tedious to solve Poisson equation. What to do?
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Intermezzo: Martingale trick w/o Poisson equation
e Martingale trick bounds EH IN ESF(us)dsm.

@ What if we cannot solve Poisson equation LsF = G7 Use
Kipnis-Varadhan lemma!
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Intermezzo: Martingale trick w/o Poisson equation
e Martingale trick bounds EH IN £5F(us)dsm.

@ What if we cannot solve Poisson equation LsF = G7 Use
Kipnis-Varadhan lemma!

o Idea: solve (Ls — A)F) = G instead. A > 0 enforces spectral gap,

o0
F = / etEs— N Gdr.
0

2
@ Apply martingale trick to IEH fot £5F>\(us)ds‘ } send A — 0.
2
o Duality: EH[J G(us)ds‘ ] < TG, for

I1GI12, = sup{2E[G (uo) H(uo)] + E[H(u0) £ H(uo)]}-
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Intermezzo: Martingale trick w/o Poisson equation
e Martingale trick bounds EH IN £5F(us)dsm.

@ What if we cannot solve Poisson equation LsF = G7 Use
Kipnis-Varadhan lemma!

o Idea: solve (Ls — A)F) = G instead. A > 0 enforces spectral gap,

o0
F = / etEs— N Gdr.
0

2
@ Apply martingale trick to IEH fot £5F>\(us)ds‘ } send A — 0.
2
o Duality: EH[J G(us)ds‘ ] < TG, for

I1GI12, = sup{2E[G (uo) H(uo)] + E[H(u0) £ H(uo)]}-

e Note: E[G(up)] # 0, then ||G|?; = oo.
—



Uniqueness of FB-solutions |l
Aim: control fo T ((9;1(66 * (8xuf)) — [(ue * 55)2 — H56||f2])dt.
@ Kipnis-Varadhan:

t 2
B [ Fuoar | < TIFIR
0
e But E[F¢(up)] # 0, so |[F?||?>; = co! Solution: consider
1
6*(u) = F () — 3¢

12 Wt'
Tedious computation: lim. ||G¢|?; = 0.
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Uniqueness of FB-solutions Il
Aim: control [ e0x ' urrde (D162 * (0xu?)) — [(ue * 62)% — [|6212])d
@ Kipnis-Varadhan:

t 2
B [ Fuoar | < TIFIR
0
e But E[F¢(up)] # 0, so |[F?||?>; = co! Solution: consider

1
€ F 6
6+ (ue) = Fo(ue) — 5w
Tedious computation: lim. ||G¢|?; = 0.
i

1 .
@ So for wy = €% Yt = lim._,o wy:

1
dw; = Awdt + w,dd; *M, + EWtdt

Theorem (Gubinelli-P. '15)

FB-solution to Burgers equation is unique and u = Oy log w.
(First probabilistic solution for a “truely singular” SPDE).
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Simple extensions

@ Works on torus R/Z and on R.

@ Uniqueness criterion works without stationarity or forward-backward
structure.

@ = energy solutions with law(u) < law(urg) are unique
Gubinelli-P. (2017).

@ = bounded entropy perturbations of stationary weakly asymmetric
systems converge to Burgers Gongalves-Jara-Sethuraman (2015).
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Simple extensions

@ Works on torus R/Z and on R.

@ Uniqueness criterion works without stationarity or forward-backward
structure.

e = energy solutions with law(u) < law(ugg) are unique
Gubinelli-P. (2017).

@ = bounded entropy perturbations of stationary weakly asymmetric
systems converge to Burgers Gongalves-Jara-Sethuraman (2015).

@ Extension from Burgers to KPZ is easy:
Orth = Ah+ (0xh)? + € = Ah+ v° + €.

u unique = u? unique = h unique.

o hy=heH + %t for Cole-Hopf solution h“H. Already observed by
Funaki-Quastel (2015).
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© Application to weak KPZ universality and boundary conditions
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How to apply this

For convergence to FB-solutions we need:
e Martingale characterization (easy);
@ energy condition = zero quadratic variation nonlinearity (easy);

e forward-backward decomposition (needs similar structure in
approximating model; satisfied for all examples from above).
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Example: WASEP with open boundaries

1+ %) 1+ & la+ £
N N N

1 2 n—1
1 1 1
2 2

Figure: Jump rates. Leftmost and rightmost rates are the entrance/exit rates.
Compare also Corwin-Shen (2016).
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Example: WASEP with open boundaries

1+ 5) 1+ £ 1+ %)

Y Y Y
ocz‘C°':‘—1

Uk ) Y
1 1 1

Figure: Jump rates. Leftmost and rightmost rates are the entrance/exit rates.
Compare also Corwin-Shen (2016).

