Martingale solutions to the KPZ equation

Nicolas Perkowski

Humboldt-Universität zu Berlin

April 2017 Qualitative Methods in KPZ Universality CIRM

Joint work with Patricia Gonçalves, Massimiliano Gubinelli, Marielle Simon

Aim: weak KPZ universality

Want convergence of weakly asymmetric (1+1)-dimensional growth models to KPZ equation

$$\partial_t h = \Delta h + (\partial_x h)^2 + \xi.$$

Examples of models:

- Exclusion type dynamics (variants of WASEP);
- zero range processes;
- interacting Brownian motions (Ginzburg-Landau $\nabla \varphi$ model):

$$\mathrm{d} x^j = \left(\left(\frac{1}{2} + \varepsilon \right) V'(r^{j+1}) - \left(\frac{1}{2} - \varepsilon \right) V'(r^j) \right) \mathrm{d} t + \mathrm{d} w^j; \quad r^j = x^j - x^{j-1};$$

• Hairer-Quastel model:

$$\partial_t v = \Delta v + \varepsilon F(\partial_x v) + \eta.$$

Different descriptions of KPZ

$$\partial_t h = \Delta h + |\partial_x h|^2 + \xi.$$

 $h(t,\cdot)$ has Brownian regularity, so $|\partial_x h|^2 = ?$

• Cole-Hopf transformation: Bertini-Giacomin (1997) set $h := \log w$

$$\partial_t w = \Delta w + w \xi$$

(Itô SPDE, w > 0 by Mueller (1991)). Equation for e^h but not for h.

- Hairer (2013), Friz-Hairer (2014), Gubinelli-P. (2017), Kupiainen-Marcozzi (2016): rough paths / regularity structures / paracontrolled distributions / renormalization group approach control solution h as continuous functional of "polynomials" of ξ .
- Martingale approach: Gonçalves-Jara (2014), Gubinelli-Jara (2013), Gubinelli-P. (2015), based on stationarity and time-reversal.

For convergence we need analogous description of approximating system!

Different descriptions of KPZ

$$\partial_t h = \Delta h + |\partial_x h|^2 + \xi.$$

 $h(t,\cdot)$ has Brownian regularity, so $|\partial_x h|^2 = ?$

• Cole-Hopf transformation: Bertini-Giacomin (1997) set $h := \log w$

$$\partial_t w = \Delta w + w \xi$$

(Itô SPDE, w > 0 by Mueller (1991)). Equation for e^h but not for h.

- Hairer (2013), Friz-Hairer (2014), Gubinelli-P. (2017), Kupiainen-Marcozzi (2016): rough paths / regularity structures / paracontrolled distributions / renormalization group approach control solution h as continuous functional of "polynomials" of ξ .
- Martingale approach: Gonçalves-Jara (2014), Gubinelli-Jara (2013), Gubinelli-P. (2015), based on stationarity and time-reversal.

For convergence we need analogous description of approximating system!

Different descriptions of KPZ

$$\partial_t h = \Delta h + |\partial_x h|^2 + \xi.$$

 $h(t,\cdot)$ has Brownian regularity, so $|\partial_x h|^2 = ?$

• Cole-Hopf transformation: Bertini-Giacomin (1997) set $h := \log w$

$$\partial_t w = \Delta w + w \xi$$

(Itô SPDE, w > 0 by Mueller (1991)). Equation for e^h but not for h.

- Hairer (2013), Friz-Hairer (2014), Gubinelli-P. (2017), Kupiainen-Marcozzi (2016): rough paths / regularity structures / paracontrolled distributions / renormalization group approach control solution h as continuous functional of "polynomials" of ξ .
- Martingale approach: Gonçalves-Jara (2014), Gubinelli-Jara (2013), Gubinelli-P. (2015), based on stationarity and time-reversal.

For convergence we need analogous description of approximating system!

Martingale problem for the KPZ equation

$$\partial_t h = \Delta h + |\partial_x h|^2 + \xi$$

ullet Try to implement martingale problem: for $arphi \in \mathcal{S}$

$$M(\varphi) = h(\varphi) - h_0(\varphi) - \int_0^{\cdot} h_s(\Delta \varphi) ds - \int_0^{\cdot} |\partial_x h_s|^2(\varphi) ds$$

should be continuous martingale with $\langle M(\varphi) \rangle_t = \|\varphi\|_{L^2}^2 t$.

- h supported on non-differentiable functions, so $\int_0^{\cdot} |\partial_x h_s|^2 (\varphi) ds = ?$
- Possible solution: restrict to measures supported on modelled / paracontrolled distributions ("smooth in new topology").
- For convergence: difficult to verify that limit points satisfy this.
- Softer condition than modelled / paracontrolled which still gives well-posedness?

Martingale problem for the KPZ equation

$$\partial_t h = \Delta h + |\partial_x h|^2 + \xi$$

ullet Try to implement martingale problem: for $arphi \in \mathcal{S}$

$$M(\varphi) = h(\varphi) - h_0(\varphi) - \int_0^{\cdot} h_s(\Delta \varphi) ds - \int_0^{\cdot} |\partial_x h_s|^2(\varphi) ds$$

should be continuous martingale with $\langle M(\varphi) \rangle_t = \|\varphi\|_{L^2}^2 t$.

- h supported on non-differentiable functions, so $\int_0^{\cdot} |\partial_x h_s|^2 (\varphi) ds = ?$
- Possible solution: restrict to measures supported on modelled / paracontrolled distributions ("smooth in new topology").
- For convergence: difficult to verify that limit points satisfy this.
- Softer condition than modelled / paracontrolled which still gives well-posedness?

