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The model

Let R > L =0, and consider the asymmetric simple exclusion process on
the positive integers with open boundary condition:
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Notations

» Without loss of generality, one can assume R = 1.
» We denote the parameter L by ¢ € [0, 1).
» Denote time by 7.

» We are interested in the probability distribution of
N, (1) = #particles on the right of x at time 7,

at large times 7.
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Motivations

1 KPZ growth in a half-space. N,(1) can be seen as a height
function.

boundary condition
height function A(x, 1)

time 7

| x

One knows the fluctuations of TASEP in a half-space (equivalently
last-passage percolation in a half-quadrant). Are those of ASEP
similar?

2 KPZ equation on the positive reals. Weakly asymmetric scaling
limit of ASEP (Corwin-Shen 2016) suggests that a natural
boundary condition is of Neumann type:

dch=1AR+(0:h)%+#/
0:h(e,7)| _ =aeR.
-

What is the law of the solution?



Plan of the talk

1 The totally asymmetric case is equivalent to LPP in a
half-quadrant, which is the simplest benchmark model for
understanding KPZ growth in a half space.

2 New results on half-line ASEP: Tracy-Widom GOE asymptotics of
the current at the origin.

3 KPZ equation on R.

4 Ideas of the proof using 3 ingredients:

» Half-space stochastic six-vertex model (cf Amol’s talk).
> Half-space Macdonald processes.
» Pfaffian point processes.



Last Passage Percolation in a half quadrant

Let w;; a family of i.i.d. exponential random variables with rate 1 when
i>jand a when i =j.

Consider directed paths 7 from the box (1,1) to (n,m) in the half
quadrant. We define the last passage percolation time H(n,m) by

H(n,m)=max Z wij.
@i j)en



Passage-times on the diagonal

Theorem (Baik-Rains 2001 / Baik-B.-Corwin-Suidan 2016)
» When a>1/2,
H(n,n)—4n

oG48, 18— ZGSE;

» When a=1/2,
H(n,n)—4n

Q13,18 LGOE;

» When a <1/2,

H(n,n)—cn
oniz
In particular, if No(7) is the current in half-line TASEP (right jump rate
1, insertion of particles at rate @ = 1/2, no particle moving to the left),
starting from the empty initial condition,

No(m) -
1
9453713 100 ~ZGOE-



Understanding of the phase transition

» The fact that H(n,n) ~ 4n shows that the weights along the
optimal path have size 2 in average. Thus, the disorder on the
boundary becomes competitive when it has average at least 2,
hence the transition at a = 1/2.

» Algebraic considerations show that for any a, the law of H(n,n) in
the model with weight Exp(a) on the diagonal is the same as the
law of H(n,n) in a modified model where the weights on the
boundary are Exp(1) and the weights on the first row are Exp(a).

Open question: Is there a probabilistic proof?

Open question: In the critical case, geodesics take G(n'/?)

weights on the diagonal. Where?



Passage times away from the boundary

Theorem (Sasamoto-Imamura 2005/Baik-B.-Corwin-Suidan
2016)
For x€(0,1) and a > /x/(1+/x),

Hn,xn) -1+ x)n

= LGUE-
onl3

» One recovers the exact same result as for LPP in a full quadrant.
The boundary has no influence as long as the boundary weights
are not too big.

» If a decreases (i.e. boundary weights increase) the fluctuations
should transition between GUE Tracy-Widom and Gaussian, with

F(2}OE fluctuations when a = v/x/(1 + y/x). This is the Baik-Ben

Arous-Péché (2005) phase transition also arising in the full space

case.



Crossovers

Condider two parameters @ € R,n > 0.

Theorem (Baik-B.-Corwin-Suidan 2016)

When the boundary parameter scales as

1 -
a:§+2 413 o113

and one consider passage times at distance ) n?® from the boundary,

H(n +223nn23 n— 228n23) — 4n + nV324/3p2
94/3,1/3 ’

Hn(n, (D) =

The (multipoint) limiting distribution of H,(n,®) is a new
two-parametric distribution that interpolates between GUE, GOE and
GSE Tracy-Widom distribution.

» It is related to RMT models interpolating between Unitary,
Orthogonal and Symplectic Gaussian ensembles.



ASEP: previous results
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» Liggett 1975 classified the stationary measures when

a+ Y. 1
t
There is a phase transition at @ = 1/2 between product-form
Bernoulli measure and spatially correlated stationary measures.

The parameter a is the average density enforced at the boundary.

» Tracy-Widom 2013 used Bethe ansatz to find formulas for the
transition probabilities, not amenable to asymptotic analysis
though.