@ Product Bernoulli measure w/ density 1/2 invariant;
@ Lg: generator of dynamics with E = 0;

o LLN: 5(0,n-) — 3;

o CLT: n'/2((0, n-) — 1/2) — white noise;

o Set u"(t,x) := n*?(u(n’t, nx) — 1/2).
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Scaling limit
o u" solves
du" = S"dt + A"dt + dM"
= A ynar + Ande + amn;

@ time-reversed process satisfies same equation with —A".

Use approach of Gongalves-Jara (2014):
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Scaling limit

@ u" solves

du" = S"dt + A"dt + dM"
= A ynat + Adt + dm”;

ir
@ time-reversed process satisfies same equation with —A".

Use approach of Goncalves-Jara (2014):
@ Show tightness for S”, A” and M"; deduce tightness of u”;
@ second order Boltzmann-Gibbs principle:

/T (A"(t) — Ed(u"(£)?))dt —s O;
0

@ straightforward: 9;M" — 0,&;

@ = any limit point is FB-solution to Burgers eq. with Dirichlet b.c.

Gongalves-P.-Simon (in preparation)
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Burgers equation with Dirichlet boundary conditions

Oru = Au + O’ + 0xE,
u: Ry x [0,1] = R with u(0) = u(1) = 0. u is FB-solution if:
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Burgers equation with Dirichlet boundary conditions

Oru = Au + O u® + 0xE,
u: Ry x [0,1] = R with u(0) = u(1) = 0. u is FB-solution if:
e for p € C?[0,1] with (0) = (1) = 0:

M(2) = ule) — () = [ ws(ap)ts +1im [ (oo s (010)as

cont. martingale, (M(¢)): = 2||8X<p||%2t.
e u(p) — M(yp) has zero quadratic varation;

@ u satisfies FB-condition: u; ~ white noise for all t, time reversed
process solves 9,0 = Al — Oy (% + OxE.
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Uniqueness for Dirichlet boundary conditions |

Oru = Au + 8Xu2 + O\,
u: Ry x [0,1] — R with u(0) = u(1) = 0.
@ Regularize e.g. w/ heat kernel: uf(x) = u(pz(x,-));

Bx_lufy get

o w; =e
dwf =Awsdt + wi(dog T ME + REdt + cdt) + wi (65 + 05)dt

Owe(0) = w®(0)0x 05 *uf(0) = we(0)uf(0) = 0 and O, we(1) =0
(von Neumann bc)
@ As before R® — 0, c =1/12.
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Uniqueness for Dirichlet boundary conditions |

et = Au + Oyu® + Oy,
u: Ry x [0,1] — R with u(0) = u(1) = 0.
@ Regularize e.g. w/ heat kernel: uf(x) = u(pz(x,-));

0

—1 ¢
o wy = e Ut get

dwf =Awsdt + wi(dog T ME + REdt + cdt) + wi (65 + 05)dt

Owe(0) = w®(0)0x 05 *uf(0) = we(0)uf(0) = 0 and O, we(1) =0
(von Neumann bc)
@ As before R — 0, c =1/12.
So far so boring. But:
o w;(dg+ 07) — we(do + d1), very singular drift;
e kill this by test function ¢ w/ 9xp(0) = —(0), dxep(1) = ¢(1);

@ get Robins bc for w = lim® w®! Compare also Gerencser-Hairer (2017).
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Uniqueness for Dirichlet boundary conditions Il

Theorem (Gongalves-Simon-P. (in preparation))

3 unique FB-solution u to Burgers with Dirichlet bc, and a unique
FB-solution h to

Oth = Ah+ (9ch)? + ¢
with von Neumann bc 0xh:(0) = Oy h(1) = 0.

1
ht:htCH-i—Et

for Cole-Hopf solution hH to
Orh = Ah+ (9ch)? + ¢

with von Neumann bc 0xh:(0) = —1; 0xh(1) = 1.
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Conclusion

@ Energy solutions formulate KPZ/Burgers equation as a martingale
problem.

@ At stationarity: uniqueness via Cole-Hopf and martingale trick.

o Extends to very simple non-stationary regimes, but general case still
open.

@ Powerful tool for proving convergence to Burgers equation, general
recipe due to Gongalves-Jara (2014).

@ Extension to boundary conditions more interesting than expected.

@ All rests on Cole-Hopf transform, probabilistic understanding of other
singular SPDEs out of reach...
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Thank you
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