Multi-time distribution of periodic TASEP

Jinho Baik
University of Michigan

April 2017 @ CIRM

Joint work with Zhipeng Liu (Courant Institute)

1. (Baik, Liu) Fluctuations of TASEP on a ring in relaxation time scale (arXiv:1605.07102)
2. (Liu) Height fluctuations of stationary TASEP on a ring in relaxation time scale (arXiv:1610.04601)
3. (Baik, Liu) Multi-time, multi-location distribution of periodic TASEP (in preparation)

Introduction

- height fluctuations, spatial correlations, time correlations 1:2:3
- Height function $H(s, t)$

$$
h_{\epsilon}(\gamma, \tau):=\frac{H\left(\epsilon^{-2 / 3} \gamma, \epsilon^{-1} \tau\right)-\left\langle H\left(t^{2 / 3} \gamma, t \tau\right)\right\rangle}{\epsilon^{-1 / 3}}
$$

- What is the limiting two-dimensional process?

$$
(\gamma, \tau) \mapsto h(\gamma, \tau)=\lim _{\epsilon \rightarrow 0} h_{\epsilon}(\gamma, \tau)
$$

- One-point distribution: Tracy-Widom distributions
- Fix τ and consider $\gamma \mapsto h(\gamma, \tau)$
- Depends on the initial condition
- Airy 2 process for step initial condition
- Airy ${ }_{1}$ process for flat initial condition
- Does not depend on τ (after a simple scale)
- Proved for TASEP and some zero temperature directed polymers (but not for ASEP, positive temperature directed polymers and KPZ equation yet)
- Prähofer, Spohn, Johansson, Sasamoto, Borodin, Ferrari, Matetski, Quastel, Remenik, ...
- Slow decorrelation [Ferrari 2008]
- Two-time distribution (not rigorous) [Dotsenko 2013]
- Two-time distribution (Brownian directed last passage percolation) [Johansson 2016]
- Short time $\left(\tau_{2} / \tau_{1} \rightarrow 1\right)$ and long time $\left(\tau_{2} / \tau_{1} \rightarrow 0\right)$ asymptotics of time covariance $\operatorname{Cov}\left(h\left(0, \tau_{1}\right), h\left(0, \tau_{2}\right)\right)$ [Ferrari, Spohn 2016]
- Tail of two-time distribution: $p_{\tau_{2} / \tau_{1}}\left(x_{1}, x_{2}\right)$ for large positive x_{1} and arbitrary x_{2} as $\tau_{2} / \tau_{1} \rightarrow 1$ and $\rightarrow 0$ [de Nardis, Le Doussal 2016]

This talk: Multi-time distribution for periodic TASEP

Associate $\bullet \circ$ with \vee and associate $\circ \bullet$ with \wedge

- L period
- N number of particles per period
- $\rho=\frac{N}{L}$ particle density (ρ fixed, L, N large)
- t not too large: infinite TASEP (KPZ dynamics)
- t too large: finite TASEP (equilibrium dynamics)
- crossover: relaxation time scale $t=O\left(L^{3 / 2}\right)$
- Gwa and Spohn 1992
- Derrida and Lebowitz 1998
- Priezzhev, Povlotsky, Golinelli, Mallick
- Prolhac 2013-2016

Results (Periodic step initial condition)

Periodic step initial condition

1. Multi-time, multi-position joint distribution in the limit $t=O\left(L^{3 / 2}\right)$
2. A discussion on the one-point distribution
** One-point distribution for three (step, flat, stationary) initial conditions: Prolhac \& Baik-Liu, independently, 2016