» A way to analyze ASEP is through a half space version of the
stochastic six-vertex model, that will be defined later.
(analogously as in the full-space Borodin-Corwin-Gorin 2014,
Aggarwal-Borodin 2016, Aggarwal 2016, Borodin-Olshanski 2016)



Main result on half-line ASEP

We assume
1 Ligget’s condition.
2 The boundary enforces a density of particles @ = 1/2 at the origin.
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Theorem (B.-Borodin-Corwin-Wheeler 2017)

For any t €10, 1), starting from the empty initial condition,

i
NO(l—_t)—z o
_— —
9-4BTIB 1oy — CGOE:

Recall N,(1) is the number of particles on the right of site x at time T.

» Based on the prediction that ASEP fluctuations are the same as
TASEP modulo a rescaling by the asymmetry, one expects diffusive
scaling in the low density phase a < 1/2 and GSE fluctuations in
the high density phase a > 1/2.



KPZ equation in a half-space
Consider .
0.Z=FA\Z+ZW

(SHE) {axZ(x,T)‘x:O =a Z(z,0)

on R, with delta initial data at the origin, in the mild sense:
T OO
Z(x,1) =p%(x,0) +fo fo P (x,¥) Z(y,s) AW (dY)

where the last integral is the It6 integral with respect to Wiener process
W, and p® is the heat kernel satisfying the Robin boundary condition

0xp7(0,y)=a p7(0,y)  (VT>0,y>0).

One can show that a.s. Z(x,7) > 0 and we define the solution of the KPZ
equation

1 2 | i
0th=5Ah+ (axh) +W

(KPZ)
{6xh(x, T)‘xzo =a.

in the Cole-Hopf sense, i.e. as A =log(Z). (see also Hairer-Gerencsér
2017)



Weakly asymmetric scaling of ASEP

Theorem (B.-Borodin-Corwin-Wheeler 2017)
Under the scalings

the random variable

4exp[-eN(1) - 2¢2%)]
1-¢2

Ze(f) =

weakly converges as € — 0 to a positive random variable Z(%). For any
z2>0,
—z +00 1
E [exp(ZZ(T))] =E l_[
i=1 \/1 +zexp ((1/2)13 alGOE)

where {alGOE }22, forms the GOE point process (i.e. the sequence of

rescaled eigenvalues of a large Gaussian real symmetric matrix).



Interpretation

» Using results from Corwin-Shen 2016, log Z(7)—1/24 is expected to
have the law of the solution to KPZ equation 4(0,7) with boundary
parameter a = —1/2 (though Corwin-Shen work with a = 0).

» The result should be compared with the analogous full-space
result (Amir-Corwin-Quastel, Calabrese-Le Doussal-Rosso,
Dotsenko, Sasamoto-Spohn 2011, Borodin-Gorin 2016) where

_ +oo 1
E [exp(fl(‘[))] =t L:Hl 1+zexp ((1/2)/3a8UE) |7

L +00 1
E[QXP(Z(Z(T))] - Lil_ll \/1 +2zexp ((T/z)l/saltGOE)

» In the cases a = +oo (Le Doussal-Gueudre 2012) and a =0
(Borodin-Bufetov-Corwin 2015) there exist non rigorous results
about the law of log(Z(r)), though only when 7 — oco.



Roadmap of integrable structures at play

A

more general structures  fHalf-space Macdonald processes
(Borodin-B-Corwin-Wheeler)

Refined
Littlewood
identity

Half-space

q=0 Higher spin system
(in progress)

Pfaffian Schur process Half-space Hall-Littlewoo
(Borodin-Rains 2005) process
.- A
is related to is related t/
Tty Y
applies to Stochastic six-vertex model
in a half space

limits to

half-line ASEP

Last passage percolation,
TASEP, ...

\J

more specific models



Half-space Macdonald measures

Skew Macdonald polynomials Py, @)/, are symmetric polynomials in
many variables whose coefficients are rational functions in two
parameters g,t € (0,1). They degenerate to skew Schur functions s/,
when g =t¢.

For two sets of variables a1,...,a, and b1,...,b,, in (0,1), we consider
the Pfaffian Macdonald measure

P(1) x Pyla) Ex(b),

where
&=Y b9Qu.
'even
In the following, we set b; = 0, so that the measure depends only on
parameters ay,...,a,.
» It’s a variant of the Macdonald measure (Borodin-Corwin 2011)
which is a (q,¢)-generalization of the Schur measure.
> As in the full-space case, one can define more general half-space
Macdonald processes.
» Half-space Macdonald degenerate when q =t to Pfaffian Schur
processes.



