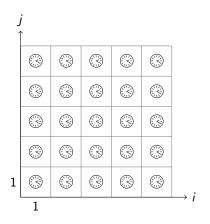
Large deviations for certain inhomogeneous corner growth models

Chris Janjigian

Université Paris Diderot


April 28, 2017 (joint work with Elnur Emrah)

Outline

- The (totally asymmetric) corner growth model
 - Questions: general homogeneous shape theorem and large deviations
 - Inhomogeneous exponential model
 - Model with random parameters
- Results and proof sketches
 - The shape function: appearance of linear regions.
 - Overview of quenched and annealed large deviation results.
 - Sketch of quenched rate function computation.

Goal: To better understand what can happen in inhomogeneous models in the KPZ class at the level of large deviations through a solvable example.

(Homogeneous) Last passage percolation

Take $W(i,j) \geqslant 0$, $(i,j) \in \mathbb{N}^2$ i.i.d.

(Homogeneous) Last passage percolation

Take
$$W(i,j) \geqslant 0$$
, $(i,j) \in \mathbb{N}^2$ i.i.d.

$$G(\textit{m},\textit{n}) = \max_{\substack{\text{up-right paths} \\ \pi: (1,1) \rightarrow (\textit{m},\textit{n})}} \sum_{(i,j) \in \pi} W(i,j)$$

Homogeneous shape theorem

Theorem (Martin, '04)

Suppose the family $\{W(i,j)\}$ are positive, i.i.d. random variables with

$$\int_0^\infty \sqrt{P(W(1,1)>r)}dr < \infty.$$

Then there exists a finite, concave, homogeneous function $g:(0,\infty)^2\to\mathbb{R}_+$ such that

$$\lim_{n\to\infty} n^{-1}G(\lfloor ns\rfloor,\lfloor nt\rfloor) = g(s,t).$$

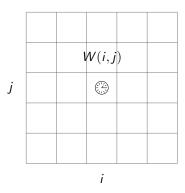
Homogeneous right tail large deviations

Theorem

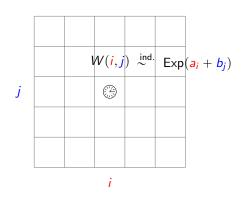
Suppose the family $\{W(i,j)\}$ are positive, i.i.d. random variables with $E[e^{\lambda W(1,1)}] < \infty$ for some $\lambda > 0$ and that P(W(1,1) > r) > 0 for all r > 0. Then there exists a finite, convex function $J_{s,t}(r) : \mathbb{R} \to \mathbb{R}_+$ such that

$$\lim_{n\to\infty} -n^{-1}\log P\left(G(\lfloor ns\rfloor, \lfloor nt\rfloor) \geqslant nr\right) = J_{s,t}(r).$$

Homogeneous left tail large deviations

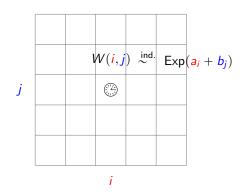

Theorem

Suppose the family $\{W(i,j)\}$ are non-negative, non-degenerate, i.i.d. random variables with $E[e^{\lambda W(1,1)}] < \infty$ for some $\lambda > 0$. Then there exist constants C > 0 such that for $r \in (0,g(s,t))$

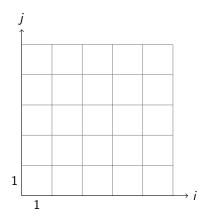

$$P(G(\lfloor ns \rfloor, \lfloor nt \rfloor) \leqslant nr) \leqslant C^{-1}e^{-Cn^2}.$$

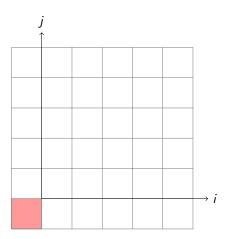
A lower bound with the same rate holds for all $r \in (0, g(s, t))$ if $P(W(1, 1) \in [0, \epsilon)) > 0$ for all $\epsilon > 0$.

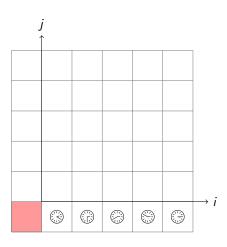
Inhomogeneous exponential last passage percolation

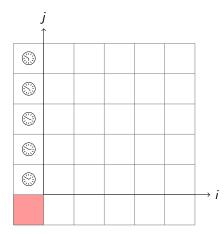


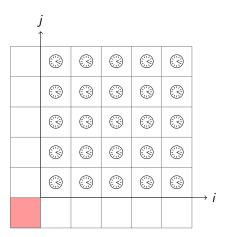
Inhomogeneous exponential last passage percolation




 $\stackrel{\text{ind.}}{\sim} \operatorname{Exp}(\mathbf{a}_i + b_j) \qquad \bullet \quad W(i,j) \stackrel{ind.}{\sim} \operatorname{Exp}(\mathbf{a}_i + b_j)$ $\mathbf{a} = (a_n)_{n \geqslant 1} \text{ and } \mathbf{b} = (b_n)_{n \geqslant 1}$ $\mathbf{a}_i, b_j \geqslant c > 0.$


Inhomogeneous exponential last passage percolation

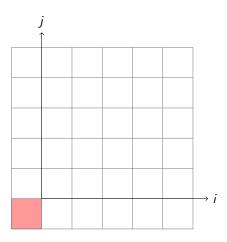

- Exp $(\mathbf{a}_i + b_j)$ $W(i,j) \stackrel{ind.}{\sim} \operatorname{Exp}(a_i + b_j)$ $\mathbf{a} = (a_n)_{n \geqslant 1} \text{ and } \mathbf{b} = (b_n)_{n \geqslant 1}$ $a_i, b_j \geqslant c > 0.$
 - Model introduced by Johansson '01.



Take
$$z$$
: $-a_i < z < b_j$, $i, j \in \mathbb{N}$
 $W(i, 0) \sim \mathsf{Exp}(a_i + z)$

Take
$$z$$
: $-a_i < z < b_j$, $i, j \in \mathbb{N}$
$$W(i, 0) \sim \mathsf{Exp}(a_i + z)$$

$$W(0, j) \sim \mathsf{Exp}(b_j - z)$$


Take
$$z$$
: $-a_i < z < b_j$, $i, j \in \mathbb{N}$

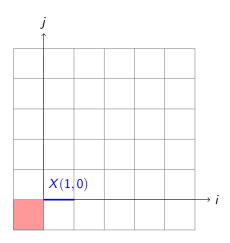
$$W(i, 0) \sim \operatorname{Exp}(a_i + z)$$

$$W(0, j) \sim \operatorname{Exp}(b_j - z)$$

$$W(i, j) \sim \operatorname{Exp}(a_i + b_j)$$

Extend environment to include $(i,0),(0,j), i,j \ge 0, W(0,0) = 0.$

Take
$$z$$
: $-a_i < z < b_j$, $i, j \in \mathbb{N}$


$$W(i,0) \sim \operatorname{Exp}(a_i + z)$$

$$W(0,j) \sim \operatorname{Exp}(b_j - z)$$

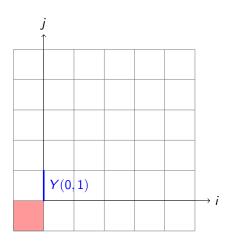
$$W(i,j) \sim \operatorname{Exp}(a_i + b_i)$$

Passage time in this environment is denoted $\hat{G}_z(i,j)$.