Motivation

2 Energy solutions and their uniqueness

3 Application to weak KPZ universality and boundary conditions

From martingale problem to energy solutions

Consider $u = \partial_x h$, solution to Burgers equation

$$\partial_t u = \Delta u + \partial_x u^2 + \partial_x \xi;$$

has invariant probability distribution; recover KPZ easily.

- $\partial_x u^2$ ill-defined.
- Naively: for $\varphi \in \mathcal{S}$

$$M(\varphi) = u(\varphi) - u_0(\varphi) - \int_0^\infty u_s(\Delta \varphi) ds + \lim_n \int_0^\infty (\rho_n * u_s)^2 (\partial_x \varphi) ds$$

cont. martingale, $\langle M(\varphi) \rangle_t = 2 \|\partial_x \varphi\|_{L^2}^2 t$. No chance for uniqueness.

Gonçalves-Jara (2014): energy solution if additionally

$$\mathbb{E}\Big[\Big|\int_{s}^{t} \big((\rho_{n}*u_{r})^{2}(\partial_{x}\varphi)-(\rho_{m}*u_{r})^{2}(\partial_{x}\varphi)\big)\mathrm{d}r\Big|^{2}\Big]\lesssim \frac{|t-s|}{n\wedge m}.$$

 $\Rightarrow u(\varphi) - M(\varphi)$ has zero quadratic variation (Dirichlet process), get Itô formula (e.g. Russo-Vallois).

From martingale problem to energy solutions

Consider $u = \partial_x h$, solution to Burgers equation

$$\partial_t u = \Delta u + \partial_x u^2 + \partial_x \xi;$$

has invariant probability distribution; recover KPZ easily.

- $\partial_x u^2$ ill-defined.
- Naively: for $\varphi \in \mathcal{S}$

$$M(\varphi) = u(\varphi) - u_0(\varphi) - \int_0^{\infty} u_s(\Delta \varphi) ds + \lim_n \int_0^{\infty} (\rho_n * u_s)^2 (\partial_x \varphi) ds$$

cont. martingale, $\langle M(\varphi) \rangle_t = 2 \|\partial_x \varphi\|_{L^2}^2 t$. No chance for uniqueness.

Gonçalves-Jara (2014): energy solution if additionally

$$\mathbb{E}\Big[\Big|\int_{s}^{t} \big((\rho_{n}*u_{r})^{2}(\partial_{x}\varphi)-(\rho_{m}*u_{r})^{2}(\partial_{x}\varphi)\big)\mathrm{d}r\Big|^{2}\Big]\lesssim \frac{|t-s|}{n\wedge m}.$$

 $\Rightarrow u(\varphi) - M(\varphi)$ has zero quadratic variation (Dirichlet process), get Itô formula (e.g. Russo-Vallois).

From martingale problem to energy solutions

Consider $u = \partial_x h$, solution to Burgers equation

$$\partial_t u = \Delta u + \partial_x u^2 + \partial_x \xi;$$

has invariant probability distribution; recover KPZ easily.

- $\partial_x u^2$ ill-defined.
- Naively: for $\varphi \in \mathcal{S}$

$$M(\varphi) = u(\varphi) - u_0(\varphi) - \int_0^{\infty} u_s(\Delta \varphi) ds + \lim_n \int_0^{\infty} (\rho_n * u_s)^2 (\partial_x \varphi) ds$$

cont. martingale, $\langle M(\varphi) \rangle_t = 2 \|\partial_x \varphi\|_{L^2}^2 t$. No chance for uniqueness.

Gonçalves-Jara (2014): energy solution if additionally

$$\mathbb{E}\Big[\Big|\int_{s}^{t} \big((\rho_{n}*u_{r})^{2}(\partial_{x}\varphi)-(\rho_{m}*u_{r})^{2}(\partial_{x}\varphi)\big)\mathrm{d}r\Big|^{2}\Big]\lesssim \frac{|t-s|}{n\wedge m}.$$

 $\Rightarrow u(\varphi) - M(\varphi)$ has zero quadratic variation (Dirichlet process), get Itô formula (e.g. Russo-Vallois).

Funaki-Quastel strategy

Energy solution: martingale solution to

$$\partial_t u = \Delta u + \partial_x u^2 + \partial_x \xi;$$

with $u(\varphi) - M(\varphi)$ of zero quadratic variation.

- Existence trivial;
- no way to compare two energy solutions, uniqueness?
- Inspired by Funaki-Quastel (2015): $u^{\varepsilon} = \delta_{\varepsilon} * u$. Itô: $w^{\varepsilon} = e^{\partial_{x}^{-1} u^{\varepsilon}}$ solves

$$\begin{split} \mathrm{d} w_t^\varepsilon = & \Delta w^\varepsilon \mathrm{d} t + w_t^\varepsilon (\mathrm{d} \partial_x^{-1} M_t^\varepsilon \\ & + (\partial_x^{-1} (\delta_\varepsilon * (\partial_x u_t^2)) - [(u_t^\varepsilon)^2 - \|\delta_\varepsilon\|_{L^2}^2]) \mathrm{d} t) \end{split}$$

Lemma (Uniqueness criterion)

If for $c \in \mathbb{R}$

$$\int_0^{\cdot} w_t^{\varepsilon} (\partial_x^{-1} (\delta_{\varepsilon} * (\partial_x u_t^2)) - [(u_t^{\varepsilon})^2 - \|\delta_{\varepsilon}\|_{L^2}^2]) dt \longrightarrow \int_0^{\cdot} w_t c dt,$$

then $u = \partial_x \log w$ for unique solution $\partial_t w = \Delta w + w \xi + c w$.

