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The model
Let R>LÊ 0, and consider the asymmetric simple exclusion process on
the positive integers with open boundary condition:
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γ

Notations
Ï Without loss of generality, one can assume R= 1.

Ï We denote the parameter L by t ∈ [0,1).

Ï Denote time by τ.

Ï We are interested in the probability distribution of

Nx(τ)= #particles on the right of x at time τ,

at large times τ.
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Motivations

1 KPZ growth in a half-space. Nx(τ) can be seen as a height
function.

x

boundary condition

height function h(x,τ)

time τ

One knows the fluctuations of TASEP in a half-space (equivalently
last-passage percolation in a half-quadrant). Are those of ASEP
similar?

2 KPZ equation on the positive reals. Weakly asymmetric scaling
limit of ASEP (Corwin-Shen 2016) suggests that a natural
boundary condition is of Neumann type:{

∂τh= 1
2∆h+ (

∂xh
)2 + Ẇ

∂xh(x,τ)
∣∣∣
x=0

= a ∈R.

What is the law of the solution?



Plan of the talk

1 The totally asymmetric case is equivalent to LPP in a

half-quadrant, which is the simplest benchmark model for
understanding KPZ growth in a half space.

2 New results on half-line ASEP: Tracy-Widom GOE asymptotics of
the current at the origin.

3 KPZ equation on R>0.
4 Ideas of the proof using 3 ingredients:

Ï Half-space stochastic six-vertex model (cf Amol’s talk).
Ï Half-space Macdonald processes.
Ï Pfaffian point processes.



Last Passage Percolation in a half quadrant

Let wij a family of i.i.d. exponential random variables with rate 1 when
i> j and α when i= j.

n
m

w11

w21

w22 w31

Exp(α)

Exp(1)

Half space TASEP

Consider directed paths π from the box (1,1) to (n,m) in the half
quadrant. We define the last passage percolation time H(n,m) by

H(n,m)=max
π

∑
(i,j)∈π

wij.



Passage-times on the diagonal

Theorem (Baik-Rains 2001 / Baik-B.-Corwin-Suidan 2016)
Ï When α> 1/2,

H(n,n)−4n
24/3n1/3 =⇒LGSE,

Ï When α= 1/2,
H(n,n)−4n

24/3n1/3 =⇒LGOE,

Ï When α< 1/2,
H(n,n)−cn

c′n1/2 =⇒N ,

In particular, if N0(τ) is the current in half-line TASEP (right jump rate
1, insertion of particles at rate α= 1/2, no particle moving to the left),
starting from the empty initial condition,

N0 (τ)− τ
4

2−4/3τ1/3 ===⇒
τ→∞ −LGOE.



Understanding of the phase transition

Ï The fact that H(n,n)∼ 4n shows that the weights along the
optimal path have size 2 in average. Thus, the disorder on the
boundary becomes competitive when it has average at least 2,
hence the transition at α= 1/2.

Ï Algebraic considerations show that for any α, the law of H(n,n) in
the model with weight Exp(α) on the diagonal is the same as the
law of H(n,n) in a modified model where the weights on the
boundary are Exp(1) and the weights on the first row are Exp(α).

Open question: Is there a probabilistic proof?

Open question: In the critical case, geodesics take O (n1/3)
weights on the diagonal. Where?



Passage times away from the boundary

Theorem (Sasamoto-Imamura 2005/Baik-B.-Corwin-Suidan
2016)
For κ ∈ (0,1) and α>p

κ/(1+p
κ),

H(n,κn)− (1+p
κ)2n

σn1/3 =⇒LGUE.

Ï One recovers the exact same result as for LPP in a full quadrant.
The boundary has no influence as long as the boundary weights
are not too big.

Ï If α decreases (i.e. boundary weights increase) the fluctuations
should transition between GUE Tracy-Widom and Gaussian, with
F2

GOE fluctuations when α=p
κ/(1+p

κ). This is the Baik-Ben
Arous-Péché (2005) phase transition also arising in the full space
case.



Crossovers

Condider two parameters $ ∈R,η> 0.

Theorem (Baik-B.-Corwin-Suidan 2016)
When the boundary parameter scales as

α= 1
2
+2−4/3$n−1/3,

and one consider passage times at distance η n2/3 from the boundary,

Hn(η,$) := H
(
n+22/3ηn2/3,n−22/3ηn2/3)−4n+n1/324/3η2

24/3n1/3 ,

The (multipoint) limiting distribution of Hn(η,$) is a new
two-parametric distribution that interpolates between GUE, GOE and
GSE Tracy-Widom distribution.

Ï It is related to RMT models interpolating between Unitary,
Orthogonal and Symplectic Gaussian ensembles.



ASEP: previous results

reservoir
1 2 3 4 5 6 7 8 9 10 11 12
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γ

Ï Liggett 1975 classified the stationary measures when

α+ γ

t
= 1

There is a phase transition at α= 1/2 between product-form
Bernoulli measure and spatially correlated stationary measures.
The parameter α is the average density enforced at the boundary.

Ï Tracy-Widom 2013 used Bethe ansatz to find formulas for the
transition probabilities, not amenable to asymptotic analysis
though.