Extend environment to include $(i,0),(0,j), i,j \ge 0, W(0,0) = 0.$

Take
$$z: -a_i < z < b_j, i, j \in \mathbb{N}$$

$$W(i,0) \sim \operatorname{Exp}(a_i + z)$$


$$W(0,j) \sim \operatorname{Exp}(b_j - z)$$

$$W(i,j) \sim \operatorname{Exp}(a_i + b_i)$$

Passage time in this environment is denoted $\hat{G}_z(i,j)$.

$$X(i,j) = \hat{G}_z(i,j) - \hat{G}_z(i-1,j)$$

Extend environment to include $(i, 0), (0, j), i, j \ge 0, W(0, 0) = 0.$

Take
$$z: -a_i < z < b_j, i, j \in \mathbb{N}$$

$$W(i,0) \sim \operatorname{Exp}(a_i + z)$$

$$W(0,j) \sim \operatorname{Exp}(b_j - z)$$

$$W(i,j) \sim \operatorname{Exp}(a_i + b_i)$$

Passage time in this environment is denoted $\hat{G}_z(i,j)$.

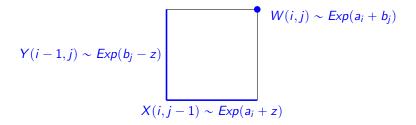
$$X(i,j) = \hat{G}_z(i,j) - \hat{G}_z(i-1,j)$$

 $Y(i,j) = \hat{G}_z(i,j) - \hat{G}_z(i,j-1)$

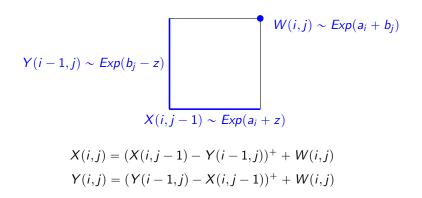
Stationary model - exponential lemma

Lemma

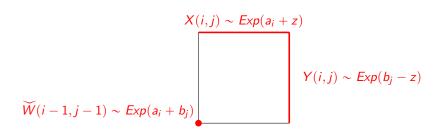
Suppose that (X,Y,W) are mutually independent exponential random variables with means $(a+z)^{-1}, (b-z)^{-1}, (a+b)^{-1}$ and define


$$\check{X} = (X - Y)^{+} + W, \qquad \check{Y} = (Y - X)^{+} + W, \qquad \check{W} = X \wedge Y.$$

Then

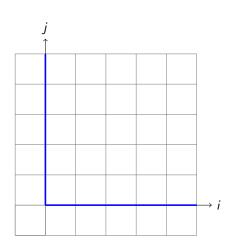

$$(\check{X}, \check{Y}, \check{W}) \stackrel{d}{=} (X, Y, W).$$

Proof: Compute the Laplace transform of $(\check{X}, \check{Y}, \check{W})$.

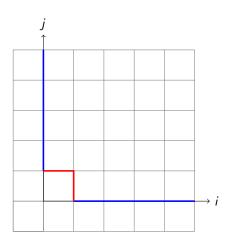

Stationary model - corner flipping

Stationary model - corner flipping

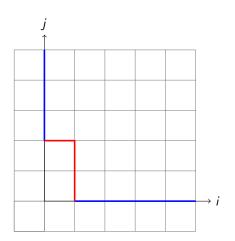
Stationary model - corner flipping



$$X(i,j) = (X(i,j-1) - Y(i-1,j))^{+} + W(i,j)$$

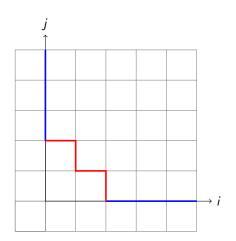

$$Y(i,j) = (Y(i-1,j) - X(i,j-1))^{+} + W(i,j)$$

$$\widetilde{W}(i-1,j-1) = X(i,j-1) \wedge Y(i-1,j)$$



$$X(i,0) = W(i,0) \sim \mathsf{Exp}(a_i + z)$$

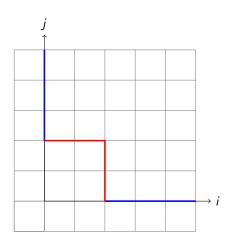
$$Y(0,j) = W(0,j) \sim \mathsf{Exp}(b_j - z)$$


$$X(i,0) = W(i,0) \sim \mathsf{Exp}(a_i + z)$$

$$Y(0,j) = W(0,j) \sim \mathsf{Exp}(b_j - z)$$

$$X(i,j) \sim \text{Exp}(a_i + z)$$

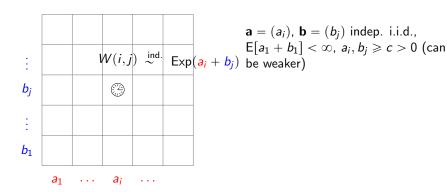
 $Y(i,j) \sim \text{Exp}(b_j - z).$


$$X(i,0) = W(i,0) \sim \mathsf{Exp}(a_i + z)$$

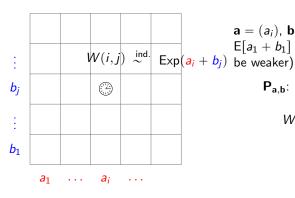
$$Y(0,j) = W(0,j) \sim \mathsf{Exp}(b_j - z)$$

$$X(i,j) \sim \text{Exp}(a_i + z)$$

 $Y(i,j) \sim \text{Exp}(b_j - z).$


$$X(i,0) = W(i,0) \sim \mathsf{Exp}(a_i + z)$$

$$Y(0,j) = W(0,j) \sim \mathsf{Exp}(b_j - z)$$


$$X(i,j) \sim \text{Exp}(a_i + z)$$

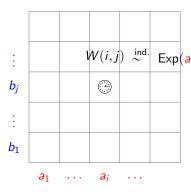
 $Y(i,j) \sim \text{Exp}(b_j - z).$

$$X(i,0) = W(i,0) \sim \mathsf{Exp}(a_i + z)$$

$$Y(0,j) = W(0,j) \sim \mathsf{Exp}(b_j - z)$$

$$X(i,j) \sim \text{Exp}(a_i + z)$$

 $Y(i,j) \sim \text{Exp}(b_j - z).$

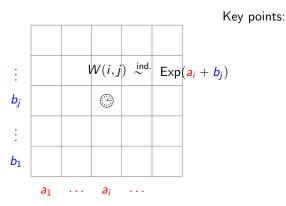


$$\mathbf{a}=(a_i), \ \mathbf{b}=(b_j) \ \text{indep. i.i.d.},$$

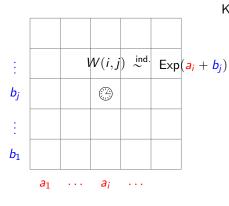
$$\mathsf{E}[a_1+b_1]<\infty, \ a_i,b_j\geqslant c>0 \ (\mathsf{can})$$

 $P_{a,b}$: conditioned on (a,b),

$$W(i,j) \stackrel{ind.}{\sim} \operatorname{Exp}(a_i + b_j).$$

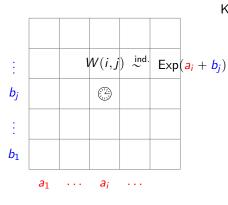


$$\mathbf{a}=(a_i),\,\mathbf{b}=(b_j)$$
 indep. i.i.d., $\mathsf{E}[a_1+b_1]<\infty,\,a_i,b_j\geqslant c>0$ (can $\mathsf{Exp}(a_i+b_j)$ be weaker)