Funaki-Quastel strategy

Energy solution: martingale solution to

$$\partial_t u = \Delta u + \partial_x u^2 + \partial_x \xi;$$

with $u(\varphi) - M(\varphi)$ of zero quadratic variation.

- Existence trivial;
- no way to compare two energy solutions, uniqueness?
- Inspired by Funaki-Quastel (2015): $u^{\varepsilon} = \delta_{\varepsilon} * u$. Itô: $w^{\varepsilon} = e^{\partial_{x}^{-1} u^{\varepsilon}}$ solves

$$\begin{split} \mathrm{d} w_t^\varepsilon = & \Delta w^\varepsilon \mathrm{d} t + w_t^\varepsilon \big(\mathrm{d} \partial_x^{-1} M_t^\varepsilon \\ & + \big(\partial_x^{-1} \big(\delta_\varepsilon * \big(\partial_x u_t^2 \big) \big) - \big[\big(u_t^\varepsilon \big)^2 - \| \delta_\varepsilon \|_{L^2}^2 \big] \big) \mathrm{d} t \big). \end{split}$$

Lemma (Uniqueness criterion)

If for $c \in \mathbb{R}$

$$\int_0^{\cdot} w_t^{\varepsilon} (\partial_x^{-1} (\delta_{\varepsilon} * (\partial_x u_t^2)) - [(u_t^{\varepsilon})^2 - \|\delta_{\varepsilon}\|_{L^2}^2]) dt \longrightarrow \int_0^{\cdot} w_t c dt,$$

then $u = \partial_x \log w$ for unique solution $\partial_t w = \Delta w + w \xi + c w$.

Funaki-Quastel strategy

Energy solution: martingale solution to

$$\partial_t u = \Delta u + \partial_x u^2 + \partial_x \xi;$$

with $u(\varphi) - M(\varphi)$ of zero quadratic variation.

- Existence trivial;
- no way to compare two energy solutions, uniqueness?
- Inspired by Funaki-Quastel (2015): $u^{\varepsilon} = \delta_{\varepsilon} * u$. Itô: $w^{\varepsilon} = e^{\partial_{x}^{-1} u^{\varepsilon}}$ solves

$$\begin{split} \mathrm{d} w_t^\varepsilon = & \Delta w^\varepsilon \mathrm{d} t + w_t^\varepsilon \big(\mathrm{d} \partial_x^{-1} M_t^\varepsilon \\ & + \big(\partial_x^{-1} \big(\delta_\varepsilon * \big(\partial_x u_t^2 \big) \big) - \big[\big(u_t^\varepsilon \big)^2 - \| \delta_\varepsilon \|_{L^2}^2 \big] \big) \mathrm{d} t \big). \end{split}$$

Lemma (Uniqueness criterion)

If for $c \in \mathbb{R}$

$$\int_0^\cdot w_t^\varepsilon \big(\partial_x^{-1} \big(\delta_\varepsilon * \big(\partial_x u_t^2\big)\big) - \big[\big(u_t^\varepsilon\big)^2 - \big\|\delta_\varepsilon\big\|_{L^2}^2\big]\big) \mathrm{d}t \longrightarrow \int_0^\cdot w_t c \mathrm{d}t,$$

then $u = \partial_x \log w$ for unique solution $\partial_t w = \Delta w + w \xi + c w$.

How to check uniqueness criterion?

Uniqueness criterion needs control of additive functional

$$\begin{split} \int_0^{\cdot} w_t^{\varepsilon} (\partial_x^{-1} (\delta_{\varepsilon} * (\partial_x u_t^2)) - [(u_t^{\varepsilon})^2 - \|\delta_{\varepsilon}\|_{L^2}^2]) \mathrm{d}t \\ &= \int_0^{\cdot} e^{\partial_x^{-1} u_t * \delta_{\varepsilon}} (\partial_x^{-1} (\delta_{\varepsilon} * (\partial_x u_t^2)) - [(u_t * \delta_{\varepsilon})^2 - \|\delta_{\varepsilon}\|_{L^2}^2]) \mathrm{d}t. \end{split}$$

 How to control additive functionals of energy solutions? First consider Markov processes.

Intermezzo: Martingale trick

X Markov, generator \mathcal{L} , $X_0 \sim \mu$ stationary.

- symmetric $\mathcal{L}_S = (\mathcal{L} + \mathcal{L}^*)/2$, antisymmetric $\mathcal{L}_A = (\mathcal{L} \mathcal{L}^*)/2$.
- $\hat{X}_t = X_{T-t}$ Markov w/ generator $\mathcal{L}^* = \mathcal{L}_S \mathcal{L}_A$.
- Dynkin's formula (Itô):

$$F(X_T) - F(X_0) - \int_0^T \mathcal{L}F(X_s) ds = M_T^F$$

$$F(\hat{X}_T) - F(\hat{X}_0) - \int_0^T \mathcal{L}^*F(\hat{X}_s) ds = \hat{M}_T^F$$

get

$$-\int_0^T 2\mathcal{L}_S F(X_s) \mathrm{d}s = M_T^F + \hat{M}_T^F.$$

• $\langle M^F \rangle_t = \int_0^t (\mathcal{L}F^2 - 2F\mathcal{L}F)(X_s) ds = \int_0^t (\mathcal{L}_S F^2 - 2F\mathcal{L}_S F)(X_s) ds$, so

$$\mathbb{E}\left[\left|\int_0^T \mathcal{L}_S F(X_s) \mathrm{d}s\right|^p\right] \lesssim T^{p/2} \mathbb{E}[\left|\left(\mathcal{L}_S F^2 - 2F \mathcal{L}_S F\right)(X_0)\right|^{p/2}].$$

Intermezzo: Martingale trick

X Markov, generator \mathcal{L} , $X_0 \sim \mu$ stationary.

