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Discrete polymer models in random environment
= Compact space (= finite, cardinality = N)
= Mean-field type (to find exactly solvable models)

Approximation of non-compact case N — oo
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Mean-Field Model

Mean-Field Model on Complete graph with N sites

@ For1 <,j < N, paths starting at (0, /) ending at (t, /),
INO, i3t ) = {i = (os -+ Jt) : 1 <Js <N, Yo<s<t—1, fo =it = j},
@ Let {wij(t): 1 <i,j<N,t>0}iid. > 0. P2P partition function
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Figure: From Cook-Derrida 1990

@ Finite transverse space for polymer: Derrida (+Cook’90; + Brunet'04)
Free energy (= Lyapunov exp.) Eckman-Wayne 1989
Last-passage percolation: C-Quastel-Ramirez 2015



Mean-Field Model

Let X(t) = [wij(1)]i; N x N positive matrix
N(s,t) = X(s+1)...%(t), N(t,t)=1y,  0O(t) =N(0,1).

SO

[ Z(0,i:t,j) = N0, 1) |
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Mean-Field Model

Let X(t) = [wij(1)]i; N x N positive matrix
N(s,t) = X(s+1)...%(t), N(t,t)=1y,  0O(t) =N(0,1).

SO

[ Z(0,i:t,j) = N0, 1) |

= P2L partition function: set Iv(0, 7 t, %) = UYL, In(0, 7; 1, ), eftc....

ZvO,iit ) = > Jlwiri(s) = (N(D1),.

J€IN(0,ist,x) s=1

© L2P partition function

In(t,j) = Zn(0,%; 8, j) = Z Hw,s 1js(8) = j—th coord. of 1°11(1).

j€IN(0,%;t,j) s=1



Mean-Field Model

Let X(t) = [wij(1)]i; N x N positive matrix
N(s,t) = X(s+1)...%(t), N(t,t)=1y,  0O(t) =N(0,1).

SO

[ Z(0,i:t,j) = N0, 1) |

= P2L partition function: set Iv(0, 7 t, %) = UYL, In(0, 7; 1, ), eftc....
t
Zn(0,iitx) = > JJwiri(s) = (N(AN),
JEUN(0,iit %) s=1
© L2P partition function
ZN(t7j):ZN(Oa*; ta/)i Z Hw/s 1/s 7/ thcoord 0f1 rl( )
j€IN(0,%;t,j) s=1
& We single out the L2P p.f. (column vector) Zy(t) = (Z(t,1),--- ,Z(t, N))*
N
Zu(t, %) = Zu(t.)) = l1Zu(t)l]1,
j=1

Zn(t)" = Zn(t —1)" X(1),



Mean-Field Model

Fondamental results on products of random matrices

Products of i.i.d. random matrices. Fustenberg, Kesten’60. Lyapunov exp.

Fix o > 0; the a-norm of v € RY is ||v[|o = (X, v*)'/.

B.={veRY:||V]a=1}  (a—symplex),

Define projection W,, : RY \ {0} = B., Vo (v) = -~

G




Mean-Field Model

Fondamental results on products of random matrices

Products of i.i.d. random matrices. Fustenberg, Kesten’60. Lyapunov exp.

Fix o > 0; the a-norm of v € RY is ||v[|o = (X, v*)'/.

B.={veRY:||V]a=1}  (a—symplex),

Define projection W,, : RY \ {0} = B., Vo (v) = -~

IR
Normalized product (action on directions)
@ Xv =
X vi=-——¢€B,.
[1Zv]]a
(drop the subscripts from notation when o = 1, e.g.
B:=B,, x-v:=2X'v.)Finall, define
Zn(t) =
Xn,o(t) = Vo (2n(t) = 755 € Ba,
R N G]
by the recursion and homogeneity,
Xn,a(t) = Wa (X(1)" Zn,a(t — 1)) = Vo (X(1) Xn,a(t — 1)),

thus, {Xn.«(t) : t > 0} is a Markov chain.



Mean-Field Model

Va >0, (Xw,a(t))so is @ Markov chain in B.

Proposition (Hennion 1997, Hennion-Hervé 2008)

@ 3 event Qo withP(Q0) = 1 such that the (random) limit

X = lim N(t) v,

—> 00

exists for all « > 0,w € Qo and does not depend on v € RQ’ .
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Va >0, (Xw,a(t))so is @ Markov chain in B.
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Mean-Field Model

Va >0, (Xw,a(t))so is @ Markov chain in B.

Proposition (Hennion 1997, Hennion-Hervé 2008)

@ 3 event Qo withP(Q0) = 1 such that the (random) limit

X = lim N(t) v,

—> 00

exists for all o« > 0,w € Qo and does not depend on v € RY.
Moreover, Xy, = Vo (Xy3s) forall o, 8 > 0.

