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@ The (totally asymmetric) corner growth model
® Questions: general homogeneous shape theorem and large
deviations
@ Inhomogeneous exponential model
©® Model with random parameters
@ Results and proof sketches

@ The shape function: appearance of linear regions.
@ Overview of quenched and annealed large deviation results.
© Sketch of quenched rate function computation.

Goal: To better understand what can happen in inhomogeneous
models in the KPZ class at the level of large deviations through a
solvable example.
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(Homogeneous) Last passage percolation
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Take W(i,j) =0, (i,j) € N* i.id.
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(Homogeneous) Last passage percolation

1 m

Take W(i,j) =0, (i,j) € N* i.id.
G(m,n) = max 2 W(i,j )

up-right paths 4
7:(1,1)—(m,n) ()€™
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Homogeneous shape theorem

Theorem (Martin, '04)
Suppose the family {W(i,j)} are positive, i.i.d. random variables with

foo«/P(W(l,l) = < e

Then there exists a finite, concave, homogeneous function
g:(0,00)?2 - Ry such that

lim n71G(| ns|,| nt]) = g(s, t).

n—aoo0
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Homogeneous right tail large deviations

Theorem

Suppose the family {W(i,j)} are positive, i.i.d. random variables with
E[e*" (D] < oo for some X > 0 and that P(W(1,1) > r) > 0 for all

r > 0. Then there exists a finite, convex function Js +(r) : R — R such
that

lim —n"Ylog P (G(| ns|,| nt]) = nr) = Js(r).

n—0o0
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Homogeneous left tail large deviations

Theorem

Suppose the family {W (i, j)} are non-negative, non-degenerate,
i.i.d. random variables with E[e’"V (V)] < o for some A > 0. Then there
exist constants C > 0 such that for r € (0, g(s, t))

P(G(|ns|,|nt]) <nr)< C e .

A lower bound with the same rate holds for all r € (0, g(s, t)) if
P(W(1,1) € [0,€)) > 0 for all € > 0.
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Inhomogeneous exponential last passage percolation
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Inhomogeneous exponential last passage percolation

W(i,j) L% Exp(a; + b)) e W(i,j) - Exp(a; + bj)

j a=(ap)n>1 and b = (by)p>1
aj, bj = c>0.
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Inhomogeneous exponential last passage percolation

W(i,j) L% Exp(a; + b)) e W(i,j) - Exp(a; + bj)

j a=(ap)n>1 and b = (by)p>1
aj, bj = c>0.

@ Model introduced by
Johansson '01.
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Stationary model

Extend environment to include (/,0), (0,/), i,/ = 0, W(0,0) = 0.
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Stationary model

Extend environment to include (/,0), (0,/), i,/ = 0, W(0,0) = 0.
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Stationary model

Extend environment to include (/,0), (0,/), i,/ = 0, W(0,0) = 0.

Take z: —aj <z < bj,i,jeN

W(i,0) ~ Exp(a; + z)
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Stationary model

Extend environment to include (/,0), (0,/), i,/ = 0, W(0,0) = 0.

Take z: —aj <z < bj,i,jeN
W(i,0) ~ Exp(a;j + z)
W(0,/) ~ Exp(b; — 2)
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Stationary model

Extend environment to include (/,0), (0,/), i,/ = 0, W(0,0) = 0.

Take z: —aj <z < bj, i,jeN
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W (i,0) ~ Exp(a;j + z)
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W(0,j) ~ Exp(b; — 2)
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W(i,j) ~ Exp(a; + b))
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Stationary model

Extend environment to include (/,0), (0,/), i,/ = 0, W(0,0) = 0.

Take z: —aj <z < bj,i,jeN
W(i,0) ~ Exp(a; + z)
W(0,j) ~ Exp(b; — 2)
W(i,j) ~ Exp(a; + bj)

Passage time in this environment is
denoted G,(i,).
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Stationary model

Extend environment to include (/,0), (0,/), i,/ = 0, W(0,0) = 0.

Take z: —aj <z < bj,i,jeN
W(i,0) ~ Exp(a; + z)
W(0,j) ~ Exp(b; — 2)
W(i,j) ~ Exp(a; + bj)

Passage time in this environment is
denoted G,(i,).