- symmetric $\mathcal{L}_S = (\mathcal{L} + \mathcal{L}^*)/2$, antisymmetric $\mathcal{L}_A = (\mathcal{L} \mathcal{L}^*)/2$.
- $\hat{X}_t = X_{T-t}$ Markov w/ generator $\mathcal{L}^* = \mathcal{L}_S \mathcal{L}_A$.
- Dynkin's formula (Itô):

$$F(X_T) - F(X_0) - \int_0^T \mathcal{L}F(X_s) ds = M_T^F,$$

$$F(\hat{X}_T) - F(\hat{X}_0) - \int_0^T \mathcal{L}^*F(\hat{X}_s) ds = \hat{M}_T^F,$$

get

$$-\int_0^T 2\mathcal{L}_S F(X_s) \mathrm{d}s = M_T^F + \hat{M}_T^F.$$

• $\langle M^F \rangle_t = \int_0^t (\mathcal{L}F^2 - 2F\mathcal{L}F)(X_s) ds = \int_0^t (\mathcal{L}_S F^2 - 2F\mathcal{L}_S F)(X_s) ds$, so

$$\mathbb{E}\left[\left|\int_0^T \mathcal{L}_S F(X_s) \mathrm{d}s\right|^p\right] \lesssim T^{p/2} \mathbb{E}[|(\mathcal{L}_S F^2 - 2F \mathcal{L}_S F)(X_0)|^{p/2}].$$

Martingale trick for Burgers equation

$$\partial_t u = \Delta u + \partial_x u^2 + \partial_x \xi.$$

Formally:

- Space white noise invariant.
- symmetric $\mathcal{L}_S = (\mathcal{L} + \mathcal{L}^*)/2$, antisymmetric $\mathcal{L}_A = (\mathcal{L} \mathcal{L}^*)/2$.
- \mathcal{L}_S generator of ∞ -dim Ornstein-Uhlenbeck process

$$\partial_t X = \Delta X + \partial_x \xi.$$

 \Rightarrow martingale trick should bound $\mathbb{E}\left[\left|\int_0^t \mathcal{L}_S F(u_s) \mathrm{d}s\right|^p\right]$ via white noise and OU-generator \mathcal{L}_S .

Martingale trick for Burgers equation

$$\partial_t u = \Delta u + \partial_x u^2 + \partial_x \xi.$$

Formally:

- Space white noise invariant.
- symmetric $\mathcal{L}_S = (\mathcal{L} + \mathcal{L}^*)/2$, antisymmetric $\mathcal{L}_A = (\mathcal{L} \mathcal{L}^*)/2$.
- \mathcal{L}_{S} generator of ∞ -dim Ornstein-Uhlenbeck process

$$\partial_t X = \Delta X + \partial_x \xi.$$

Martingale trick for Burgers equation

$$\partial_t u = \Delta u + \partial_x u^2 + \partial_x \xi.$$

Formally:

- Space white noise invariant.
- symmetric $\mathcal{L}_S = (\mathcal{L} + \mathcal{L}^*)/2$, antisymmetric $\mathcal{L}_A = (\mathcal{L} \mathcal{L}^*)/2$.
- \mathcal{L}_S generator of ∞ -dim Ornstein-Uhlenbeck process

$$\partial_t X = \Delta X + \partial_x \xi.$$

 \Rightarrow martingale trick should bound $\mathbb{E}\left[\left|\int_0^t \mathcal{L}_S F(u_s) \mathrm{d}s\right|^p\right]$ via white noise and OU-generator \mathcal{L}_S .

Gubinelli-Jara solution

Gubinelli-Jara (2013): stationary energy solution

$$\partial_t u = \Delta u + \partial_x u^2 + \partial_x \xi.$$

is FB-solution if $\hat{u}_t = u_{T-t}$ energy solution of

$$\partial_t \hat{u} = \Delta \hat{u} - \partial_x \hat{u}^2 + \partial_x \xi.$$

Gubinelli-Jara (2013): existence of FB-solutions, martingale trick works.

• \Rightarrow control $\int_0^t F(u_s) ds$ if we solve ∞ -dim Poisson eq.

$$\mathcal{L}_{S}G = F$$
 in L^{2} (white noise).

• L^2 (white noise) Gaussian Hilbert space \Rightarrow chaos expansion:

$$F = \sum_n I_n(f_n) ext{ for } f_n \in L^2(\mathbb{R}^n)$$
 $(g_n) = I_n(\Delta g_n) \Rightarrow ext{ solve } \Delta g_n = f_n$

Reduces problem to finite-dim PDE!

Gubinelli-Jara solution

Gubinelli-Jara (2013): stationary energy solution

$$\partial_t u = \Delta u + \partial_x u^2 + \partial_x \xi.$$

is FB-solution if $\hat{u}_t = u_{T-t}$ energy solution of

$$\partial_t \hat{u} = \Delta \hat{u} - \partial_x \hat{u}^2 + \partial_x \xi.$$

Gubinelli-Jara (2013): existence of FB-solutions, martingale trick works.

• \Rightarrow control $\int_0^t F(u_s) ds$ if we solve ∞ -dim Poisson eq.

$$\mathcal{L}_S G = F$$
 in L^2 (white noise).

• L^2 (white noise) Gaussian Hilbert space \Rightarrow chaos expansion:

$$F = \sum_n I_n(f_n) ext{ for } f_n \in L^2(\mathbb{R}^n)$$
 $\mathcal{L}_S I_n(g_n) = I_n(\Delta g_n) \Rightarrow ext{ solve } \Delta g_n = f_n.$

Reduces problem to finite-dim PDE!