- $t, L, N \rightarrow \infty$ with $t=O\left(L^{3 / 2}\right)$ and $\rho=N / L$ fixed
- There are shocks. In this talk, assume $\rho=1 / 2$
- Joint height distribution $\mathbb{P}\left(\cap_{j=1}^{m}\left\{H\left(s_{j}, t_{j}\right) \leq h_{j}\right\}\right)$
- Position $s_{j}=\gamma_{j} L$ with $\gamma_{i} \in[0,1]$
- Time $t_{j}=2 \tau_{j} L^{3 / 2}$ satisfying $0<\tau_{1}<\cdots<\tau_{m}$
- Height $h_{j}=\frac{1}{2} t_{j}-x_{j} L^{1 / 2}$ with $x_{j} \in \mathbb{R}$

$$
\mathbb{P}\left(\cap_{j=1}^{m}\left\{H\left(s_{j}, t_{j}\right) \leq h_{j}\right\}\right) \rightarrow \mathbf{F}\left(x_{1}, \cdots, x_{m} ;\left(\gamma_{1}, \tau_{1}\right), \cdots,\left(\gamma_{m}, \tau_{m}\right)\right)
$$

- $\mathbf{F}\left(x_{1}, \cdots, x_{m}\right)=\frac{1}{(2 \pi \mathrm{i})^{m}} \oint \cdots \oint \mathbf{C}(\mathbf{z}) \mathbf{D}(\mathbf{z}) \prod_{i=1}^{m} \frac{\mathrm{~d} z_{i}}{z_{i}}$
- Nested circles $\left|z_{m}\right|<\cdots<\left|z_{1}\right|<1$
- $\mathbf{C}(\mathbf{z})$ has simple poles at $z_{i}=z_{i+1}$
- $\mathbf{D}(\mathbf{z})$ has an isolated singularity at $z_{i}=0$, and $\mathbf{D}(\mathbf{z})=\operatorname{det}(\mathbf{1}-\mathbf{K})$

$$
\mathbf{C}(\mathbf{z})=\left[\prod_{i=1}^{m-1} \frac{z_{i}}{z_{i+1}-z_{i}}\right]\left[\prod_{i=1}^{m} \frac{\mathbf{A}_{i}\left(z_{i}\right)}{\mathbf{A}_{i-1}\left(z_{i}\right)}\right] \mathbf{Q}(\mathbf{z})
$$

where $\mathbf{A}_{i}(z)=e^{-\sqrt{\frac{2}{\pi}}\left(x_{i} L_{i 3 / 2}(z)+\tau_{i} L_{i 5 / 2}(z)\right)} . \mathbf{Q}(\mathbf{z})$ is analytic, $\mathbf{Q}(0) \neq 0$, and it does not depend on $x_{i}, \tau_{i}, \gamma_{i}$.

- $\mathbf{D}(\mathbf{z})=\operatorname{det}(\mathbf{1}-\mathbf{K})$ where $\mathbf{K}=\mathbf{K}_{\mathbf{1}} \mathbf{K}_{\mathbf{2}}$
- Give $|z|<1$, consider the zeros of the equation $e^{-w^{2} / 2}=z$
- Denote the set of zeros by $L_{z} \cup R_{z}$.

- $(m=3) \mathbf{K}_{1}: \ell^{2}\left(R_{z_{1}}\right) \oplus \ell^{2}\left(L_{z_{2}}\right) \oplus \ell^{2}\left(R_{z_{3}}\right) \rightarrow \ell^{2}\left(L_{z_{1}}\right) \oplus \ell^{2}\left(R_{z_{2}}\right) \oplus \ell^{2}\left(L_{z_{3}}\right)$

- Using $\xi_{i} \in L_{z_{i}}$ and $\eta_{i} \in R_{z_{i}}$, the matrix kernel is of form (for $m=5$)

$$
\mathbf{K}_{\mathbf{1}}=\left[\begin{array}{lllll}
\mathbf{K}_{\mathbf{1}}\left(\xi_{1}, \eta_{1}\right) & \mathbf{K}_{1}\left(\xi_{1}, \xi_{2}\right) & & & \\
\mathbf{K}_{\mathbf{1}}\left(\eta_{2}, \eta_{1}\right) & \mathbf{K}_{\mathbf{1}}\left(\eta_{2}, \xi_{2}\right) & & & \\
& & \mathbf{K}_{1}\left(\xi_{3}, \eta_{3}\right) & \mathbf{K}_{1}\left(\xi_{3}, \xi_{4}\right) & \\
& & \mathbf{K}_{\mathbf{1}}\left(\eta_{4}, \eta_{3}\right) & \mathbf{K}_{\mathbf{1}}\left(\eta_{4}, \xi_{4}\right) & \\
& & & & \mathbf{K}_{\mathbf{1}}\left(\xi_{5}, \eta_{5}\right)
\end{array}\right]
$$