Ï A way to analyze ASEP is through a half space version of the
stochastic six-vertex model, that will be defined later.
(analogously as in the full-space Borodin-Corwin-Gorin 2014,
Aggarwal-Borodin 2016, Aggarwal 2016, Borodin-Olshanski 2016)



Main result on half-line ASEP
We assume

1 Ligget’s condition.
2 The boundary enforces a density of particles α= 1/2 at the origin.

reservoir
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Theorem (B.-Borodin-Corwin-Wheeler 2017)
For any t ∈ [0,1), starting from the empty initial condition,

N0

(
T

1−t

)
− T

4

2−4/3T1/3 ===⇒
T→∞

−LGOE.

Recall Nx(τ) is the number of particles on the right of site x at time τ.

Ï Based on the prediction that ASEP fluctuations are the same as
TASEP modulo a rescaling by the asymmetry, one expects diffusive
scaling in the low density phase α< 1/2 and GSE fluctuations in
the high density phase α> 1/2.



KPZ equation in a half-space

Consider

(SHE)

{
∂τZ= 1

2∆Z+ZẆ

∂xZ(x,τ)
∣∣∣
x=0

= a Z(τ,0)

on R+ with delta initial data at the origin, in the mild sense:

Z(x,τ)= pa
τ(x,0)+

∫ τ

0

∫ ∞

0
pa
τ−s(x,y)Z(y,s)dWs(dY)

where the last integral is the Itô integral with respect to Wiener process
W, and pa is the heat kernel satisfying the Robin boundary condition

∂xpa
τ(0,y)= a pa

τ(0,y) (∀τ> 0,y> 0) .

One can show that a.s. Z(x,τ)> 0 and we define the solution of the KPZ
equation

(KPZ)

{
∂τh= 1

2∆h+ (
∂xh

)2 +Ẇ

∂xh(x,τ)
∣∣∣
x=0

= a.

in the Cole-Hopf sense, i.e. as h= log(Z). (see also Hairer-Gerencsér
2017)



Weakly asymmetric scaling of ASEP

Theorem (B.-Borodin-Corwin-Wheeler 2017)
Under the scalings

t= e−ε, τ= 8ε−3τ̃

1− t
≈ 8ε−4τ̃,

the random variable

Zε(τ̃)= 4exp
[−εN(τ)−2ε−2τ̂

)]
1− t2

weakly converges as ε→ 0 to a positive random variable Z (τ̃). For any
z> 0,

E
[
exp

(−z
4

Z (τ)
)]

= E

+∞∏
i=1

1√
1+zexp

(
(τ/2)1/3aGOE

i
)
 ,

where {aGOE
i }∞i=1 forms the GOE point process (i.e. the sequence of

rescaled eigenvalues of a large Gaussian real symmetric matrix).



Interpretation

Ï Using results from Corwin-Shen 2016, logZ (τ)−τ/24 is expected to
have the law of the solution to KPZ equation h(0,τ) with boundary
parameter a=−1/2 (though Corwin-Shen work with aÊ 0).

Ï The result should be compared with the analogous full-space
result (Amir-Corwin-Quastel, Calabrese-Le Doussal-Rosso,
Dotsenko, Sasamoto-Spohn 2011, Borodin-Gorin 2016) where

E
[
exp

(−z
4

Z (τ)
)]

= E
[+∞∏

i=1

1
1+zexp

(
(τ/2)1/3aGUE

i
)]

,

E
[
exp

(−z
4

Z (τ)
)]

= E

+∞∏
i=1

1√
1+zexp

(
(τ/2)1/3aGOE

i
)
 ,

Ï In the cases a=+∞ (Le Doussal-Gueudre 2012) and a= 0
(Borodin-Bufetov-Corwin 2015) there exist non rigorous results
about the law of log(Z(τ)), though only when τ→∞.



Roadmap of integrable structures at play

Half-space Macdonald processes

(Borodin-B-Corwin-Wheeler)

Pfaffian Schur process
(Borodin-Rains 2005)

Half-space Hall-Littlewood
process

Stochastic six-vertex model
in a half space

Half-space
Higher spin system

(in progress)

Last passage percolation,
TASEP, ... half-line ASEP

Refined
Littlewood

identity

KPZ on R>0

q= t q= 0

applies to

is related to

limits to

is related to

more specific models

more general structures



Half-space Macdonald measures

Skew Macdonald polynomials Pλ/µ,Qλ/µ are symmetric polynomials in
many variables whose coefficients are rational functions in two
parameters q, t ∈ (0,1). They degenerate to skew Schur functions sλ/µ
when q= t.
For two sets of variables a1, . . . ,an and b1, . . . ,bm in (0,1), we consider
the Pfa�an Macdonald measure

P(λ)∝Pλ(a) Eλ(b),

where
Eλ =

∑
µ′even

bel
λ Qλ/µ.

In the following, we set bi ≡ 0, so that the measure depends only on
parameters a1, . . . ,an.
Ï It’s a variant of the Macdonald measure (Borodin-Corwin 2011)

which is a (q, t)-generalization of the Schur measure.
Ï As in the full-space case, one can define more general half-space

Macdonald processes.
Ï Half-space Macdonald degenerate when q= t to Pfaffian Schur

processes.