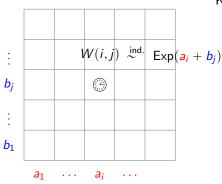

 $P_{a,b}$: conditioned on (a,b),

$$W(i,j) \stackrel{ind.}{\sim} \operatorname{Exp}(a_i + b_j).$$

 $\begin{array}{l} \mathbb{P}\text{: average } \textbf{P}_{\textbf{a},\textbf{b}} \text{ over } (\textbf{a},\textbf{b})\text{:} \\ \mathbb{P}(\cdot) = \mathsf{E}[\textbf{P}_{\textbf{a},\textbf{b}}(\cdot)]. \end{array}$



40.40.45.45. 5 000

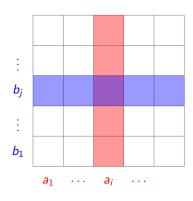

Key points:

$$\mathbf{P_{a,b}}$$
: indep., not ident. dist.: if $i \neq i'$ or $j \neq j'$
$$W(i,j) \overset{d}{\neq} W(i',j') \text{ (usually)}$$

Key points:

$$\mathbf{P_{a,b}}$$
: indep., not ident. dist.: if $i \neq i'$ or $j \neq j'$
$$W(i,j) \overset{d}{\neq} W(i',j') \text{ (usually)}$$

$$W(i,j) \perp W(i',j')$$



Key points:

$$\mathbf{P_{a,b}}$$
: indep., not ident. dist.: if $i \neq i'$ or $j \neq j'$
$$W(i,j) \stackrel{d}{\neq} W(i',j') \text{ (usually)}$$
$$W(i,j) \perp W(i',j')$$

 \mathbb{P} : ident. dist., not indep.:

$$W(i,j) \stackrel{d}{=} W(i',j').$$

Key points:

$$\mathbf{P_{a,b}}$$
: indep., not ident. dist.: if $i \neq i'$ or $j \neq j'$
$$W(i,j) \stackrel{d}{\neq} W(i',j') \text{ (usually)}$$

$$W(i,j) \perp W(i',j')$$

 \mathbb{P} : ident. dist., not indep.:

$$W(i,j) \stackrel{d}{=} W(i',j').$$

If $i = i'$ or $j = j'$
 $Cov(W(i,j), W(i',j')) \neq 0.$

Stationary shape function

Lemma

For s, t > 0, \mathbb{P}^z almost surely and for almost all (a,b) $\textbf{P}^z_{a,b}$ almost surely

$$g_z(s,t) := \lim_{n \to \infty} \frac{1}{n} \hat{G}_z(\lfloor \, ns \, \rfloor, \lfloor \, nt \, \rfloor) = s \, \mathsf{E}\left[\frac{1}{a_1 + z}\right] + t \, \mathsf{E}\left[\frac{1}{b_1 - z}\right].$$

Stationary shape function

Lemma

For s, t > 0, \mathbb{P}^z almost surely and for almost all (a,b) $\textbf{P}^z_{a,b}$ almost surely

$$g_z(s,t) := \lim_{n \to \infty} \frac{1}{n} \hat{G}_z(\lfloor \, ns \, \rfloor, \lfloor \, nt \, \rfloor) = s \, \mathsf{E} \left[\frac{1}{a_1 + z} \right] + t \, \mathsf{E} \left[\frac{1}{b_1 - z} \right].$$

Proof:

$$\begin{split} \widehat{G}_{z}(n,n) &= \sum_{1 \leq i \leq n} \left[\widehat{G}_{z}(i,0) - \widehat{G}_{z}(i-1,0) \right] + \sum_{1 \leq j \leq n} \left[\widehat{G}_{z}(n,j) - \widehat{G}_{z}(n,j-1) \right] \\ &= \sum_{1 \leq i \leq n} X(i,0) + \sum_{1 \leq j \leq n} Y(n,j). \end{split}$$

Stationary shape function

Lemma

For s, t > 0, \mathbb{P}^z almost surely and for almost all (a,b) $\textbf{P}^z_{a,b}$ almost surely

$$g_z(s,t) := \lim_{n \to \infty} \frac{1}{n} \hat{G}_z(\lfloor ns \rfloor, \lfloor nt \rfloor) = s \, \mathsf{E} \left[\frac{1}{a_1 + z} \right] + t \, \mathsf{E} \left[\frac{1}{b_1 - z} \right].$$

Proof:

$$\begin{split} \widehat{G}_{z}(n,n) &= \sum_{1 \leq i \leq n} \left[\widehat{G}_{z}(i,0) - \widehat{G}_{z}(i-1,0) \right] + \sum_{1 \leq j \leq n} \left[\widehat{G}_{z}(n,j) - \widehat{G}_{z}(n,j-1) \right] \\ &= \sum_{1 \leq i \leq n} X(i,0) + \sum_{1 \leq j \leq n} Y(n,j). \end{split}$$

Stationary shape function

Lemma

For s, t > 0, \mathbb{P}^z almost surely and for almost all (a,b) $\textbf{P}^z_{a,b}$ almost surely

$$g_z(s,t) := \lim_{n \to \infty} \frac{1}{n} \hat{G}_z(\lfloor \, ns \, \rfloor, \lfloor \, nt \, \rfloor) = s \, \mathsf{E} \left[\frac{1}{a_1 + z} \right] + t \, \mathsf{E} \left[\frac{1}{b_1 - z} \right].$$

Proof:

$$\begin{split} \widehat{G}_{z}(n,n) &= \sum_{1 \leq i \leq n} \left[\widehat{G}_{z}(i,0) - \widehat{G}_{z}(i-1,0) \right] + \sum_{1 \leq j \leq n} \left[\widehat{G}_{z}(n,j) - \widehat{G}_{z}(n,j-1) \right] \\ &= \sum_{1 \leq i \leq n} X(i,0) + \sum_{1 \leq j \leq n} Y(n,j). \end{split}$$

These sums are marginally i.i.d. under \mathbb{P}^z (not mutually indep. under $\mathbf{P}^z_{\mathbf{a},\mathbf{b}}$ or \mathbb{P}^z).

Shape function

Notation: $\underline{\alpha} = \mathsf{essinf}\{a_1\}$, $\underline{\beta} = \mathsf{essinf}\{b_1\}$.

Shape function

Notation: $\underline{\alpha} = \mathsf{essinf}\{a_1\}$, $\underline{\beta} = \mathsf{essinf}\{b_1\}$.

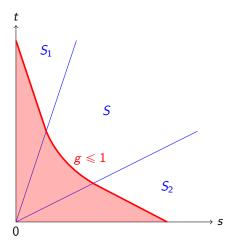
Theorem (Emrah '15)

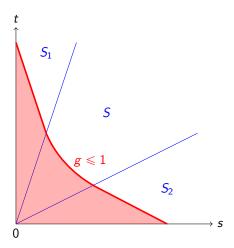
For s,t>0, \mathbb{P} almost surely and for almost all (\mathbf{a},\mathbf{b}) $\mathbf{P}_{\mathbf{a},\mathbf{b}}$ almost surely

$$g(s,t) := \lim_{n \to \infty} \frac{1}{n} G(\lfloor ns \rfloor, \lfloor nt \rfloor) = \min_{-\alpha \leqslant z \leqslant \underline{\beta}} \left\{ s \, \mathsf{E} \left[\frac{1}{a_1 + z} \right] + t \, \mathsf{E} \left[\frac{1}{b_1 - z} \right] \right\}$$