Bounds for Burgers nonlinearity

u FB-solution to

$$\partial_t u = \Delta u + \partial_x u^2 + \partial_x \xi.$$

- Martingale trick + chaos decomposition: bound $\mathbb{E}\left[\left|\int_0^t F(u_s) ds\right|^p\right]$;
- $F(u) = \partial_x u^2 \Rightarrow$ sharp bounds on Burgers nonlinearity;
- get $\int_0^{\cdot} (\partial_x u_s^2)(\varphi) ds \in C^{3/4-}$ for $\varphi \in \mathcal{S}$ but not better!
- Consequence: $u \mapsto u(\varphi)$ not in domain of generator.
- Open problem: describe Burgers generator.

Bounds for Burgers nonlinearity

u FB-solution to

$$\partial_t u = \Delta u + \partial_x u^2 + \partial_x \xi.$$

- Martingale trick + chaos decomposition: bound $\mathbb{E}\left[\left|\int_0^t F(u_s) ds\right|^p\right]$;
- $F(u) = \partial_x u^2 \Rightarrow$ sharp bounds on Burgers nonlinearity;
- get $\int_0^{\cdot} (\partial_x u_s^2)(\varphi) ds \in C^{3/4-}$ for $\varphi \in \mathcal{S}$ but not better!
- Consequence: $u \mapsto u(\varphi)$ not in domain of generator.
- Open problem: describe Burgers generator.

Uniqueness of FB-solutions I

• Uniqueness criterion: need control of

$$\int_0^{\cdot} e^{\partial_x^{-1} u_t * \delta_{\varepsilon}} (\partial_x^{-1} (\delta_{\varepsilon} * (\partial_x u_t^2)) - [(u_t * \delta_{\varepsilon})^2 - \|\delta_{\varepsilon}\|_{L^2}^2]) dt.$$

• Problem: $(\partial_x^{-1}(\delta_\varepsilon*(\partial_x u_t^2)) - [(u_t*\delta_\varepsilon)^2 - \|\delta_\varepsilon\|_{L^2}^2])$ in second chaos, but $e^{\partial_x^{-1} u_t * \delta_\varepsilon} (\partial_x^{-1}(\delta_\varepsilon*(\partial_x u_t^2)) - [(u_t*\delta_\varepsilon)^2 - \|\delta_\varepsilon\|_{L^2}^2])$ not! Tedious to solve Poisson equation. What to do?

Intermezzo: Martingale trick w/o Poisson equation

- Martingale trick bounds $\mathbb{E}\left[\left|\int_0^t \mathcal{L}_S F(u_s) ds\right|^p\right]$.
- What if we cannot solve Poisson equation $\mathcal{L}_S F = G$? Use Kipnis-Varadhan lemma!
- Idea: solve $(\mathcal{L}_S \lambda)F_{\lambda} = G$ instead. $\lambda > 0$ enforces spectral gap,

$$F_{\lambda} = \int_0^{\infty} e^{t(\mathcal{L}_S - \lambda)} G dt.$$

- Apply martingale trick to $\mathbb{E}\left[\left|\int_0^t \mathcal{L}_S F_{\lambda}(u_s) \mathrm{d}s\right|^2\right]$, send $\lambda \to 0$.
- Duality: $\mathbb{E}\left[\left|\int_0^t G(u_s) ds\right|^2\right] \lesssim T \|G\|_{-1}^2$ for

$$||G||_{-1}^2 = \sup_{H} \{2\mathbb{E}[G(u_0)H(u_0)] + \mathbb{E}[H(u_0)\mathcal{L}_SH(u_0)]\}.$$

• Note: $\mathbb{E}[G(u_0)] \neq 0$, then $||G||_{-1}^2 = \infty$.

Intermezzo: Martingale trick w/o Poisson equation

- Martingale trick bounds $\mathbb{E}\left[\left|\int_0^t \mathcal{L}_S F(u_s) ds\right|^p\right]$.
- What if we cannot solve Poisson equation $\mathcal{L}_S F = G$? Use Kipnis-Varadhan lemma!
- Idea: solve $(\mathcal{L}_S \lambda)F_{\lambda} = G$ instead. $\lambda > 0$ enforces spectral gap,

$$F_{\lambda} = \int_0^{\infty} e^{t(\mathcal{L}_S - \lambda)} G dt.$$

- Apply martingale trick to $\mathbb{E}\Big[\Big|\int_0^t \mathcal{L}_S F_\lambda(u_s) \mathrm{d}s\Big|^2\Big]$, send $\lambda \to 0$.
- Duality: $\mathbb{E}\left[\left|\int_0^t G(u_s) ds\right|^2\right] \lesssim T \|G\|_{-1}^2$ for

$$\|G\|_{-1}^2 = \sup_{H} \{2\mathbb{E}[G(u_0)H(u_0)] + \mathbb{E}[H(u_0)\mathcal{L}_SH(u_0)]\}.$$

• Note: $\mathbb{E}[G(u_0)] \neq 0$, then $||G||_{-1}^2 = \infty$.