X(’v./) = az(’»./) - az(’ - 17./)
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Stationary model

Extend environment to include (/,0), (0,/), i,/ = 0, W(0,0) = 0.

Take z: —aj <z < bj,i,jeN
W(i,0) ~ Exp(a; + z)
W(0,j) ~ Exp(b; — 2)
W(i,j) ~ Exp(a; + bj)

Passage time in this environment is
denoted G,(i,).

X(i,j) = Gy(i,j) — G,(i — 1,))
i Y(ij) = G(i,j) = G(i,j — 1)
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Stationary model - exponential lemma

Lemma

Suppose that (X, Y, W) are mutually independent exponential random
variables with means (a + z),(b— z)~1,(a + b)~! and define

X=X-Y)"+Ww, Y=(Y-X)"+W, W=XxnaY.
Then

~

(X, Y. W) < (x,Y,w).

Proof: Compute the Laplace transform of (X, Y, W).
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Stationary model - corner flipping

W(i,j) ~ Exp(a; + bj)

Y(i —1,j) ~ Exp(by — 2)

X(i,j—1) ~ Explai + 2)
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Stationary model - corner flipping

W(i,j) ~ Exp(a; + bj)

Y(i —1,j) ~ Exp(by — 2)

X(i,j—1) ~ Explai + 2)

(l - 17./) - X(I,_j - 1))+ + W(’»J)

= X
<<
I
=
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Stationary model - corner flipping

X(i.j) ~ Expla; +2)

Y (i) ~ Explb; — 2)

~

W(i—1,j— 1) ~ Expla; + b))

Y(’a./) = (Y(I - 17./) —X(I,_j— 1))+ + W(’»J)

W(i-1j-1)=X(>i,j—1) A Y(i—1])
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Stationary model - down right paths
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Stationary model - down right paths

=
=
uO

[

W(i,0) ~ Exp(a; + 2)
Y(07J) = W(O7J) ~ EXp(bj - Z)

By induction, mutual
independence and distributions
are preserved along down-right
edge paths.

X(i,j) ~ Exp(a; + 2)
Y (i,j) ~ Exp(b; — 2).
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Stationary model - down right paths

=
=
uO

[

W(i,0) ~ Exp(a; + 2)
Y(07J) = W(O7J) ~ EXp(bj - Z)

By induction, mutual
independence and distributions
are preserved along down-right
edge paths.

X(i,j) ~ Exp(a; + 2)
Y (i,j) ~ Exp(b; — 2).
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Random environment

by

Chris Janjigian

a = (a;), b= (b;) indep. i.i.d.,
W o E[a; + b1] < o0, aj, bj = ¢ > 0 (can
(i.J) % Exp(a; + b)) be weaker)
a1 aj
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Random environment

a = (a;), b= (b;) indep. i.i.d.,
o E[a; + b1] < o0, aj, bj = ¢ > 0 (can
H ind.
W(i,j) <% Exp(a;i + bj) be weaker)
b; P, : conditioned on (a,b),
. . ind.

W(i,j) "= Exp(a; + bj).

by

dai aj
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Random environment

ind.

Exp

by

ai

Chris Janjigian

aj

a = (a;), b= (b;) indep. i.i.d.,
E[a; + b1] < o0, aj, bj = ¢ > 0 (can
ai + bj) be weaker)

P, : conditioned on (a,b),
W(i,j) " Exp(a; + by).

P: average P, over (a,b):
P(-) = E[Pan(-)]-
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Random environment

Key points:

W(i,j) L% Exp(a; + b;)

by

al N a,'
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Random environment

V(i j) L Exp

by

ai

ai

Key points:

aj + bj)

P.p: indep., not ident. dist.:
if i1 orj#j

W(i,j) + W(7", ") (usually)
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Random environment

V(i j) L Exp

by

ai

ai

Key points:

aj + bj)

P.p: indep., not ident. dist.:
if i1 orj#j

W(i,j) + W(7", ") (usually)
W(i,j) L W(i',j")
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Random environment

Key points:

P.p: indep., not ident. dist.:
if i1 orj#j

W(i,j) L% Exp(a; + b;)

W(i,j) + W(7", ") (usually)
b W(i,j) L W(i',j")

P: ident. dist., not indep.:

by J
W(i,j) = W(i',J').