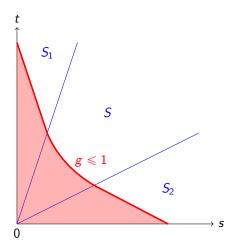
Shape function

Notation: $\underline{\alpha} = \text{essinf}\{a_1\}, \ \underline{\beta} = \text{essinf}\{b_1\}.$

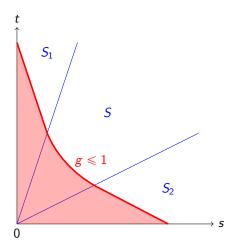

Theorem (Emrah '15)


For s, t > 0, \mathbb{P} almost surely and for almost all (\mathbf{a},\mathbf{b}) $\mathbf{P}_{\mathbf{a},\mathbf{b}}$ almost surely

$$g(s,t) := \lim_{n \to \infty} \frac{1}{n} G(\lfloor ns \rfloor, \lfloor nt \rfloor) = \min_{-\alpha \leqslant z \leqslant \underline{\beta}} \left\{ s \, \mathsf{E} \left[\frac{1}{a_1 + z} \right] + t \, \mathsf{E} \left[\frac{1}{b_1 - z} \right] \right\}$$


Remark:

 These results also hold if a and b are both separately ergodic, rather than a pair of independent i.i.d. sequences. The formulas only depend on marginal distributions of a₁ and b₁ separately.



Key properties of the shape function g(s, t):

Key properties of the shape function g(s, t):

• g is strictly concave in S, linear in S_1 and S_2 .

Key properties of the shape function g(s, t):

- g is strictly concave in S, linear in S_1 and S_2 .
- $S_1, S_2 \neq \emptyset$ iff

$$E[(a_1-\underline{\alpha})^{-2}]<\infty \quad (S_1)$$

$$E[(b_1-\underline{\beta})^{-2}]<\infty \quad (S_2)$$

Quenched right tail rate function

Theorem

For almost all (\mathbf{a}, \mathbf{b}) , for any s, t > 0 and $r \ge g(s, t)$

$$\mathbf{J}_{s,t}(r) = \lim_{n \to \infty} -n^{-1} \log \mathbf{P}_{\mathbf{a},\mathbf{b}} \left(n^{-1} G(\lfloor ns \rfloor, \lfloor nt \rfloor) \geqslant r \right)$$

$$= \sup_{\substack{\lambda \in (0,\alpha+\underline{\beta}) \\ z \in (-\alpha,\beta-\lambda)}} \left\{ r\lambda + s \operatorname{E} \log \left(\frac{a_1 + z}{a_1 + z + \lambda} \right) - t \operatorname{E} \log \left(\frac{b_1 - z}{b_1 - z - \lambda} \right) \right\}$$

Quenched right tail rate function

Theorem

For almost all (\mathbf{a}, \mathbf{b}) , for any s, t > 0 and $r \geqslant g(s, t)$

$$\begin{aligned} \mathbf{J}_{s,t}(r) &= \lim_{n \to \infty} -n^{-1} \log \mathbf{P}_{\mathbf{a},\mathbf{b}} \left(n^{-1} G(\lfloor ns \rfloor, \lfloor nt \rfloor) \geqslant r \right) \\ &= \sup_{\substack{\lambda \in (0, \alpha + \underline{\beta}) \\ z \in (-\underline{\alpha}, \underline{\beta} - \lambda)}} \left\{ r\lambda + s \operatorname{E} \log \left(\frac{a_1 + z}{a_1 + z + \lambda} \right) - t \operatorname{E} \log \left(\frac{b_1 - z}{b_1 - z - \lambda} \right) \right\} \end{aligned}$$

Remarks:

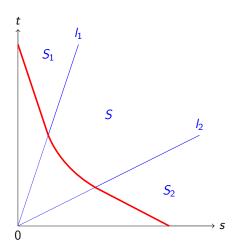
• The same theorem also holds if (\mathbf{a}, \mathbf{b}) is totally ergodic rather than a pair of independent i.i.d. sequences. Again, these formulas only depend on marginal distributions of a_1 and b_1 separately.

Quenched right tail rate function

Theorem

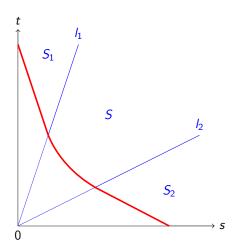
For almost all (\mathbf{a}, \mathbf{b}) , for any s, t > 0 and $r \geqslant g(s, t)$

$$\begin{aligned} \mathbf{J}_{s,t}(r) &= \lim_{n \to \infty} -n^{-1} \log \mathbf{P}_{\mathbf{a},\mathbf{b}} \left(n^{-1} G(\lfloor ns \rfloor, \lfloor nt \rfloor) \geqslant r \right) \\ &= \sup_{\substack{\lambda \in (0,\alpha+\underline{\beta}) \\ z \in (-\underline{\alpha},\underline{\beta}-\lambda)}} \left\{ r\lambda + s \operatorname{E} \log \left(\frac{a_1 + z}{a_1 + z + \lambda} \right) - t \operatorname{E} \log \left(\frac{b_1 - z}{b_1 - z - \lambda} \right) \right\} \end{aligned}$$

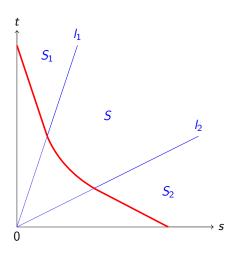

Remarks:

- The same theorem also holds if (\mathbf{a}, \mathbf{b}) is totally ergodic rather than a pair of independent i.i.d. sequences. Again, these formulas only depend on marginal distributions of a_1 and b_1 separately.
- Rate n LDP for $n^{-1}G([ns],[nt])$ under $\mathbf{P_{a,b}}$ with rate function

$$\mathbf{I}_{s,t}(r) = \mathbf{J}_{s,t}(r) \mathbf{1}_{\{r \geqslant g(s,t)\}} + \infty \mathbf{1}_{\{r < g(s,t)\}}.$$



Expected fluctuations


 Quenched fluct. are TW_{GUE} in S, but not in S₁, S₂.

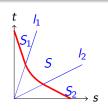
Expected fluctuations

- Quenched fluct. are TW_{GUE} in S, but not in S₁, S₂.
- Q1: Can we "see" different scaling exponents in the rate functions?

Expected fluctuations

- Quenched fluct. are TW_{GUE} in S, but not in S₁, S₂.
- Q1: Can we "see" different scaling exponents in the rate functions?
- Q2: What happens when $(s, t) \in I_1, I_2$?