Half-space Hall-Litllewood measure

When q= 0, Macdonald polynomials degenerate to Hall-Littlewood
polynomials

Pλ(x1, . . . ,xn;t)= c(λ)
∑
σ∈Sn

σ
(
xλi

1 . . . ,xλn
n

∏
i<j

xi − txj

xi −xj

)
.

Ï Hall Littlewood polynomials have been recently connected to the
six-vertex model and spin systems (Korff 2011 , Borodin 2014,
Wheeler-Zinn-Justin 2014 & 2015).

Ï For the stochastic six vertex-model in a rectangular domain, the
connection is very precise (Borodin 2016, Borodin-Bufetov-Wheeler
2016). One can use a spin model representation of Hall-Littlewood
functions to relate half-space Hall-Littlewood processes to a
stochastic six-vertex model in a quadrant.

Ï We adapt this to the half-space case using half-space
Hall-Littlewood processes.



Stochastic six vertex model in a half space

1
1

2
2

3
3

4
4

5
5

6
6

7
7

P
( )

= 1−axay

1− taxay
,

P
( )

= (1− t)axay

1− taxay
,

P
( )

= t(1−axay)
1− taxay

,

P
( )

= 1− t
1− taxay

,

Proposition (B.-Borodin-Corwin-Wheeler 2017)

P
(
h(n,n)= k

)=P(
`(λ)= k

)
,

where h(n,n) is the number of outgoing vertical arrows from the vertices
on the left of (n,n), and `(λ) is the number of nonzero components in a
partition λ following the Pfaffian Hall-Littlewood measure.



Relation Hall-Littlewood and Schur

A refined Littlewood identity for Macdonald functions (Rains 2015)
shows that certain observables of half-space Macdonald measures do
not depend on q.
Comparing the q= 0 and q= t cases yields identities relating
functionals of Schur and Hall-Littlewood random partitions:

Proposition (B.-Borodin-Corwin-Wheeler 2017)
For any x ∈R, n ∈ 2Z>0, and (a1, . . . ,an) ∈ (0,1) and b≡ 0,

EHL
[

1
(−tx+n−`(λ),t2)∞

]
= ESchur

[ ∏
p∈Z\Λ

(
1+ fx(p)

)]=Pf
[
J+ fx ·KÙ

]
`2(ZÊ0)

,

where KÙ = J−KSchur is the correlation kernel of the complement of the
Pfaffian Schur point process Λ := {λi − i}i,

fx(j)= (−tx+j+1;t2)∞
(−tx+j;t2)∞

−1.

where
(a;t2)∞ = (1−a)(1−at2)(1−at4) . . .



Limit to ASEP on a half space

1

2

3

4

5

6

7

time

1 2 3 4 5

If the parameters are scaled such that ax ≡ 1− (1−t)ε
2 ,

P
( )

≈ tε, P
( )

≈ 1− tε, P
( )

≈ ε, P
( )

≈ 1−ε.

and paths will almost always zig-zag and do soomething else at rates 1
and t.



Laplace transform of ASEP current

source
1 2 3 4 5 6 7 8 9 10 11 12

1 t 1 1t1/2

t/2

Recall that N0(τ) denotes the total number of particles in the system at
time τ.

Theorem (B.-Borodin-Corwin-Wheeler 2017)
For any time τ> 0 and x ∈R,

E

[
1

(−tx+N0(τ),t2)∞

]
=Pf

[
J+ fx ·KASEP

]
`2(ZÊ0)

where KASEP is a limit of KÙ from the previous slides, which can be
expressed exactly as contour integrals.

The L.H.S of the equation should be thought of as a deformed Laplace
transform.



Asymptotic analysis

E

[
1

(−tx+N0(τ),t2)∞

]
=Pf

[
J+ fx ·KASEP

]
`2(ZÊ0)

Theorem (B.-Borodin-Corwin-Wheeler 2017)
For any t ∈ [0,1), starting from the empty initial condition,

lim
T→∞

P

N0

(
T

1−t

)
− T

4

2−4/3T1/3 >−x

=Pf
[
J−K

GOE
]
L2(x,∞)

=FGOE(x).

Ï For fixed t, in the scaling limit above, KASEP goes to the correlation
kernel of the GOE, and the function f goes to −1·>x.

Ï In the scaling limit leading to the KPZ equation, KASEP still go to
the correlation kernel of the GOE, and f converges to another
function. Hence, the Laplace transform of the solution to the KPZ
equation equals a multiplicative functional of the GOE.



Further directions

Ï More general boundary conditions. This will probably require
going higher in the hierarchy of integrable structures.

Ï Other interesting models are coming from Pfaffian Macdonald
processes: Log gamma directed polymer in a half space. (in
preparation)

Ï Ultimately one hopes to prove that the Laplace transform of KPZ
equation in a half space at any space point and for general

boundary condition is a multiplicative functional of a certain
point process corresponding to the two-dimensional crossover
kernel obtained in LPP.



Thank you