al N a,'
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Random environment

by

ai

ai

Key points:
P.p: indep., not ident. dist.:
if i1 orj#j

W(i,j) + W(7", ") (usually)
W(i,j) L W(i',j")

P: ident. dist., not indep.:

W(i,j) < W(i',J).
Ifi=i"orj=]j
Cov(W(i,j), W(i",j')) # 0.
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Stationary shape function

For s,t > 0, P* almost surely and for almost all (a,b) P}, almost surely

6,8 1= i 2ELasl el =sE[all+z] +tE[b11_z].
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Stationary shape function

For s,t > 0, P* almost surely and for almost all (a,b) P}, almost surely

gz(s,t) := lim lCz([nsj,[ntj) = sE[

n—o0 N

: ] [ 1 ]
+tE .
a+z by —z
Proof:

Gl = 3 [ —G(i—1,0)]+ Y [6(n))— C(nj—1)]
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Stationary shape function

For s,t > 0, P* almost surely and for almost all (a,b) P}, almost surely

gz(s,t) := lim lCz([nsj,[ntj) = sE[

= e
+tE .
a+z by —z
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Stationary shape function

For s,t > 0, P* almost surely and for almost all (a,b) P}, almost surely

gz(s,t) := lim lCz([nsj,[ntj) = sE[

n—o0 N

= e
+tE .
a+z by —z

Proof:

1<i<n 1<j<n

= X(i,0) + Y(n.j).

1<i<n 1<j<n

These sums are marginally i.i.d. under P* (not mutually indep. under
Pf,_’b or P?).
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Shape function

Notation: o = essinf{a}, 3 = essinf{b;}.
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Shape function

Notation: o = essinf{a}, 3 = essinf{b;}.

Theorem (Emrah '15)
For s, t > 0, P almost surely and for almost all (a,b) P, almost surely

ste) = Jip, pebLoeh =i fo o5 |+ e[
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Shape function

Notation: o = essinf{a}, 3 = essinf{b;}.

Theorem (Emrah '15)

For s, t > 0, P almost surely and for almost all (a,b) P, almost surely

ste) = Jip, pebLoeh =i fo o5 |+ e[

Remark:

@ These results also hold if a and b are both separately ergodic, rather
than a pair of independent i.i.d. sequences. The formulas only
depend on marginal distributions of a; and b; separately.
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Asymptotic shape of the cluster

S

S
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Asymptotic shape of the cluster

Key properties of the shape function
N g(s.1):

S
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Asymptotic shape of the cluster

t
Key properties of the shape function
N g(s.1):
@ g is strictly concave in S, linear
in §; and S,.
S
g<l1
S,
s
0
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Asymptotic shape of the cluster

t
Key properties of the shape function
N g(s. 1)
@ g is strictly concave in S, linear
in §; and S,.
S @ 5,5, # g iff
E[(ai—a)?] <o (5)
g=<1 El(bi—B) 1 <o ()
S,
s
0
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Quenched right tail rate function

For almost all (a,b), for any s,t > 0 and r > g(s, t)

Joe(r) = lim —n""logPap (n*G(| ns |, | nt]) >r)

n—ao0

ay+z by —z )
= su rA\+sElog( ———— | —tElog | ——
A6(0«_sz+@) { g<a1+z+)\) g<bl_2_)\

Ze(—g,@—k)
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Quenched right tail rate function

Theorem

For almost all (a,b), for any s,t > 0 and r > g(s, t)

Joe(r) = lim —n""logPap (n*G(| ns |, | nt]) >r)

n—ao0

ay+z by —z )
= su rA\+sElog( ———— | —tElog | ——
A6(0«_sz+@) { g<a1+z+>\) g([;l_z_)\

Ze(—g,@—k)

Remarks:

@ The same theorem also holds if (a,b) is totally ergodic rather than
a pair of independent i.i.d. sequences. Again, these formulas only
depend on marginal distributions of a; and by separately.
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Quenched right tail rate function

For almost all (a,b), for any s,t > 0 and r > g(s, t)

Joe(r) = lim —n""logPap (n*G(| ns |, | nt]) >r)

n—ao0

ay+z by —z )
= su rA\+sElog( ———— | —tElog | ——
A6(0«_sz+@) { g<a1+z+)\) g([;l_z_)\

Ze(—g,@—k)

Remarks:

@ The same theorem also holds if (a,b) is totally ergodic rather than
a pair of independent i.i.d. sequences. Again, these formulas only
depend on marginal distributions of a; and by separately.