Q Let my,. denote the law of Xy, .
The chain (Xn,«(t))i>0 with initial law my ., is stationary and ergodic.

© Denote by s the shift on Q by s € Z, Osw(t) = w(s + t), and set
Xi:a(8) = Xia 0 65 = lim N(s, 1) v,
(In particular, Xy, (0) = Xy .-) Then,

2(0) © Xjo = Xnoa(—1)
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Infinite volume polymer measure

= P2L polymer measure = probability measure on Jy(0, /; T, %) :

" . . , 1
PG it (i = Vo, 1 Jt) = Z Ojol IT*) Hw/s s (

w= Similarly, there exists an almost-sure limit to the backward product

lczlo,a(s) = tl—l>n(;]o n(—t,S - 1)* B 4

which does not depend on v € RY. Since X(0)* 2 %(0), we have

N (8) = Xia-



Mean-Field Model

Infinite volume polymer measure

= P2L polymer measure = probability measure on Jy(0, /; T, %) :

w L . 1j
PO,,f;T,*(] = (107' o 7jt)) Z 0/01 IT *) Hw/s 1/5
w= Similarly, there exists an almost-sure limit to the backward product
Ra(s) = Jim N(~t,s—1)" v

which does not depend on v € RY. Since X(0)* 2 %(0), we have

N (8) = Xia-

= Define the random probability measure vn(t,-) on {1,... N} by
(XN°.(8,)) = j-th component of X§°,(s))

Rt DX (L)
S X5 (4 )X (1, K)

VN(tvj) =

Result: existence of an infinite volume polymer measure and a co-variant law.



Mean-Field Model

Infinite volume polymer measure

@ For almost every environment w, the polymer measure P§ ;.7 ,
converges as T — oo to the (time-inhomogeneous) Markov chain with
P*(jo = i) = 1 and transition probabilities given by

Py . t+ DX (t+1,¢
P (e =€!/r =k) = ka’é( )X ( )
ZZ’:1 wk,gr(l‘+ 1)X,\°Io(t+ 1,6/)

(1)

fort > 0,k,t€{1,...N}.

@ Letw € Qq. For the chain with transition (1) starting at time s with law
v(s,-), we have fort > s,

Py = £) = wn(t, ) , £=1,...N.

The co-variant law is proportional to the doubly infinite sum of weights over
polymers (from times —oo to +o0) which take the value j at time t.
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Infinite volume polymer measure: sketch of proof

O Finite horizon P2L polymer measure: for j € Jn(0,i; T, x),

PSir (i) = HZ—:1 Wi 1. (1)
ORT = " Z0(0,7; T, %)
is time-inhomogeneous Markov chain on {1,..., N}. Transitonfor0 < t < T:

. wk,g(l‘—F 1)ZN(f+ 1,4; T,*)
Di<menwWhm(t+1)Zn(t+1,m; T, %)

P37+ (et = E‘]‘t = k)
But, a.s.,
ni+1,7)-1 — Xg°(t+1)
so above LHS converges

wre(t+ DX (E+1,4)

Pw._ . 7 :E p = k —
0.i: T« (ft1 }lt ) 22521 wier (E+ D)X (E+1,0)




Mean-Field Model

Free energy and Gaussian fluctuation at fixed N

From general results on products of random matrices:

Theorem

Fix N and assume that E|Inw; ;|**° < co. Then, there exist vy and oy > 0
[assuming w is not constant] such that, forallj =1,...N,

1 ,
lim —InZyn(t,j) = wn a.s.,
t—oo t

and

%(m Zu(t,)) — vat) 2% N(0,03)  as t - oo.




Mean-Field Model

Free energy and Gaussian fluctuation at fixed N

From general results on products of random matrices:

Theorem

Fix N and assume that E|Inw; ;|**° < co. Then, there exist vy and oy > 0
[assuming w is not constant] such that, forallj =1,...N,

1 ,
lim —InZyn(t,j) = wn a.s.,
t—oo t

and :
—(InZu(t,j) — i) =% N(0,0%)  ast— oo.
Vit

Furthermore,

vy = E [In[|£(0) X% ][] -
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Integrable model on Complete graph

«a-Stable Environments

w ~ Su
stable law of index « € (0, 1),
Ee M =e", A>0.
( For independent S,,-distributed r.v.s, YN, a;S; 2 S, if SV, af = 1.) Let

S(t]) 1= 5 on(t) = 10g|Zu(t ~ 1)l

so that
log Zn(t,j) = log Sn(t,)) + en(1).

a-norm describes the mean height of the polymer.