$$
\mathbf{K}_{\mathbf{2}}=\left[\begin{array}{lllll}
\mathbf{K}_{\mathbf{2}}\left(\eta_{1}, \xi_{1}\right) & & & & \\
& \mathbf{K}_{2}\left(\eta_{2}, \xi_{2}\right) & \mathbf{K}_{2}\left(\xi_{2}, \xi_{3}\right) & & \\
& \mathbf{K}_{\mathbf{2}}\left(\eta_{3}, \eta_{2}\right) & \mathbf{K}_{\mathbf{2}}\left(\eta_{3}, \xi_{3}\right) & & \mathbf{K}_{\mathbf{2}}\left(\xi_{4}, \eta_{4}\right) \\
& & & \mathbf{K}_{2}\left(\xi_{4}, \xi_{5}\right) \\
& & & \mathbf{K}_{2}\left(\eta_{5}, \eta_{4}\right) & \mathbf{K}_{\mathbf{2}}\left(\eta_{5}, \xi_{5}\right)
\end{array}\right]
$$

Set $\mathbf{F}_{i}(w)=\exp \left(-\frac{1}{3} \tau_{i} w^{3}+\frac{1}{2} \gamma_{i} w^{2}+x_{i} w\right)$

The 2×2 blocks are $((\operatorname{Re}(\xi)<0$ and $\operatorname{Re}(\eta)>0)$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\mathbf{K}_{1}(\xi, \eta) & \mathbf{K}_{1}\left(\xi, \xi^{\prime}\right) \\
\mathbf{K}_{1}\left(\eta^{\prime}, \eta\right) & \mathbf{K}_{1}\left(\eta^{\prime}, \xi^{\prime}\right)
\end{array}\right]} \\
& =\left[\begin{array}{cc}
\frac{\mathbf{F}_{i}(\xi)}{\mathbf{F}_{i-1}(\xi)} & 0 \\
0 & \frac{\mathbf{F}_{i}\left(\eta^{\prime}\right)}{\mathbf{F}_{i+1}\left(\eta^{\prime}\right)}
\end{array}\right]\left[\begin{array}{cc}
f(\xi) & 0 \\
0 & g\left(\eta^{\prime}\right)
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\xi-\eta} & \frac{1}{\xi-\xi^{\prime}} \\
\frac{1}{\eta^{\prime}-\eta} & \frac{1}{\eta^{\prime}-\xi^{\prime}}
\end{array}\right]\left[\begin{array}{cc}
h(\xi) & 0 \\
0 & j\left(\eta^{\prime}\right)
\end{array}\right]
\end{aligned}
$$

where f, g, h, j depend also on z, z^{\prime} but do not depend on $x_{i}, \tau_{i}, \gamma_{i}$

$$
h(\eta)=e^{\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{-\eta} \mathrm{Li}_{1 / 2}\left(z^{\prime} e^{\left(w^{2}-y^{2}\right) / 2}\right) \mathrm{d} y}\left(\frac{z^{\prime}}{z}-1\right)
$$

Formal computation shows:

- $\tau \rightarrow 0: \mathbf{F}\left(\tau^{1 / 3} x+\frac{\gamma^{2}}{4 \tau^{2 / 3}} ;(\gamma, \tau)\right) \rightarrow \begin{cases}\mathbf{F}_{\text {GUE }}(x) & \gamma \neq 1 / 2 \\ \mathbf{F}_{\text {GUE }}(x)^{2} & \gamma=1 / 2\end{cases}$
- $\tau \rightarrow \infty: \mathbf{F}\left(\frac{\sqrt{2} \tau^{1 / 6}}{\pi^{1 / 4}}(x+\tau) ;(\gamma, \tau)\right) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-y^{2} / 2} \mathrm{~d} y$