Intermezzo: Martingale trick w/o Poisson equation

- Martingale trick bounds $\mathbb{E}\left[\left|\int_0^t \mathcal{L}_S F(u_s) ds\right|^p\right]$.
- What if we cannot solve Poisson equation $\mathcal{L}_S F = G$? Use Kipnis-Varadhan lemma!
- Idea: solve $(\mathcal{L}_S \lambda)F_{\lambda} = G$ instead. $\lambda > 0$ enforces spectral gap,

$$F_{\lambda} = \int_{0}^{\infty} e^{t(\mathcal{L}_{S} - \lambda)} G dt.$$

- Apply martingale trick to $\mathbb{E}\Big[\Big|\int_0^t \mathcal{L}_S F_\lambda(u_s) \mathrm{d}s\Big|^2\Big]$, send $\lambda \to 0$.
- Duality: $\mathbb{E}\left[\left|\int_0^t G(u_s) ds\right|^2\right] \lesssim T \|G\|_{-1}^2$ for

$$||G||_{-1}^2 = \sup_{H} \{2\mathbb{E}[G(u_0)H(u_0)] + \mathbb{E}[H(u_0)\mathcal{L}_SH(u_0)]\}.$$

14 / 25

• Note: $\mathbb{E}[G(u_0)] \neq 0$, then $||G||_{-1}^2 = \infty$.

Uniqueness of FB-solutions II

Aim: control
$$\int_0^{\cdot} e^{\partial_x^{-1} u_t * \delta_{\varepsilon}} (\partial_x^{-1} (\delta_{\varepsilon} * (\partial_x u_t^2)) - [(u_t * \delta_{\varepsilon})^2 - \|\delta_{\varepsilon}\|_{L^2}^2]) dt$$
.

• Kipnis-Varadhan:

$$\mathbb{E}\Big[\Big|\int_0^t F^{\varepsilon}(u_t)\mathrm{d}t\Big|^2\Big]\lesssim T\|F^{\varepsilon}\|_{-1}^2.$$

• But $\mathbb{E}[F^{\varepsilon}(u_0)] \neq 0$, so $\|F^{\varepsilon}\|_{-1}^2 = \infty!$ Solution: consider

$$G^{\varepsilon}(u_t) = F^{\varepsilon}(u_t) - \frac{1}{12}w_t^{\varepsilon}.$$

Tedious computation: $\lim_{\varepsilon} \|G^{\varepsilon}\|_{-1}^2 = 0$.

• So for $w_t = e^{\partial_x^{-1} u_t} = \lim_{\varepsilon \to 0} w_t^{\varepsilon}$:

$$\mathrm{d}w_t = \Delta w \mathrm{d}t + w_t \mathrm{d}\partial_x^{-1} M_t + \frac{1}{12} w_t \mathrm{d}t.$$

Theorem (Gubinelli-P. '15)

FB-solution to Burgers equation is unique and $u = \partial_x \log w$ (First probabilistic solution for a "truely singular" SPDE).

Uniqueness of FB-solutions II

Aim: control
$$\int_0^{\cdot} e^{\partial_x^{-1} u_t * \delta_{\varepsilon}} (\partial_x^{-1} (\delta_{\varepsilon} * (\partial_x u_t^2)) - [(u_t * \delta_{\varepsilon})^2 - \|\delta_{\varepsilon}\|_{L^2}^2]) dt$$
.

• Kipnis-Varadhan:

$$\mathbb{E}\Big[\Big|\int_0^t F^{\varepsilon}(u_t)\mathrm{d}t\Big|^2\Big]\lesssim T\|F^{\varepsilon}\|_{-1}^2.$$

• But $\mathbb{E}[F^{\varepsilon}(u_0)] \neq 0$, so $\|F^{\varepsilon}\|_{-1}^2 = \infty!$ Solution: consider

$$G^{\varepsilon}(u_t) = F^{\varepsilon}(u_t) - \frac{1}{12}w_t^{\varepsilon}.$$

Tedious computation: $\lim_{\varepsilon} \|G^{\varepsilon}\|_{-1}^2 = 0$.

• So for $w_t = e^{\partial_x^{-1} u_t} = \lim_{\varepsilon \to 0} w_t^{\varepsilon}$:

$$\mathrm{d}w_t = \Delta w \mathrm{d}t + w_t \mathrm{d}\partial_x^{-1} M_t + \frac{1}{12} w_t \mathrm{d}t.$$

Theorem (Gubinelli-P. '15)

FB-solution to Burgers equation is unique and $u = \partial_x \log w$. (First probabilistic solution for a "truely singular" SPDE).

Simple extensions

- Works on torus \mathbb{R}/\mathbb{Z} and on \mathbb{R} .
- Uniqueness criterion works without stationarity or forward-backward structure.
- \Rightarrow energy solutions with $\text{law}(u) \ll \text{law}(u_{FB})$ are unique Gubinelli-P. (2017).
- ⇒ bounded entropy perturbations of stationary weakly asymmetric systems converge to Burgers Gonçalves-Jara-Sethuraman (2015).
- Extension from Burgers to KPZ is easy:

$$\partial_t h = \Delta h + (\partial_x h)^2 + \xi = \Delta h + u^2 + \xi.$$

u unique $\Rightarrow u^2$ unique $\Rightarrow h$ unique

• $h_t = h_t^{CH} + \frac{1}{12}t$ for Cole-Hopf solution h^{CH} . Already observed by Funaki-Quastel (2015).

Simple extensions

- Works on torus \mathbb{R}/\mathbb{Z} and on \mathbb{R} .
- Uniqueness criterion works without stationarity or forward-backward structure.
- \Rightarrow energy solutions with $\text{law}(u) \ll \text{law}(u_{FB})$ are unique Gubinelli-P. (2017).
- ⇒ bounded entropy perturbations of stationary weakly asymmetric systems converge to Burgers Gonçalves-Jara-Sethuraman (2015).
- Extension from Burgers to KPZ is easy:

$$\partial_t h = \Delta h + (\partial_x h)^2 + \xi = \Delta h + u^2 + \xi.$$

u unique $\Rightarrow u^2$ unique $\Rightarrow h$ unique.