Half-space Hall-Litllewood measure

When ¢ = 0, Macdonald polynomials degenerate to Hall-Littlewood
polynomials

A AT
Py(x1,...,x,;t) =c(A) Z U(xl Xy H )
oeSy i<j XiTXj

» Hall Littlewood polynomials have been recently connected to the
six-vertex model and spin systems (Korff 2011 , Borodin 2014,
Wheeler-Zinn-Justin 2014 & 2015).

» For the stochastic six vertex-model in a rectangular domain, the
connection is very precise (Borodin 2016, Borodin-Bufetov-Wheeler
2016). One can use a spin model representation of Hall-Littlewood
functions to relate half-space Hall-Littlewood processes to a
stochastic six-vertex model in a quadrant.

» We adapt this to the half-space case using half-space
Hall-Littlewood processes.



Stochastic six vertex model in a half space

A A A A
7 > >
7 [P’( )_ l—axay
6 > > 1-tasay’
6
5 > A _
5 P(J ) _ (1 t)axay
4> 5 1-tasay ’
4
(1 -ayay)
3 > > P | =
3 ( ) 1-taya,
2 > A
1-t
2 P =
1 »—> ( |_) 1-tayay

Proposition (B.-Borodin-Corwin-Wheeler 2017)

P(b(n,n) =k) = P(£(1) = k),

where h(n,n) is the number of outgoing vertical arrows from the vertices
on the left of (n,n), and ¢(A) is the number of nonzero components in a
partition A following the Pfaffian Hall-Littlewood measure.



Relation Hall-Littlewood and Schur

A refined Littlewood identity for Macdonald functions (Rains 2015)
shows that certain observables of half-space Macdonald measures do
not depend on q.

Comparing the ¢ =0 and g =t cases yields identities relating
functionals of Schur and Hall-Littlewood random partitions:

Proposition (B.-Borodin-Corwin-Wheeler 2017)
For any x€ R, n €27, and (ai,...,a,)€(0,1) and b =0,

[EHL 1 — [ESchur

et g2y =Pf[J +f,- K|

[T 1+f)

PEZ\A

>

02(Z50)

where Kb = J — K5 is the correlation kernel of the complement of the
Pfaffian Schur point process A\ :={A; —i};,

N G AR
) = ——-1.
(]) (_tx+];t2)oo

where
(@;tY)o0 = (1 —a)(1—at?)(1—at?)...



Limit to ASEP on a half space

A time
T T7 L ° : L —
+6 - ° >
5 5 * >
4 [ & >

r} T2 L t t t t >

+1 C + + + + >

1 2 3 4 5
(1-t)e
2 ’

If the parameters are scaled such thata, =1—
[FD(—) = te, |]3>(J ) ~1—te, [P’( | ) xE, [P’( l—) =1l-e.

and paths will almost always zig-zag and do soomething else at rates 1
and ¢.



Laplace transform of ASEP current

source

Recall that No(7) denotes the total number of particles in the system at
time 7.

Theorem (B.-Borodin-Corwin-Wheeler 2017)

For any time 1 >0and x€R,

1 ASEP
(- #x+No(7) t2) =Pf J+f K 02(Z50)

where KASEP s 4 limit of KC from the previous slides, which can be
expressed exactly as contour integrals.

The L.H.S of the equation should be thought of as a deformed Laplace
transform.



Asymptotic analysis

1 ASEP
[( #x+No(1) t2) =Pf J+f K 02(Z50)

Theorem (B.-Borodin-Corwin-Wheeler 2017)

For any t €[0,1), starting from the empty initial condition,

NO(%)_g GOE GOE
T!EI()IOP W >—x|= Pf[.] -K ]I]_z(x,oo) =F (x)

» For fixed ¢, in the scaling limit above, KASEP goes to the correlation
kernel of the GOE, and the function f goes to —1.,.

» In the scaling limit leading to the KPZ equation, KASEP still go to

the correlation kernel of the GOE, and f converges to another
function. Hence, the Laplace transform of the solution to the KPZ
equation equals a multiplicative functional of the GOE.



Further directions

| 2

>

More general boundary conditions. This will probably require
going higher in the hierarchy of integrable structures.

Other interesting models are coming from Pfaffian Macdonald
processes: Log gamma directed polymer in a half space. (in
preparation)

Ultimately one hopes to prove that the Laplace transform of KPZ
equation in a half space at any space point and for general
boundary condition is a multiplicative functional of a certain
point process corresponding to the two-dimensional crossover
kernel obtained in LPP.



Thank you