Discontinuity $O\left(L t^{-1}\right)$
Infinite TASEP with $O(1)$ discontinuity: Ferrari, Nejjar 2015

Very brief discussion on the proof (finite time formula)

- The limit is obtained from an exact finite time formula, which has a parallel structure
- TASEP in the configuration space $\mathcal{X}_{L, N}=\left\{x_{N}<\cdots<x_{1}<x_{N}+L\right\}$
- Coordinate Bethe ansatz method
- Schütz (1997): Computed transition probability for TASEP
- Rákos and Schütz (2005): Using Schütz's formula, reproduced Johansson's result (the Fredholm determinant formula for the 1-point distribution for step initial condition)
- Borodin, Ferrari, Prähofer and Sasamoto (2007-2008): Using Schütz's formula, obtained Fredholm determinant formula for equal-time processes (and space-like points)
- Tracy and Widom (ASEP) (2008-2009): ASEP, 1-point distribution

For X and Y in $\left\{x_{N}<\cdots<x_{1}<x_{N}+L\right\}$,

$$
\mathbb{P}_{Y}(X ; t)=\oint \operatorname{det}\left[\frac{1}{L} \sum_{w} \frac{w^{i-j+1}(w+1)^{-x_{i}+y_{j}-i+j} e^{t w}}{w+\rho}\right]_{N \times N} \frac{\mathrm{~d} z}{2 \pi \mathrm{i} z}
$$

Sum over the roots of $w^{N}(w+1)^{L-N}=z^{L}$

Obtained by solving the Kolmogorov forward equation using coordinate Bethe ansatz

$$
\begin{aligned}
& \mathbb{P}_{Y}\left(\cap_{i=1}^{m}\left\{x_{k_{i}}\left(t_{i}\right) \geq a_{i}\right\}\right) \\
& =\sum \cdots \sum \mathbb{P}_{Y}\left(X^{(1)} ; t_{1}\right) \mathbb{P}_{X^{(1)}}\left(X^{(2)} ; t_{2}-t_{1}\right) \cdots \mathbb{P}_{X^{(m-1)}}\left(X^{(m)} ; t_{m}-t_{m-1}\right)
\end{aligned}
$$

The sums are over all $x_{N}^{(i)}<\cdots<x_{1}^{(i)}<x_{N}^{(i)}+L$ satisfying $x_{k_{i}}^{(i)} \geq a_{i}$. It becomes

$$
\frac{1}{(2 \pi \mathrm{i})^{m}} \oint \cdots \oint \mathcal{C}(\mathbf{z}, \mathbf{k}) \mathcal{D}_{Y}(\mathbf{z}, \mathbf{k}, \mathbf{t}, \mathbf{a}) \prod_{i=1}^{m} \frac{\mathrm{~d} z_{i}}{z_{i}}
$$

where

$$
\mathcal{D}_{Y}(\mathbf{z})=\operatorname{det}\left[\sum_{w_{1}, \cdots, w_{m}} \frac{w_{1}^{-i}\left(w_{1}+1\right)^{y_{i}+i-1} w_{m}^{-j}}{\prod_{\ell=2}^{m}\left(w_{\ell}-w_{\ell-1}\right)} \prod_{\ell=1}^{m} g_{\ell}\left(w_{\ell}\right)\right]_{N \times N}
$$

The sum is over the roots $w_{i}^{N}\left(w_{i}+1\right)^{L-N}=z_{i}^{L}$. The function

$$
g_{\ell}(w)=\frac{w(w+1)}{L(w+\rho)} \frac{w^{k_{\ell}}(w+1)^{-a_{\ell}-k_{\ell}-1} e^{t_{\ell} w}}{w^{k_{\ell-1}}(w+1)^{-a_{\ell-1}-k_{\ell-1}-1} e^{t_{\ell-1} w}}
$$

Set $y_{i}=-i+1$. Then

$$
\mathcal{D}_{Y}(\mathbf{z})=\operatorname{det}\left[\sum_{w_{1}, \cdots, w_{m}} \frac{w_{1}^{-i} w_{m}^{-j}}{\prod_{\ell=2}^{m}\left(w_{\ell}-w_{\ell-1}\right)} \prod_{\ell=1}^{m} g_{\ell}\left(w_{\ell}\right)\right]_{N \times N}
$$

This simplifies to a Fredholm determinant. Here we need to take $\left|z_{i}\right|<r_{0}$ for all i.