@ Rate n LDP for n™1G(| ns|,| nt|) under P, with rate function

Is,t(r) = Js.e(r)lir=g(s,60) + ©OLlireg(s,e)-
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Expected fluctuations

h

51 @ Quenched fluct. are TW¢ye in

S, but not in 51, 5.

b

S,
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Expected fluctuations

t
h
51 @ Quenched fluct. are TW¢ye in
S, but not in 51, 5.
@ Q1: Can we “see” different
S h scaling exponents in the rate
functions?
S,
s
0
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Expected fluctuations

h

51 @ Quenched fluct. are TW¢ye in

S, but not in 51, 5.

@ Q1: Can we “see” different
S h scaling exponents in the rate
functions?

@ Q2: What happens when
(S7 t) € /17 /2?
S
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Scaling and the quenched rate functions

Proposition

For any s, t > 0, let ( € [—~a, 3] solve (uniquely) g¢(s,t) = g(s,t). As
€ | 0, there are explicit values Cy, G5, C3 depending on s, t,( such that

Ci(s,t) € + o(€?)
3G(s, t,0) &2 + o(?)

(s, 1)

(s, t)
Joi(g(s,t) +e) = { G(s, 1,¢) €2+ 0(¥?)  (s,t)eS |

(s, 1)

(s, t)

1G(s,t,B) €2+ 0(e2) (s,t) b
Gs(s,t) €2+ o(€?) s,t) €S
t
S1
I
S 2
255

Chris Janjigian Large deviations for certain inhomogeneous corner growth models 19/29



Scaling and the quenched rate functions

Proposition

For any s, t > 0, let ( € [—~a, 3] solve (uniquely) g¢(s,t) = g(s,t). As
€ | 0, there are explicit values Cy, G5, C3 depending on s, t,( such that

Ci(s,t) €+ o(€?)
3G(s,t,0) 2 + o(?)

(s:1)

(s, )
Joi(g(s,t) +¢) = Qs t,0) 2 +0(¥?)  (s,t)eS .

(s, 1)

(s, )

1G(s,t,B) €2+ 0(e2) (s,t) € b
Gs(s,t) €2 + o(€?) s,t) €S
t
St
I
S 2
255
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Scaling and the quenched rate functions

Heuristically consistent with TWgyge fluct in S.
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Scaling and the quenched rate functions

Heuristically consistent with TW¢yg fluct in S. Take (s,t) € S and set

il el b

In the notation of the previous result, Cy(s, t,() = 4/3C /2.

C=5E[

Chris Janjigian Large deviations for certain inhomogeneous corner growth models



Scaling and the quenched rate functions

Heuristically consistent with TW¢yg fluct in S. Take (s,t) € S and set

1 1 1
|+ tE| ——= | = 2%g.(s, ¢
<a+<)3]+ [(b<)3] 28 e
In the notation of the previous result, Cy(s, t,¢) = 4/3C~%2. For n
large and large enough r (but not O(n3)), we might expect

C=5E[

Pab(G(| ns |, nt]) — ng(s,t) = n3 C%r)
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Scaling and the quenched rate functions

Heuristically consistent with TW¢yg fluct in S. Take (s,t) € S and set

1 1 1
C=sE|———= | +tE|———| = 20&(s, t
’ [<a+<>3]+ [(b<)3] 28 e
In the notation of the previous result, Cy(s, t,¢) = 4/3C~%2. For n
large and large enough r (but not O(n3)), we might expect

1 _2
Pan(G(| ns], | nt]) — ng(s, t) > ni Cor) ~ e eelel=)tCon 30
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Scaling and the quenched rate functions

Heuristically consistent with TW¢yg fluct in S. Take (s,t) € S and set

In the notation of the previous result, Cy(s, t,¢) = 4/3C~%2. For n
large and large enough r (but not O(n3)), we might expect

1 _2
Pap(G(Lns |, [ nt]) — ng(s,t) = ni Cir) ~ e Meelels)+Con50)

1 1 _2 3
4C72(C3n 3r)2n_e—%r

~ e 3

Nlw

which agrees with the leading order TW¢yg right tail.
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Annealed large deviations