Proposition

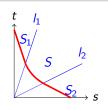

For any s,t>0, let $\zeta\in [-\underline{\alpha},\underline{\beta}]$ solve (uniquely) $g_{\zeta}(s,t)=g(s,t)$. As $\epsilon\downarrow 0$, there are explicit values C_1,C_2,C_3 depending on s,t,ζ such that

$$\mathbf{J}_{s,t}(g(s,t)+\epsilon) = \begin{cases} C_1(s,t) \ \epsilon^2 + o(\epsilon^2) & (s,t) \in S_1 \\ \frac{1}{2}C_2(s,t,\underline{\alpha}) \ \epsilon^{3/2} + o(\epsilon^{3/2}) & (s,t) \in I_1 \end{cases}$$

$$C_2(s,t,\zeta) \ \epsilon^{3/2} + o(\epsilon^{3/2}) & (s,t) \in S \ .$$

$$\frac{1}{2}C_2(s,t,\underline{\beta}) \ \epsilon^{3/2} + o(\epsilon^{3/2}) & (s,t) \in I_2$$

$$C_3(s,t) \ \epsilon^2 + o(\epsilon^2) & (s,t) \in S_2 \end{cases}$$



Proposition

For any s,t>0, let $\zeta\in [-\underline{\alpha},\underline{\beta}]$ solve (uniquely) $g_{\zeta}(s,t)=g(s,t)$. As $\epsilon\downarrow 0$, there are explicit values C_1,C_2,C_3 depending on s,t,ζ such that

$$\mathbf{J}_{s,t}(g(s,t)+\epsilon) = \begin{cases} C_1(s,t) \ \epsilon^2 + o(\epsilon^2) & (s,t) \in S_1 \\ \frac{1}{2}C_2(s,t,\underline{\alpha}) \ \epsilon^{3/2} + o(\epsilon^{3/2}) & (s,t) \in I_1 \end{cases}$$

$$C_2(s,t,\zeta) \ \epsilon^{3/2} + o(\epsilon^{3/2}) & (s,t) \in S \\ \frac{1}{2}C_2(s,t,\underline{\beta}) \ \epsilon^{3/2} + o(\epsilon^{3/2}) & (s,t) \in I_2 \\ C_3(s,t) \ \epsilon^2 + o(\epsilon^2) & (s,t) \in S_2 \end{cases}$$

Heuristically consistent with TW_{GUE} fluct in S.

Heuristically consistent with TW_{GUE} fluct in S. Take $(s, t) \in S$ and set

$$C = s \, \mathsf{E} \left[\frac{1}{(a+\zeta)^3} \right] + t \, \mathsf{E} \left[\frac{1}{(b-\zeta)^3} \right] = \frac{1}{2} \partial_z^2 g_z(s,t) \big|_{z=\zeta}$$

In the notation of the previous result, $C_2(s,t,\zeta)=4/3C^{-1/2}$.

Heuristically consistent with TW_{GUE} fluct in S. Take $(s,t) \in S$ and set

$$C = s \, \mathsf{E} \left[\frac{1}{(a+\zeta)^3} \right] + t \, \mathsf{E} \left[\frac{1}{(b-\zeta)^3} \right] = \frac{1}{2} \partial_z^2 g_z(s,t) \big|_{z=\zeta}$$

In the notation of the previous result, $C_2(s,t,\zeta)=4/3\,C^{-1/2}$. For n large and large enough r (but not $O(n^{\frac{2}{3}})$), we might expect

$$\mathbf{P}_{\mathbf{a},\mathbf{b}}(G(\lfloor ns \rfloor, \lfloor nt \rfloor) - ng(s,t) \geqslant n^{\frac{1}{3}}C^{\frac{1}{3}}r)$$

Heuristically consistent with TW_{GUE} fluct in S. Take $(s,t) \in S$ and set

$$C = s \, \mathsf{E} \left[\frac{1}{(a+\zeta)^3} \right] + t \, \mathsf{E} \left[\frac{1}{(b-\zeta)^3} \right] = \frac{1}{2} \partial_z^2 g_z(s,t) \big|_{z=\zeta}$$

In the notation of the previous result, $C_2(s,t,\zeta)=4/3\,C^{-1/2}$. For n large and large enough r (but not $O(n^{\frac{2}{3}})$), we might expect

$$\mathbf{P_{a,b}}(G(\lfloor ns \rfloor, \lfloor nt \rfloor) - ng(s,t) \geqslant n^{\frac{1}{3}}C^{\frac{1}{3}}r) \approx e^{-n \mathbf{J}_{s,t}(g(s,t) + C^{\frac{1}{3}}n^{-\frac{2}{3}}r)}$$

Heuristically consistent with TW_{GUE} fluct in S. Take $(s, t) \in S$ and set

$$C = s \, \mathsf{E} \left[\frac{1}{(a+\zeta)^3} \right] + t \, \mathsf{E} \left[\frac{1}{(b-\zeta)^3} \right] = \frac{1}{2} \partial_z^2 g_z(s,t) \big|_{z=\zeta}$$

In the notation of the previous result, $C_2(s,t,\zeta)=4/3\,C^{-1/2}$. For n large and large enough r (but not $O(n^{\frac{2}{3}})$), we might expect

$$\begin{split} \mathbf{P_{a,b}}(G(\lfloor ns \rfloor, \lfloor nt \rfloor) - ng(s,t) \geqslant n^{\frac{1}{3}}C^{\frac{1}{3}}r) \approx e^{-n \, \mathbf{J}_{s,t}(g(s,t) + C^{\frac{1}{3}}n^{-\frac{2}{3}}r)} \\ \approx e^{-\frac{4}{3}C^{-\frac{1}{2}}(C^{\frac{1}{3}}n^{-\frac{2}{3}}r)^{\frac{3}{2}}n} = e^{-\frac{4}{3}r^{\frac{3}{2}}} \end{split}$$

which agrees with the leading order TW_{GUE} right tail.

Annealed large deviations

Theorem

For
$$s, t > 0$$
 and $r \geqslant g(s, t)$,

$$\begin{split} \mathbb{J}_{s,t}(r) &= \lim_{n \to \infty} -n^{-1} \log \mathbb{P} \left(n^{-1} G(\lfloor ns \rfloor, \lfloor nt \rfloor) \geqslant r \right) \\ &= \sup_{\substack{\lambda \in (0, \alpha + \underline{\beta}) \\ z \in (-\alpha, \beta - \lambda)}} \left\{ r\lambda - s \log \mathbb{E} \left[\frac{a_1 + z + \lambda}{a_1 + z} \right] - t \log \mathbb{E} \left[\frac{b_1 - z}{b_1 - z - \lambda} \right] \right\} \end{split}$$

Annealed large deviations

Theorem

For s, t > 0 and $r \geqslant g(s, t)$,

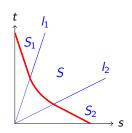
$$\begin{split} \mathbb{J}_{s,t}(r) &= \lim_{n \to \infty} -n^{-1} \log \mathbb{P}\left(n^{-1}G(\lfloor ns \rfloor, \lfloor nt \rfloor) \geqslant r\right) \\ &= \sup_{\substack{\lambda \in (0, \alpha + \underline{\beta}) \\ z \in (-\underline{\alpha}, \underline{\beta} - \lambda)}} \left\{ r\lambda - s \log \mathbb{E}\left[\frac{a_1 + z + \lambda}{a_1 + z}\right] - t \log \mathbb{E}\left[\frac{b_1 - z}{b_1 - z - \lambda}\right] \right\} \end{split}$$

Remark:

• We do not have the rate n left tail rate function in this case, but we can show existence of $r \in (0, g(s, t))$ with

$$\limsup -\frac{1}{n} \mathbb{P}\left(n^{-1}G(\lfloor ns \rfloor, \lfloor nt \rfloor) \leqslant r\right) < \infty.$$

(i.e. there are rate n annealed left tail large deviations)

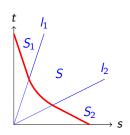


Scaling and the annealed rate functions

Proposition

For any s,t>0, let $\zeta\in [-\underline{\alpha},\underline{\beta}]$ solve (uniquely) $g_{\zeta}(s,t)=g(s,t)$. As $\epsilon\downarrow 0$, there are explicit values C_1,C_2,C_3 depending on s,t,ζ such that

$$\mathbf{J}_{s,t}(g(s,t) + \epsilon) = \begin{cases} C_1(s,t) \ \epsilon^2 + o(\epsilon^2) & (s,t) \in S_1 \\ C_2(s,t,\zeta) \ \epsilon^2 + o(\epsilon^2) & (s,t) \in S, I_1, I_2 \ . \\ C_3(s,t) \ \epsilon^2 + o(\epsilon^2) & (s,t) \in S_2 \end{cases}$$



