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1. The Vicsek model
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VICSEk m0d6| [Vicsek, Czirok, Ben-Jacob, Cohen, Shochet, PRL 95]

4

Individual-Based (aka particle) model

self-propelled = all particles have same constant velocity a
align with their neighbours up to a certain noise

Time-discrete model
k-th particle position X7, velocity direction V", at t" = nAt

/
XPH = XP 4 aVrAL V] =1 / P
n n r N jn /

- Y owveow=g

3 1XP—XpI<R k /

n+1 V&L n / 7
arg(V,') = arg(Vy" + 71)
77! drawn uniformly in [—7,7]; R = interaction range

J' = local particle flux in interaction disk
_k” = neighbors’ average direction
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2. Mean-Field model
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Time continuous Vicsek model 6

Passage to time continuous dynamics:

requires introduction of new parameter: interaction frequency v

Xi(t) = aVi(t)

dVi(t) = Py o (VWidt + V2rdBf), Pyu=1d— Vi@ W

k

J X~ Xy <R Tl

Recover original Vicsek by:

Time discretization At s.t. vAt =1

Gaussian noise — uniform
Dimension n =2 ; here (Xg, Vi) € R" xR", n > 2

T
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Mean-field model 7

f(x,v,t) = particle probability density

satisfies a Fokker-Planck equation

Of +av-Vof +Vy, (Frf) =17Af
Fr(z,v,t) = P, (vos(z,t)), Py =Ild—v®uv

of(x,t) = ,j,t:/ Jw, t)wdwd
vl 1) 71,0 p(2, ) S en oy TGt wdwdy

Jr(x,t) = particle flux in a neighborhood of z
v¢(z,t) = direction of this flux

Fy(z,v,t)) = projection of the flux direction on v+

(z,v) e R" x S"1; V,-, V,: div and grad on S"~!

A, Laplace-Beltrami operator on the sphere
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Passage to dimensionless units 8

Highlights important physical scales & small parameters

Choose time scale ¢, space scale xg = aty

Set f scale fo = 1/xf, F scale Fy = 1/t

Introduce dimensionless parameters v = vty, 7 = 7tg, R = x_]ib)
Change variables x = zox’, t = tot’, f = fof', F = FoF’

Get the scaled Fokker-Planck system (omitting the primes):

Of +v-Vof + V- (Frf)=TAuf
Fr(z,v,t) = P, (vof(x,t)), Py =Ild—v®uv

oy () = - Tyt = | w,t)wdwd
v (1) 71,0 72, ) e Jes f(y,w, t) wdw dy

T
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Macroscoping scaling

Choice of to such that 7=1 <1

Macroscopic scale:
there are many velocity diffusion events within one time unit

N

= O(1)

Social interaction and diffusion act at the same scale

Assumption 1: k=

Implies v~ = O(e), i.e. mean-free path is microscopic

Assumption 2: R =-¢

Interaction range is microscopic
and of the same order as mean-free path 71

Possible variant: R = O(y/€): interaction range still small
but large compared to mean-free path. To be investigated later
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Fokker-Planck under macroscopic scaling 10

With Assumption 2 (R = O(¢))

Interaction is local at leading order: by Taylor expansion:

jf:Jf‘|—O(€2), J(z,t) = flz,w,t)wdw
Sn—l

J¢(z,t) = local particle flux. From now on, neglect O(£?) term

Fokker-Planck eq. in scaled variables
2O v Vaf) + Vi (F5f7) = Auf°
Fe(z,v,t) = kP, 1 use(x,t)

J fe
L @ = [ fewewde
‘ fs‘ §n—1

Use(z,t) =

Hydrodynamic model is obtained in the limit £ — 0
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3.  Self-Organized Hydrodynamics
(SOH)

T
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Collision operator 12

Model can be written

0+ v Ve f = ~Q(f)

with collision operator

QU) ==V - (Frf)+Auf

Fr =kP,iuy
J

uf:J—f, Jr = flz,w,t)wdw
| J¢| gn-1

When ¢ — 0, f¢ — f (formally) such that Q(f) =0
= importance of the solutions of Q(f) = 0 (equilibria)

() acts on v-variable only ((x,t) are just parameters)
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Algebraic preliminaries