• $h_t = h_t^{CH} + \frac{1}{12}t$ for Cole-Hopf solution h^{CH} . Already observed by Funaki-Quastel (2015).

Motivation

2 Energy solutions and their uniqueness

3 Application to weak KPZ universality and boundary conditions

How to apply this

For convergence to FB-solutions we need:

- Martingale characterization (easy);
- energy condition = zero quadratic variation nonlinearity (easy);
- forward-backward decomposition (needs similar structure in approximating model; satisfied for all examples from above).

Example: WASEP with open boundaries

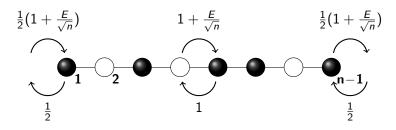


Figure: Jump rates. Leftmost and rightmost rates are the entrance/exit rates. Compare also Corwin-Shen (2016).

- Product Bernoulli measure w/ density 1/2 invariant;
- \mathcal{L}_S : generator of dynamics with E = 0;
- LLN: $\eta(0, n \cdot) \longrightarrow \frac{1}{2}$;
- CLT: $n^{1/2}(\eta(0, n \cdot) 1/2) \longrightarrow$ white noise;
- Set $u^n(t,x) := n^{1/2}(u(n^2t,nx) 1/2)$.

Example: WASEP with open boundaries

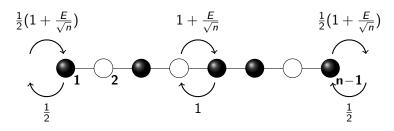


Figure: Jump rates. Leftmost and rightmost rates are the entrance/exit rates. Compare also Corwin-Shen (2016).

- Product Bernoulli measure w/ density 1/2 invariant;
- \mathcal{L}_S : generator of dynamics with E = 0;
- LLN: $\eta(0, n \cdot) \longrightarrow \frac{1}{2}$;
- CLT: $n^{1/2}(\eta(0, n \cdot) 1/2) \longrightarrow$ white noise;
- Set $u^n(t,x) := n^{1/2}(u(n^2t,nx) 1/2)$.

Scaling limit

uⁿ solves

$$\begin{split} \mathrm{d}u^n &= S^n \mathrm{d}t + A^n \mathrm{d}t + \mathrm{d}M^n \\ &= \Delta_{\mathrm{Dir}}^{(n)} u^n \mathrm{d}t + A^n \mathrm{d}t + \mathrm{d}M^n; \end{split}$$

• time-reversed process satisfies same equation with $-A^n$.

Use approach of Gonçalves-Jara (2014):

- Show tightness for S^n , A^n and M^n ; deduce tightness of u^n ;
- second order Boltzmann-Gibbs principle:

$$\int_0^T \left(A^n(t) - E \partial_x (u^n(t)^2) \right) dt \longrightarrow 0;$$

- straightforward: $\partial_t M^n \longrightarrow \partial_x \xi$;
- ⇒ any limit point is FB-solution to Burgers eq. with Dirichlet b.c.
 Gonçalves-P.-Simon (in preparation)

Scaling limit

uⁿ solves

$$du^{n} = S^{n}dt + A^{n}dt + dM^{n}$$
$$= \Delta_{Dir}^{(n)}u^{n}dt + A^{n}dt + dM^{n};$$

• time-reversed process satisfies same equation with $-A^n$.

Use approach of Gonçalves-Jara (2014):

- Show tightness for S^n , A^n and M^n ; deduce tightness of u^n ;
- second order Boltzmann-Gibbs principle:

$$\int_0^T \left(A^n(t) - E\partial_x(u^n(t)^2)\right) dt \longrightarrow 0;$$

- straightforward: $\partial_t M^n \longrightarrow \partial_x \xi$;
- ⇒ any limit point is FB-solution to Burgers eq. with Dirichlet b.c. Gonçalves-P.-Simon (in preparation)

Nicolas Perkowski KPZ martingale solutions 20 / 25

Burgers equation with Dirichlet boundary conditions

$$\partial_t u = \Delta u + \partial_x u^2 + \partial_x \xi,$$

 $u: \mathbb{R}_+ \times [0,1] \to \mathbb{R}$ with u(0) = u(1) = 0. u is FB-solution if:

• for $\varphi \in C^2[0,1]$ with $\varphi(0) = \varphi(1) = 0$:

$$M(\varphi) = u(\varphi) - u_0(\varphi) - \int_0^{\infty} u_s(\Delta \varphi) ds + \lim_n \int_0^{\infty} (\rho_n * u_s)^2 (\partial_x \varphi) ds$$

cont. martingale, $\langle M(\varphi) \rangle_t = 2 \|\partial_x \varphi\|_{L^2}^2 t$.

- $u(\varphi) M(\varphi)$ has zero quadratic variation;
- u satisfies FB-condition: $u_t \sim$ white noise for all t, time reversed process solves $\partial_t \hat{u} = \Delta \hat{u} \partial_x \hat{u}^2 + \partial_x \hat{\xi}$.

Burgers equation with Dirichlet boundary conditions

$$\partial_t u = \Delta u + \partial_x u^2 + \partial_x \xi,$$

 $u: \mathbb{R}_+ \times [0,1] \to \mathbb{R}$ with u(0) = u(1) = 0. u is FB-solution if:

• for $\varphi \in C^2[0,1]$ with $\varphi(0) = \varphi(1) = 0$:

$$M(\varphi) = u(\varphi) - u_0(\varphi) - \int_0^{\infty} u_s(\Delta \varphi) ds + \lim_n \int_0^{\infty} (\rho_n * u_s)^2 (\partial_x \varphi) ds$$

cont. martingale, $\langle M(\varphi) \rangle_t = 2 \|\partial_x \varphi\|_{L^2}^2 t$.