Fors,t >0 and r > g(s, t),

Js.e(r) = nli_)moo—n_:l logP (n"*G(|ns|,[ nt]) > r)

A by —
sup {r)\—slogE[al+Z+ ]—tlogE[1 z ]}
Ae(0,2+5) atz by —z— A\

ze(—a,B—A)
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Annealed large deviations

Theorem

Fors,t >0 and r > g(s,t),

Js.e(r) = nli_)moo—n_:l logP (n"*G(|ns|,[ nt]) > r)

A by —
sup {r)\—slogE[al+Z+ ]—tlogE[1 z ]}
Ae(0,2+5) atz by —z— A\

ze(—a,B—A)

Remark:

@ We do not have the rate n left tail rate function in this case, but we
can show existence of r € (0, g(s, t)) with

Iimsup—%IP’(n_lG([nsJ,[ntJ) <r) <.

(i.e. there are rate n annealed left tail large deviations)
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Scaling and the annealed rate functions

For any s, t > 0, let ¢ € [—a, 3] solve (uniquely) g¢(s,t) = g(s,t). As
€ | 0, there are explicit values Cy, G5, C3 depending on s, t,( such that

Ci(s,t) € +o(e?) (s,t) €S
Joe(g(s,t) +€) =1{ Gas,t,0) € +o(e?) (s,t) €S, k.
Gs(s,t) €+ o(e?) (s,t) € S,

S

S,
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Scaling and the annealed rate functions

For any s, t > 0, let ¢ € [—a, 3] solve (uniquely) g¢(s,t) = g(s,t). As
€ | 0, there are explicit values Cy, G5, C3 depending on s, t,( such that

Ci(s,t) € +o(e?) (s,t) €S
Joe(g(s,t) +€) =1{ Gas,t,0) € +o(e?) (s,t) €S, k.
Gs(s,t) €2 + o(€?) (s,t) € S,

S

S,
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Variational connection for right tail

For any s,t > 0 and r > g(s, t),

Js.t(r) = inf {Ils'},_l"2(r) + sH(1|a) + tH(yz\B)}.

v1,V2
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Variational connection for right tail

For any s,t > 0 and r > g(s, t),

Js.t(r) = inf {Ils'},_l"2(r) + sH(1|a) + tH(yz\B)}.

v1,V2

A unique minimizing pair (v1, 1) exists.
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Variational connection for right tail

For any s,t > 0 and r > g(s, t),

Js.t(r) = inf {Ilslf,_l'jz(r) + sH(1|a) + tH(Vz\B)}.

v1,V2
A unique minimizing pair (v1,1,) exists. The equality
Js,e(r) = 15 (r) + sH(u1]a) + tH(2|8)
holds if and only if

dV]_ a+Z*+)\* dV2 b—Z*

%(a)oc atz., dﬁ(b)ocb—z*—)\*
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Variational connection for right tail

For any s,t > 0 and r > g(s, t),

Js.t(r) = inf {Ilslf,_l'jz(r) + sH(1|a) + tH(Vz\B)}.

v1,V2
A unique minimizing pair (v1,1,) exists. The equality
Js,e(r) = 15 (r) + sH(u1]a) + tH(2|8)
holds if and only if

dVl

Ok o

b—z,— A\

a+Z*+)\* dl/2

atz., dﬁ(b)oc

where z, and \, are the unique z,, A\, with
A€ [0,a + B], 2. € [~a, B — ] satisfying

atz,+A b—z
=\ —slogE® | 222X T2 tlogEP | —— 2 |,
Toe(r) = rA —slog [ a+z. ] tlog [b—z*—)\*]
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Proof sketch: finite n variational problem

Denote by 6;; the shift on the environment by (/,). We have
G,(n,n) = max{ max {G(n—k+1,n)o Ok—1,0 + G.(k,0),
1<ks<n

max {G(n,n— €+ 1) 06,1+ G,(0,0)}}.