Scaling and the annealed rate functions

Proposition

For any s,t>0, let $\zeta\in [-\underline{\alpha},\underline{\beta}]$ solve (uniquely) $g_{\zeta}(s,t)=g(s,t)$. As $\epsilon\downarrow 0$, there are explicit values C_1,C_2,C_3 depending on s,t,ζ such that

$$\mathbf{J}_{s,t}(g(s,t) + \epsilon) = \begin{cases} C_1(s,t) \ \epsilon^2 + o(\epsilon^2) & (s,t) \in S_1 \\ C_2(s,t,\zeta) \ \epsilon^2 + o(\epsilon^2) & (s,t) \in S, I_1, I_2 \ . \\ C_3(s,t) \ \epsilon^2 + o(\epsilon^2) & (s,t) \in S_2 \end{cases}$$

Theorem

For any s, t > 0 and $r \geqslant g(s, t)$,

$$\mathbb{J}_{s,t}(r) = \inf_{\nu_1,\nu_2} \left\{ \mathbf{I}_{s,t}^{\nu_1,\nu_2}(r) + s \, \mathsf{H}(\nu_1|\alpha) + t \, \mathsf{H}(\nu_2|\beta) \right\}.$$

Theorem

For any s, t > 0 and $r \geqslant g(s, t)$,

$$\mathbb{J}_{s,t}(r) = \inf_{\nu_1,\nu_2} \left\{ \mathbf{I}_{s,t}^{\nu_1,\nu_2}(r) + s \, \mathsf{H}(\nu_1|\alpha) + t \, \mathsf{H}(\nu_2|\beta) \right\}.$$

A unique minimizing pair (ν_1, ν_2) exists.

Theorem

For any s, t > 0 and $r \ge g(s, t)$,

$$\mathbb{J}_{s,t}(r) = \inf_{\nu_1,\nu_2} \left\{ \mathbf{I}_{s,t}^{\nu_1,\nu_2}(r) + s \, \mathsf{H}(\nu_1|\alpha) + t \, \mathsf{H}(\nu_2|\beta) \right\}.$$

A unique minimizing pair (ν_1, ν_2) exists. The equality

$$\mathbb{J}_{s,t}(r) = \mathbf{I}_{s,t}^{\nu_1,\nu_2}(r) + s\,\mathsf{H}(\nu_1|\alpha) + t\,\mathsf{H}(\nu_2|\beta)$$

holds if and only if

$$\frac{d\nu_1}{d\alpha}(a) \propto \frac{a + z_{\star} + \lambda_{\star}}{a + z_{\star}}, \qquad \frac{d\nu_2}{d\beta}(b) \propto \frac{b - z_{\star}}{b - z_{\star} - \lambda_{\star}}$$

Theorem

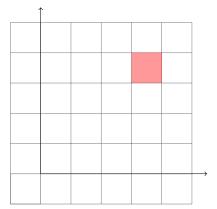
For any s, t > 0 and $r \ge g(s, t)$,

$$\mathbb{J}_{s,t}(r) = \inf_{\nu_1,\nu_2} \left\{ \mathbf{I}_{s,t}^{\nu_1,\nu_2}(r) + s \, \mathsf{H}(\nu_1|\alpha) + t \, \mathsf{H}(\nu_2|\beta) \right\}.$$

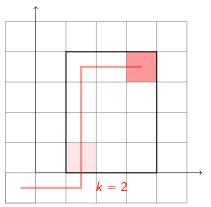
A unique minimizing pair (ν_1, ν_2) exists. The equality

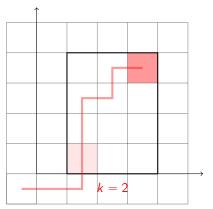
$$\mathbb{J}_{s,t}(r) = \mathbf{I}_{s,t}^{\nu_1,\nu_2}(r) + s\,\mathsf{H}(\nu_1|\alpha) + t\,\mathsf{H}(\nu_2|\beta)$$

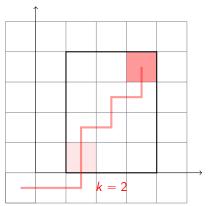
holds if and only if

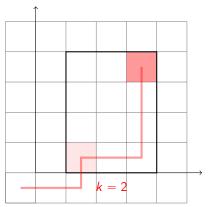

$$\frac{d\nu_1}{d\alpha}(a) \propto \frac{a + z_{\star} + \lambda_{\star}}{a + z_{\star}}, \qquad \frac{d\nu_2}{d\beta}(b) \propto \frac{b - z_{\star}}{b - z_{\star} - \lambda_{\star}}$$

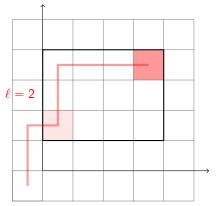
where z_{\star} and λ_{\star} are the unique $z_{\star}, \lambda_{\star}$ with $\lambda_{\star} \in [0, \underline{\alpha} + \underline{\beta}], z_{\star} \in [-\underline{\alpha}, \underline{\beta} - \lambda_{\star}]$ satisfying

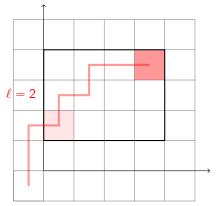

$$\mathbb{J}_{s,t}(r) = r \, \lambda_\star - s \log \mathsf{E}^\alpha \left[\frac{a + \mathsf{z}_\star + \lambda_\star}{a + \mathsf{z}_\star} \right] - t \log \mathsf{E}^\beta \left[\frac{b - \mathsf{z}_\star}{b - \mathsf{z}_\star - \lambda_\star} \right].$$

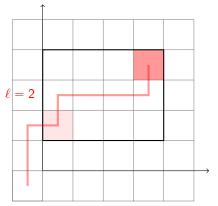

$$\begin{split} \widehat{G}_{z}(\textbf{n},\textbf{n}) &= \max\{ \max_{1 \leqslant k \leqslant n} \{ G(\textbf{n}-\textbf{k}+1,\textbf{n}) \circ \theta_{k-1,0} + \widehat{G}_{z}(\textbf{k},0), \\ \max_{1 \leqslant \ell \leqslant n} \{ G(\textbf{n},\textbf{n}-\ell+1) \circ \theta_{0,\ell-1} + \widehat{G}_{z}(0,\ell) \} \}. \end{split}$$

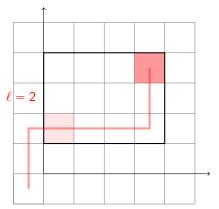

$$\begin{split} \widehat{G}_z(n,n) &= \max\{ \max_{1 \leqslant k \leqslant n} \{ \underbrace{G(n-k+1,n) \circ \theta_{k-1,0} + \widehat{G}_z(k,0)}_{1 \leqslant \ell \leqslant n}, \\ \max_{1 \leqslant \ell \leqslant n} \{ G(n,n-\ell+1) \circ \theta_{0,\ell-1} + \widehat{G}_z(0,\ell) \} \}. \end{split}$$


$$\begin{split} \widehat{G}_z(n,n) &= \max\{ \max_{1 \leqslant k \leqslant n} \{ \underbrace{G(n-k+1,n) \circ \theta_{k-1,0} + \widehat{G}_z(k,0)}_{1 \leqslant \ell \leqslant n}, \\ \max_{1 \leqslant \ell \leqslant n} \{ G(n,n-\ell+1) \circ \theta_{0,\ell-1} + \widehat{G}_z(0,\ell) \} \}. \end{split}$$