Integrable model on Complete graph

«a-Stable Environments

Suppose {w; j(t)} ii.d. , S, -distributed. Then,
@ {Sn(t,j): t>1,1<j< N}isiid. S.-distributed.
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«a-Stable Environments

Suppose {w; j(t)} ii.d. , S, -distributed. Then,
@ {Sn(t,j): t>1,1<j< N}isiid. S.-distributed.
Q {pn(t): t > 1} is a random walk with i.i.d jumps {Tn(t) : t > 1}

Tn Z I || Snllas

where Sy is an i.i.d. family of S, -distributed random variables.
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Integrable model on Complete graph

«a-Stable Environments

Suppose {w; j(t)} ii.d. , S, -distributed. Then,
@ {Sn(t,j): t>1,1<j< N}isiid. S.-distributed.
Q {pn(t): t > 1} is a random walk with i.i.d jumps {Tn(t) : t > 1}
Tn Z I || Snllas
where Sy is an i.i.d. family of S, -distributed random variables.
e VN = E[TN], 0',2\/ = Var[TN].
© The invariant law my ., = law of HSS%

Q {(XT.(tj):t>1,1<j<N}isiid. my-distributed.




Integrable model on Complete graph

«a-Stable Environments

Some comments:

» Lyapunov exponents are usually not explicit.
Some exceptions: Cohen-Newman 1984

¥ polymer height function = moving front
log Zn(t, j) = log Sn(t,]) + en(t).

(height function remains concentrated around a ballistic motion)
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Large N asymptotics

Lyapunov exponent for a-Stable Environments

As the velocity and variance are explicit a-Stable environments, we obtain
asymptotics as N grows to co. Observe

N N
1 no no law
Ty =—In }_ 1: Sn(j)®  where §' 1: Sv()* 2 caNINN + NS; + o(N),
j= =

since (Sa)* € Dom(S;") totally asymmetric, Cauchy distribution.



Large N asymptotics

Lyapunov exponent for a-Stable Environments

As the velocity and variance are explicit a-Stable environments, we obtain
asymptotics as N grows to co. Observe

N N
1 no no law
Ty =—In }_ 1: Sn(j)®  where §' 1: Sv()* 2 caNINN + NS; + o(N),
j= =

since (Sa)* € Dom(S;") totally asymmetric, Cauchy distribution.

Proposition

Assume {w;j(t): t > 1,1 <i,j < N} is aniid., S.-distributed family. Then,
as N — oo,

w = o '(INnN+IninN+Inc.) + o(1), (2)

2 7'l'2 1

N = 3zmnN T %N ()




Large N asymptotics

Front profile for a-Stable Environments

Front profile Un(t, -) at time t := random distribution of the log — P2P polymer
partition function :

N
Un(t, x) = Z {In Zy(t,))>x} -
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Front profile for a-Stable Environments

Front profile Un(t, -) at time t := random distribution of the log — P2P polymer
partition function :

Let

Proposition

Fix t > 1, we have
@ Conditionally on F;, we have

Un(t,x +on(t—1)) = ua(x), as,

as N — oo, uniformly in x.
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Front profile for a-Stable Environments

Front profile Un(t, -) at time t := random distribution of the log — P2P polymer
partition function :

Let

Proposition

Fix t > 1, we have
@ Conditionally on F;, we have
Un(t,x +on(t—1)) = ua(x), as,

as N — oo, uniformly in x.
Q@ AsN — oo,

law. /

CaInN x [UN(t,x+ (t—1)vn + on(0)) — ua(x)] = Ug (X)X

where X is distributed as a sum of t independent S;” random variables.
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Perturbative results Environments close to a-stable
Environments that are perturbations of the S, laws. Suppose
1 —Eexp(itw) ~ t*, t~0,
for some a € (0, 1).

Claim (in progress)

Fort > 2,
ZN(t, I) law.
S — Sa-
[1Zn(t = 1)]a
For any sequence Ky C {1,---, N} with fixed size |Kn| = k,
AN , } law @k
i e Ky — S5
{IIZN(t— Dlla

Fort > 2, we have:

Un(t,x +on(t—1)) = ua(x), as.,

as N — oo, uniformly in x.
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Perturbative results Environments close to a-stable

Reason:
N
> awi(t) ~ Sa
i=1

in law, if
N

Za? =1 and & small
i=1

Can be checked with & = Z{—1.1)

ey after 1 step of the dynamics.

Note: It appears S., not S;".
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Other questions (in progress)

@ (a-stable case) Genealogy: Bolthausen-Sznitman (cf Cortines 2016).
@ (a-stable case) Asymptotics of the invariant measure
@ (a-stable case) Scaling limit
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Other questions (in progress)

@ (a-stable case) Genealogy: Bolthausen-Sznitman (cf Cortines 2016).
@ (a-stable case) Asymptotics of the invariant measure
@ (a-stable case) Scaling limit

THANK YOu !
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