1<¢<n
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Proof sketch: telescoping sum
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Proof sketch: telescoping sum

Gz(n,n) = Z G, (i,0) — G,(i —1,0) Z G(n,j) — Gz(n,j —1)
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Proof sketch: variational problem for Jg ;

Equate two expressions for G,(n, n) and subtract the > X(i,0) terms:

Z Y(n,j) = max{max{G(n—k+1 n) otk 10— Z X(i

1<j<n k<i<n
G(nyn—k+1)obou1— >, X(i,00+ > Y(0,))}
1<i<n 1<j<k
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Z Y(n,j) = 121£i<n{max{G(n —k—+1,n)00_10— Z X(i,0),

1<j<n k<i<n
Gnon—k+1)obou1— > X(i,00+ > Y(0.4)}}.
1<i<n 1<j<k

Chris Janjigian Large deviations for certain inhomogeneous corner growth models



Proof sketch: variational problem for Jg ;

Equate two expressions for G,(n, n) and subtract the > X(i,0) terms:

Z Y(n,j) = max{max{G(n—k+1 n)obk 10— Z X(i

1<j<n k<i<n
G(nyn—k+1)o 0o,k—1 — 2 X(i,0) + 2 Y(0./)}}
1<i<n 1<j<k

summands within the maxima are P ,-indep.

For each z € (—¢, j3) of the
(—a, B — A). For each k, we have

Fix A\ >0and z€e
EZ, [eAZ Y(n,j)] > E [ AG(n—k+1,n)00,_1, 0] e, [e_Ak;an(i’o)]
Eib [ e Y(n,J)] [e,\c(n n—k+1)o0g x— 1] £, [e/\lgénx@,m]

o)

so LHS > max of RHS over k.
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Proof sketch: variational problem for Jg ;

Equate two expressions for G,(n, n) and subtract the > X(i,0) terms:

Z Y(n,j) = max{max{G(nkarl n)ofk_10— Z X(i,0),

1<j<n k<i<n
G(nyn—k+1)obou1— >, X(i,00+ > Y(0,))}
1<i<n 1<j<k

For each z € (—¢, 3) of the summands within the maxima are P} p-indep.
Fix A\ >0and ze (—a, 3 — ). For each k, we have

EZ, [exz Y(n,j)] > EZ, [e/\G(n—k+l,n)ook71’o} e, [e—xk;’énx(i.o)]

E; . [GAZ Y(n,j)] > E; b |:e>\G(n,n—k+1)090,k—1] E; b I:e/\lézilénX(i’O)]

e [ A3 kY(O,j)]
X e 1Isis
a,b

so LHS > max of RHS over k.
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Proof sketch: variational problem for Jg ;

Equate two expressions for G,(n, n) and subtract the > X(i,0) terms:

Z Y(n,j) = max{max{G(n—k+1 n)obk 10— Z X(i

1<j<n k<i<n
Gnon—k+1)ob,— Y, X(i,00+ > Y(0,/)}}.
1<i<n 1<j<k

summands within the maxima are P ,-indep.

For each z € (—¢, j3) of the
(—a, B — A). For each k, we have

Fix A>0and ze
Eib [eAZ Y(n,j)] > EZ, [eAG(n—kﬂ,n)oek,Lo] 2, [e—Ak;gnx(i,o)]
EZ, [exx Y(n,j)] > EZ, [eAG(mnfkle)oOo_k,l} = [e

x EZ, [e/\lsjzsk Y(O’j)]

so LHS > max of RHS over k.

Ay X(i,O)]
1<i<n
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Proof sketch: variational problem for Jg ;

Define

Le.e(A) = lim flogE .,[ AG<tnsJ,tntJ>]

n—ao0

For A€ (0,3 — z), if we apply lim,_,oc n™ Yog E; p[e*], the previous
inequality and another coming from max < >, glves

b —z at+z+A
Ellog————| = Ly (\) — tE|log2 =2
[°gb1—z—x] oi“ril{max{ () [°g a+ 2 ]}

31+Z+)\ bl—Z
L —E|log———— 1—t)E|log——
1) - E|log 22 e g 22|
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Proof sketch: variational problem for Jg ;

This variational problem can be inverted to solve for Ls :(\) =

Ag(s,t) A<0
. ai+z+ A by —z
E|log—— E|log——
—(_xsnglsn,_ﬁ—,\{s [og a+z ]+t [Ogbl—z—A]} Ae(0.a+f]
0 A>a+f

Cannot use Gartner-Ellis (steepness can fail), but can verify that the
Legendre transform gives the rate function.
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Thanks!
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