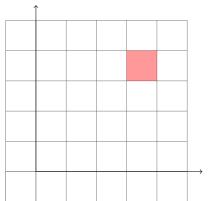

$$\begin{split} \widehat{G}_z(n,n) &= \max\{ \max_{1 \leqslant k \leqslant n} \{ \underbrace{G(n-k+1,n) \circ \theta_{k-1,0} + \widehat{G}_z(k,0)}_{1 \leqslant \ell \leqslant n}, \\ \max_{1 \leqslant \ell \leqslant n} \{ G(n,n-\ell+1) \circ \theta_{0,\ell-1} + \widehat{G}_z(0,\ell) \} \}. \end{split}$$


$$\begin{split} \widehat{G}_{z}(n,n) &= \max\{ \max_{1 \leqslant k \leqslant n} \{ \underbrace{G(n-k+1,n) \circ \theta_{k-1,0} + \widehat{G}_{z}(k,0)}_{1 \leqslant \ell \leqslant n}, \\ \max_{1 \leqslant \ell \leqslant n} \{ G(n,n-\ell+1) \circ \theta_{0,\ell-1} + \widehat{G}_{z}(0,\ell) \} \}. \end{split}$$

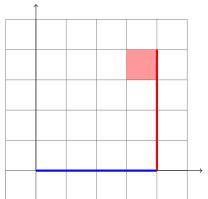

$$\begin{split} \widehat{G}_z(n,n) &= \max\{ \max_{1\leqslant k\leqslant n} \{G(n-k+1,n)\circ\theta_{k-1,0} + \widehat{G}_z(k,0), \\ \max_{1\leqslant \ell\leqslant n} \{G(n,n-\ell+1)\circ\theta_{0,\ell-1} + \widehat{G}_z(0,\ell)\}\}. \end{split}$$


$$\begin{split} \widehat{G}_{z}(\textbf{n},\textbf{n}) &= \max\{ \max_{1 \leqslant k \leqslant \textbf{n}} \{ G(\textbf{n}-\textbf{k}+1,\textbf{n}) \circ \theta_{\textbf{k}-1,0} + \widehat{G}_{z}(\textbf{k},0), \\ \max_{1 \leqslant \ell \leqslant \textbf{n}} \{ G(\textbf{n},\textbf{n}-\ell+1) \circ \theta_{0,\ell-1} + \widehat{G}_{z}(\textbf{0},\ell) \} \}. \end{split}$$

$$\begin{split} \widehat{G}_z(n,n) &= \max\{ \max_{1\leqslant k\leqslant n} \{G(n-k+1,n)\circ\theta_{k-1,0} + \widehat{G}_z(k,0), \\ \max_{1\leqslant \ell\leqslant n} \{G(n,n-\ell+1)\circ\theta_{0,\ell-1} + \widehat{G}_z(0,\ell)\}\}. \end{split}$$


$$\begin{split} \widehat{G}_z(n,n) &= \max\{ \max_{1 \leqslant k \leqslant n} \{ G(n-k+1,n) \circ \theta_{k-1,0} + \widehat{G}_z(k,0), \\ \max_{1 \leqslant \ell \leqslant n} \{ G(n,n-\ell+1) \circ \theta_{0,\ell-1} + \widehat{G}_z(0,\ell) \} \}. \end{split}$$

Proof sketch: telescoping sum


$$\widehat{G}_{z}(n,n) = \sum_{1 \leqslant i \leqslant n} \widehat{G}_{z}(i,0) - \widehat{G}_{z}(i-1,0) + \sum_{1 \leqslant j \leqslant n} \widehat{G}_{z}(n,j) - \widehat{G}_{z}(n,j-1)$$

.

Proof sketch: telescoping sum

$$\begin{split} \widehat{G}_{\mathbf{z}}(\mathbf{n},\mathbf{n}) &= \sum_{1 \leqslant i \leqslant n} \widehat{G}_{\mathbf{z}}(i,0) - \widehat{G}_{\mathbf{z}}(i-1,0) + \sum_{1 \leqslant j \leqslant n} \widehat{G}_{\mathbf{z}}(\mathbf{n},j) - \widehat{G}_{\mathbf{z}}(\mathbf{n},j-1) \\ &= \sum_{1 \leqslant i \leqslant n} X(i,0) + \sum_{1 \leqslant j \leqslant n} Y(\mathbf{n},j) \text{ (sums not indep.)}. \end{split}$$

Equate two expressions for $\hat{G}_z(n,n)$ and subtract the $\sum_{i=1}^n X(i,0)$ terms:

$$\begin{split} \sum_{1 \leqslant j \leqslant n} Y(n,j) &= \max_{1 \leqslant k \leqslant n} \{ \max \{ G(n-k+1,n) \circ \theta_{k-1,0} - \sum_{k < i \leqslant n} X(i,0), \\ &G(n,n-k+1) \circ \theta_{0,k-1} - \sum_{1 \leqslant i \leqslant n} X(i,0) + \sum_{1 \leqslant i \leqslant k} Y(0,j) \} \}. \end{split}$$

Equate two expressions for $\hat{G}_z(n,n)$ and subtract the $\sum_{i=1}^n X(i,0)$ terms:

$$\begin{split} \sum_{1 \leqslant j \leqslant n} \frac{Y(n,j)}{I} &= \max_{1 \leqslant k \leqslant n} \{ \max \{ G(n-k+1,n) \circ \theta_{k-1,0} - \sum_{k < i \leqslant n} X(i,0), \\ &G(n,n-k+1) \circ \theta_{0,k-1} - \sum_{1 \leqslant i \leqslant n} X(i,0) + \sum_{1 \leqslant i \leqslant k} Y(0,j) \} \}. \end{split}$$

Equate two expressions for $\hat{G}_z(n,n)$ and subtract the $\sum_{i=1}^n X(i,0)$ terms:

$$\begin{split} \sum_{1 \leqslant j \leqslant n} Y(n,j) &= \max_{1 \leqslant k \leqslant n} \{ \max \{ G(n-k+1,n) \circ \theta_{k-1,0} - \sum_{k < i \leqslant n} X(i,0), \\ &G(n,n-k+1) \circ \theta_{0,k-1} - \sum_{1 \leqslant i \leqslant n} X(i,0) + \sum_{1 \leqslant i \leqslant k} Y(0,j) \} \}. \end{split}$$

For each $z \in (-\underline{\alpha}, \underline{\beta})$ of the summands within the maxima are $\mathbf{P}^{\mathbf{z}}_{\mathbf{a}, \mathbf{b}}$ -indep. Fix $\lambda > 0$ and $z \in (-\underline{\alpha}, \beta - \lambda)$. For each k, we have

$$\begin{split} \mathbf{E}_{\mathbf{a},\mathbf{b}}^{\mathbf{z}} \left[e^{\lambda \sum Y(n,j)} \right] &\geqslant \mathbf{E}_{\mathbf{a},\mathbf{b}}^{\mathbf{z}} \left[e^{\lambda G(n-k+1,n) \circ \theta_{k-1,0}} \right] \mathbf{E}_{\mathbf{a},\mathbf{b}}^{\mathbf{z}} \left[e^{-\lambda \sum\limits_{k < i \leqslant n} X(i,0)} \right] \\ \mathbf{E}_{\mathbf{a},\mathbf{b}}^{\mathbf{z}} \left[e^{\lambda \sum Y(n,j)} \right] &\geqslant \mathbf{E}_{\mathbf{a},\mathbf{b}}^{\mathbf{z}} \left[e^{\lambda G(n,n-k+1) \circ \theta_{0,k-1}} \right] \mathbf{E}_{\mathbf{a},\mathbf{b}}^{\mathbf{z}} \left[e^{-\lambda \sum\limits_{1 \leqslant i \leqslant n} X(i,0)} \right] \\ &\times \mathbf{E}_{\mathbf{a},\mathbf{b}}^{\mathbf{z}} \left[e^{\lambda \sum\limits_{1 \leqslant j \leqslant k} Y(0,j)} \right] \end{split}$$

so LHS \geqslant max of RHS over k.