- $u(\varphi) M(\varphi)$ has zero quadratic variation;
- u satisfies FB-condition: $u_t \sim$ white noise for all t, time reversed process solves $\partial_t \hat{u} = \Delta \hat{u} \partial_x \hat{u}^2 + \partial_x \hat{\xi}$.

Uniqueness for Dirichlet boundary conditions I

$$\partial_t u = \Delta u + \partial_x u^2 + \partial_x \xi,$$

$$u \colon \mathbb{R}_+ \times [0,1] \to \mathbb{R}$$
 with $u(0) = u(1) = 0$.

- Regularize e.g. w/ heat kernel: $u_t^{\varepsilon}(x) = u_t(p_{\varepsilon}(x,\cdot));$
- $\mathbf{w}_t^{\varepsilon} = e^{\partial_{\mathbf{x}}^{-1} \mathbf{u}_t^{\varepsilon}}$, get

$$\mathrm{d}w_t^{\varepsilon} = \Delta w^{\varepsilon} \mathrm{d}t + w_t^{\varepsilon} (\mathrm{d}\partial_x^{-1} M_t^{\varepsilon} + R_t^{\varepsilon} \mathrm{d}t + c \mathrm{d}t) + w_t^{\varepsilon} (\delta_0^{\varepsilon} + \delta_1^{\varepsilon}) \mathrm{d}t$$

$$\partial_x w^{\varepsilon}(0) = w^{\varepsilon}(0)\partial_x \partial_x^{-1} u^{\varepsilon}(0) = w^{\varepsilon}(0)u^{\varepsilon}(0) = 0$$
 and $\partial_x w^{\varepsilon}(1) = 0$ (von Neumann bc)

• As before $R^{\varepsilon} \to 0$, c = 1/12.

So far so boring. But:

- $w_t^{\varepsilon}(\delta_0^{\varepsilon} + \delta_1^{\varepsilon}) \longrightarrow w_t(\delta_0 + \delta_1)$, very singular drift;
- kill this by test function φ w/ $\partial_x \varphi(0) = -\varphi(0)$, $\partial_x \varphi(1) = \varphi(1)$;
- get Robins bc for $w = \lim^{\varepsilon} w^{\varepsilon}$! Compare also Gerencser-Hairer (2017).

Uniqueness for Dirichlet boundary conditions I

$$\partial_t u = \Delta u + \partial_x u^2 + \partial_x \xi,$$

$$u: \mathbb{R}_+ \times [0,1] \to \mathbb{R} \text{ with } u(0) = u(1) = 0.$$

- Regularize e.g. w/ heat kernel: $u_t^{\varepsilon}(x) = u_t(p_{\varepsilon}(x,\cdot));$
- $\mathbf{w}_t^{\varepsilon} = e^{\partial_{\mathbf{x}}^{-1} \mathbf{u}_t^{\varepsilon}}$, get

$$\mathrm{d} w_t^\varepsilon = \Delta w^\varepsilon \mathrm{d} t + w_t^\varepsilon (\mathrm{d} \partial_x^{-1} M_t^\varepsilon + R_t^\varepsilon \mathrm{d} t + c \mathrm{d} t) + w_t^\varepsilon (\delta_0^\varepsilon + \delta_1^\varepsilon) \mathrm{d} t$$

$$\partial_x w^{\varepsilon}(0) = w^{\varepsilon}(0)\partial_x \partial_x^{-1} u^{\varepsilon}(0) = w^{\varepsilon}(0)u^{\varepsilon}(0) = 0$$
 and $\partial_x w^{\varepsilon}(1) = 0$ (von Neumann bc)

• As before $R^{\varepsilon} \to 0$, c = 1/12.

So far so boring. But:

- $w_t^{\varepsilon}(\delta_0^{\varepsilon} + \delta_1^{\varepsilon}) \longrightarrow w_t(\delta_0 + \delta_1)$, very singular drift;
- kill this by test function φ w/ $\partial_x \varphi(0) = -\varphi(0)$, $\partial_x \varphi(1) = \varphi(1)$;
- get Robins bc for $w = \lim^{\varepsilon} w^{\varepsilon}!$ Compare also Gerencser-Hairer (2017).

Uniqueness for Dirichlet boundary conditions II

Theorem (Gonçalves-Simon-P. (in preparation))

 \exists unique FB-solution u to Burgers with Dirichlet bc, and a unique FB-solution h to

$$\partial_t h = \Delta h + (\partial_x h)^2 + \xi$$

with von Neumann bc $\partial_{\times} h_t(0) = \partial_{\times} h_t(1) = 0$.

$$h_t = h_t^{CH} + \frac{1}{12}t$$

for Cole-Hopf solution h^{CH} to

$$\partial_t h = \Delta h + (\partial_x h)^2 + \xi$$

with von Neumann bc $\partial_x h_t(0) = -1$; $\partial_x h_t(1) = 1$.

Conclusion

- Energy solutions formulate KPZ/Burgers equation as a martingale problem.
- At stationarity: uniqueness via Cole-Hopf and martingale trick.
- Extends to very simple non-stationary regimes, but general case still open.
- Powerful tool for proving convergence to Burgers equation, general recipe due to Gonçalves-Jara (2014).
- Extension to boundary conditions more interesting than expected.
- All rests on Cole-Hopf transform, probabilistic understanding of other singular SPDEs out of reach...

Thank you