Slightly longer discussion

Inserting the Schütz-like formual from Step 1

$$
P_{Y}(X ; t)=\oint \operatorname{det}\left[\frac{1}{L} \sum_{w} \frac{w^{i-j+1}(w+1)^{-x_{i}+y_{j}-i+j} e^{t w}}{w+\rho}\right]_{N \times N} \frac{\mathrm{~d} z}{2 \pi \mathrm{i} z}
$$

into

$$
\begin{aligned}
& \mathbb{P}_{Y}\left(\cap_{i=1}^{m}\left\{x_{k_{i}}\left(t_{i}\right) \geq a_{i}\right\}\right) \\
& =\sum \cdots \sum \mathbb{P}_{Y}\left(X^{(1)} ; t_{1}\right) \mathbb{P}_{X^{(1)}}\left(X^{(2)} ; t_{2}-t_{1}\right) \cdots \mathbb{P}_{X^{(m-1)}}\left(X^{(m)} ; t_{m}-t_{m-1}\right)
\end{aligned}
$$

(sums over all $x_{N}^{(i)}<\cdots<x_{1}^{(i)}<x_{N}^{(i)}+L$ satisfying $x_{k_{i}}^{(i)} \geq a_{i}$), we need to evaluate

$$
\sum_{\left\{x_{N}<\cdots<x_{1}<x_{N}+L\right\} \cap\left\{x_{k} \geq a\right\}} \operatorname{det}\left[w_{i}^{j}\left(w_{i}+1\right)^{-x_{j}-j}\right] \operatorname{det}\left[\left(w_{i}^{\prime}\right)^{-j}\left(w_{i}^{\prime}+1\right)^{x_{j}+j}\right]
$$

where $w_{i}^{N}\left(w_{i}+1\right)^{L-N}=z^{L}$, and $\left(w_{i}^{\prime}\right)^{N}\left(w_{i}^{\prime}+1\right)^{L-N}=\left(z^{\prime}\right)^{L}$

Key lemma: It is equal to $\left(\frac{z^{\prime}}{z}\right)^{(k-1) L}\left(1-\left(\frac{z}{z^{\prime}}\right)^{L}\right)^{N-1}\left[\prod_{j=1}^{N}\left(\frac{w_{j}^{\prime}}{w_{j}}\right)^{N-k+1} \frac{\left(w_{j}^{\prime}+1\right)^{a-1-N+k}}{\left(w_{j}+1\right)^{a-2-N+k}}\right] \operatorname{det}\left[\frac{1}{w_{i^{\prime}}^{\prime}-w_{i}}\right]$ when $w_{i}^{N}\left(w_{i}+1\right)^{L-N}=z^{L}$, and $\left(w_{i}^{\prime}\right)^{N}\left(w_{i}^{\prime}+1\right)^{L-N}=\left(z^{\prime}\right)^{L}$

From Step 2, and using step initial condition,

$$
\mathcal{D}_{Y}(\mathbf{z})=\operatorname{det}\left[\sum_{w_{1}, \cdots, w_{m}} \frac{w_{1}^{-i} w_{m}^{-j}}{\prod_{\ell=2}^{m}\left(w_{\ell}-w_{\ell-1}\right)} \prod_{\ell=1}^{m} g_{\ell}\left(w_{\ell}\right)\right]_{N \times N}
$$

where the sum is over all roots $w_{i}^{N}\left(w_{i}+1\right)^{L-N}=z_{i}^{L}$.

- Take $\left|z_{i}\right|<r_{0}$
- Expand the det of the sum as sums of dets
- Sums are over N-tuples of roots $w_{i}^{(j)}$, $j=1, \cdots, N$.
- For $w_{i}^{(j)}$ on the right circle, use hole-particle duality.
- The result is the series expansion of a Fredholm determinant.

The end