Equate two expressions for $\hat{G}_z(n,n)$ and subtract the $\sum_{i=1}^n X(i,0)$ terms:

$$\begin{split} \sum_{1 \leqslant j \leqslant n} Y(n,j) &= \max_{1 \leqslant k \leqslant n} \{ \max \{ G(n-k+1,n) \circ \theta_{k-1,0} - \sum_{k < i \leqslant n} X(i,0), \\ &G(n,n-k+1) \circ \theta_{0,k-1} - \sum_{1 \leqslant i \leqslant n} X(i,0) + \sum_{1 \leqslant j \leqslant k} Y(0,j) \} \}. \end{split}$$

For each $z \in (-\underline{\alpha}, \underline{\beta})$ of the summands within the maxima are $\mathbf{P}^{\mathbf{z}}_{\mathbf{a}, \mathbf{b}}$ -indep. Fix $\lambda > 0$ and $z \in (-\underline{\alpha}, \beta - \lambda)$. For each k, we have

$$\begin{split} \mathbf{E}_{\mathbf{a},\mathbf{b}}^{\mathbf{z}} \left[e^{\lambda \sum Y(n,j)} \right] &\geqslant \mathbf{E}_{\mathbf{a},\mathbf{b}}^{\mathbf{z}} \left[e^{\lambda G(n-k+1,n) \circ \theta_{k-1,0}} \right] \mathbf{E}_{\mathbf{a},\mathbf{b}}^{\mathbf{z}} \left[e^{-\lambda \sum\limits_{k < i \leqslant n} X(i,0)} \right] \\ \mathbf{E}_{\mathbf{a},\mathbf{b}}^{\mathbf{z}} \left[e^{\lambda \sum Y(n,j)} \right] &\geqslant \mathbf{E}_{\mathbf{a},\mathbf{b}}^{\mathbf{z}} \left[e^{\lambda G(n,n-k+1) \circ \theta_{0,k-1}} \right] \mathbf{E}_{\mathbf{a},\mathbf{b}}^{\mathbf{z}} \left[e^{-\lambda \sum\limits_{1 \leqslant i \leqslant n} X(i,0)} \right] \\ &\times \mathbf{E}_{\mathbf{a},\mathbf{b}}^{\mathbf{z}} \left[e^{\lambda \sum\limits_{1 \leqslant j \leqslant k} Y(0,j)} \right] \end{split}$$

so LHS \geqslant max of RHS over k.

Equate two expressions for $\hat{G}_z(n,n)$ and subtract the $\sum_{i=1}^n X(i,0)$ terms:

$$\begin{split} \sum_{1 \leqslant j \leqslant n} Y(n,j) &= \max_{1 \leqslant k \leqslant n} \{ \max \{ G(n-k+1,n) \circ \theta_{k-1,0} - \sum_{k < i \leqslant n} X(i,0), \\ & G(n,n-k+1) \circ \theta_{0,k-1} - \sum_{1 \leqslant i \leqslant n} X(i,0) + \sum_{1 \leqslant j \leqslant k} Y(0,j) \} \}. \end{split}$$

For each $z \in (-\underline{\alpha}, \underline{\beta})$ of the summands within the maxima are $\mathbf{P}^{\mathbf{z}}_{\mathbf{a}, \mathbf{b}}$ -indep. Fix $\lambda > 0$ and $z \in (-\underline{\alpha}, \beta - \lambda)$. For each k, we have

$$\begin{split} \mathbf{E}_{\mathbf{a},\mathbf{b}}^{\mathbf{z}} \left[e^{\lambda \sum Y(n,j)} \right] &\geqslant \mathbf{E}_{\mathbf{a},\mathbf{b}}^{\mathbf{z}} \left[e^{\lambda G(n-k+1,n)\circ\theta_{k-1,0}} \right] \mathbf{E}_{\mathbf{a},\mathbf{b}}^{\mathbf{z}} \left[e^{-\lambda \sum\limits_{k < i \leqslant n} X(i,0)} \right] \\ \mathbf{E}_{\mathbf{a},\mathbf{b}}^{\mathbf{z}} \left[e^{\lambda \sum Y(n,j)} \right] &\geqslant \mathbf{E}_{\mathbf{a},\mathbf{b}}^{\mathbf{z}} \left[e^{\lambda G(n,n-k+1)\circ\theta_{0,k-1}} \right] \mathbf{E}_{\mathbf{a},\mathbf{b}}^{\mathbf{z}} \left[e^{-\lambda \sum\limits_{1 \leqslant i \leqslant n} X(i,0)} \right] \\ &\times \mathbf{E}_{\mathbf{a},\mathbf{b}}^{\mathbf{z}} \left[e^{\lambda \sum\limits_{1 \leqslant j \leqslant k} Y(0,j)} \right] \end{split}$$

so LHS \geqslant max of RHS over k.

Define

$$\mathbf{L}_{s,t}(\lambda) = \lim_{n \to \infty} \frac{1}{n} \log \mathbf{E}_{\mathbf{a},\mathbf{b}} \left[e^{\lambda G(\lfloor ns \rfloor, \lfloor nt \rfloor)} \right]$$

For $\lambda \in (0, \underline{\beta} - z)$, if we apply $\lim_{n \to \infty} n^{-1} \log \mathbf{E}_{\mathbf{a}, \mathbf{b}}^z[e^{\lambda \cdot}]$, the previous inequality and another coming from $\max \leq \sum$ gives

$$\begin{split} \mathsf{E}\left[\log\frac{b_1-z}{b_1-z-\lambda}\right] &= \sup_{0\leqslant t\leqslant 1}\bigg\{\max\bigg\{\mathbf{L}_{1,t}(\lambda)-t\,\mathsf{E}\left[\log\frac{a_1+z+\lambda}{a_1+z}\right]\bigg\},\\ &\mathbf{L}_{1,t}(\lambda)-\mathsf{E}\left[\log\frac{a_1+z+\lambda}{a_1+z}\right] + (1-t)\,\mathsf{E}\left[\log\frac{b_1-z}{b_1-z-\lambda}\right]\bigg\} \end{split}$$

This variational problem can be inverted to solve for $\mathbf{L}_{s,t}(\lambda) =$

$$\begin{cases} \lambda g(s,t) & \lambda \leqslant 0 \\ \min_{-\alpha \leqslant z \leqslant \underline{\beta} - \lambda} \left\{ s \, \mathsf{E} \left[\log \frac{a_1 + z + \lambda}{a_1 + z} \right] + t \, \mathsf{E} \left[\log \frac{b_1 - z}{b_1 - z - \lambda} \right] \right\} & \lambda \in (0, \underline{\alpha} + \underline{\beta}] \\ \infty & \lambda > \underline{\alpha} + \underline{\beta} \end{cases}$$

Cannot use Gärtner-Ellis (steepness can fail), but can verify that the Legendre transform gives the rate function.

Thanks!