13

Force Fr can be written: Fr(v) =kVy(ur-v)
Note u ¢ independent of v ((z,t) are fixed)

Rewrite:

Q(f)(v) =

Vo | = fEVy(us-v)+ Vyf]
Vo |[fVo(=kus-v+1Inf)]

Let w € S™! be given: Solutions of V,(—ku-v+1Inf) =0
are proportional to :

eku-v

f(’U) — Mku(’l}) .

von Mises-Fisher (VMF) distribution
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VMF distribution 14

Again:

eku-v

fgn—l eku-v o

Mku(v) =
k > 0: concentration parameter; u € S™—1. orientation

Order parameter: ¢ (k) = [qu—1 Mpu(v) u-vdv

kL ei(k), 0<e(k)<1
Flux: Jsuo1 Miu(v)vdo = ci(k)u o

0.6

Here:

concentration parameter k

and order parameter ¢ (k)

are constant
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Equilibria

15

Definition: equilibrium manifold & ={f(v)|Q(f) =0}

Theorem: & = { pMj, for arbitrary p € R, and u € S"~1}

Note: dim mediumblue & = n

Proof: follows from entropy inequality'

follows from Q(f) =V, - [MkusU(Mf )]
fou f

‘<0

Then, Q(f) = 0 implies H(f) = 0 and M}{ = Constant
uf
and f is of the form pMjp,
Reciprocally, if f = pMy,, then, ur = u and Q(f) =
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Use of equilibria 16

f¢— fase— 0withv— f(z,v,t) € & for all (x,1)
Implies that f(x,v,t) = p(,t) My, 1)
Need to specify the dependence of p and u on (x,t)

Requires n equations since (p,u) € Ry x S*1 are determined

by n independent real quantities

f satisfies
Of +v- Vuf =lim. 0 1Q(f°)

Problem: lim._,q %Q(fg) is not known

Trick:

Collision invariant
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Collision invariant 17
is a function ¢(v) such that [ Q(f)vdv =0, Vf
Form a linear vector space C
Multiply eq. by ¢: ¢! term disappears
Find a conservation law:
O ( f(z,v,8)p(v) dv) + Vg - ( f(z,v,8)Y(v)vdv) =0
Sn—1 §n—1
Have used that 0; or V, and f ...dv can be interchanged
Limit fully determined if dim C = dim £ =n
C = Span{l}. Interaction preserves mass but no other quantity
Due to self-propulsion, no momentum conservation
dmC =1 <dim & =n. Is the limit problem ill-posed ?
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Use of Cl: mass conservation eq. 18
Proof that ¢)(v) =1isa Cl 7

Obvious. Q(f) =V, - |...] is a divergence

By Stokes theorem on the sphere, [ Q(f)dv =10
Use of the Cl ¢)(v) = 1: Get the conservation law

O ( f(z,v,t)dv) + Vg - ( f(z,v,t)vdv) =0

§n—1 §n—1
With [ = pM,;., we have
/fa;vt p(x,t), /fxvt)vdv—pclu
We end up with the mass conservation eq.
Otp+c1Vy - (pu) =0
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Generalized collision invariants (GCI) 19

g

Given u € S"7!, Define O, (f) =V, - [M,V, (71—)]

My
Note f — Q. (f) is linear and Q(f) = Qu,(f)
A function 1, (v) is a GCl associated to u, iff

/Qu(f)@bu dv =0, Vf suchthat us| u

The set of GCl G, is a linear vector space

Theorem: Given u € S*~1, G, is the n-dim vector space :

v = {v— C+h(u-v) B-v, with arbitrary C' € R and 8 € R" with g-u = 0}.

Introduce cos€ = u - v and h(cos8) = g(0)/sind

g is the unique solution in V' of problem Lg = sin 6 with
/

Lg() = —sin?~ "™ @ e cos? (sin" 20 €* cos 0 g'(0)) +(n—2)sin=> 0 g(0)
V={g | (n—2)(sin0)* 2 g e L*(0,m), (sinf)*~'ge Hy(0,m)}

T
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Use of GCI: velocity equation 20

Use GCI  h(u-v)B-v for 8 € R™ with §-u =0

Equivalently, use the vector valued function v, (v) = h(u-v) P, v

Multiply FP eq by GCI Jufs: O(e™1) terms disappear

/Q(f) ?7;711_)0 dv = / Quf (f)Juf dv =0 by property of GCI

Gives: /(&5]“8 +v-V,f9) ﬁufg dv =20

As ¢ — 0: f¢ — pMy, and Jufg —> ZEU Leads to:

Not a conservation equation

because of dependence of Ju upon (x,t) through u

J¢ or V. and [ ...dv cannot be interchanged

T
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Velocity equation (I1) 21
Velocity equation takes the form:
p(@tu + co(u - Vx)u) +P, . V.p=0
Computations are straightforward but tedious
Coefficient ¢y depends on GCI
[, cos B h(cos ) er s sin™ 0 db
Co = T .
? Jo h(cos@)ekcost sin™ 6 db
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Resulting system: SOH 22

Self-Organized Hydrodynamics (SOH)

System for the density p(x,t) and velocity direction u(x,t):

Op+ c1Ve(pu) =0
0 ((%u + co(u - Vw)u) + P, Vp=0

ul =1

Rigorous limit ¢ — 0

[N Jiang, L Xiong, T-F Zhang, arXiv:1508.04640]
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4. Properties of the SOH model and
extensions

T
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Properties

24

Op+ c1Vy - (pu) =0
p(Ou+co(u-Vy)u) + PiVep =0, |ul=1

Similar to Compressible Euler egs. of gas dynamics
System of hyperbolic egs.

But major differences:

Geometric constraint |u| =1
Preserved in time if satisfied by the initial condition

thanks to the projection operator P, |
But system not in conservative form

i.e. spatial derivatives not in divergence form

co 7 c1: loss of Galilean invariance

Vision anisotropy (or blind zone) reinforces this effect
[Frouvelle, M3AS 2012]
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Existence of solutions

25

| ocal existence of smooth solutions

[PD Liu Motsch Panferov, MAA 20 (2013) 089]

iIn 2D and in 3D under the condition:
3 a direction w and |ug X w|>C >0att=0

Both rely on symmetrization and energy estimates

Non-smooth solutions

Non-conservative model, no entropy
Shock relations unknown

SOH is relaxation limit ¢ — 0 of:
Or(pu) + 2V - (pu @ u) + Vup = —=p(1 — |ul*)u

But limit system not conservative:
Relaxation theory not applicable
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Shock-wave solutions

26

Selection principle: physically valid solutions =

consistent approximations of the Vicsek particle system

Numerical observation [S Motsch, L Navoret, MMS 9 (2011) 1253]

Relaxation based scheme — valid solutions

Standard shock capturing methods — not valid

Initial conditions

0
,\/

2w

Lo 0] NN

Vicsek (dots), SOH (solid line), p (blue), 6 (green), c1 (red)

Relaxation-based

rho —— ]
theta
theta ——

Standard

10

T
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Mills / Bibliographical remarks

27

Mills: p(r) = po (r ) 10)/¢, w=at/r
are stationary solutions. Stability 7

Shape depends on noise level
small noise: p(r) convex: sharp edged mills

large noise: p(r) concave: fuzzy edges

Previous models of active fluids

use average velocity (i.e. ciu)
[Toner, Tu & Ramaswamy, Annals of Physics 2005]
except e.g. [Baskaran & Marchetti, PRL 2008]

who use 'polarization vector’ pu
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Ext. 1: large interaction range (i) 28

So far: scaling of interaction range R is such that R = ¢

R is microscopic and of the same order as the mean-free path 7!

Different possibility is R = /¢

R is still microscopic

i.e. infinitesimally small at the macroscopic scale

but much larger than the mean-free path v~!

Interaction force must be Taylor expanded at the next order

H
’J ‘P LA Jf)—I—O( )

H is a constant which only depends on the dimension

= kP, (Uf + €
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Ext. 1: large interaction range (ii) 29

The O(¢e) term comes into the FP eq

LH
| J e

\R (P’UJ‘PU}-SA:EJ]%‘ f€> _ éQ(fg)

8tf€ + U - V;Ufg +

Its contribution in the SOH model needs to be evaluated

The resulting model is:

Op+c1Vy - (pu) =0
p (Opu+ co(u-Vy)u) + PyiVap = e3P, Ay(pu), |ul=1

Viscous version of the SOH model
Similar to the compressible Navier-Stokes system
Scaling retains non-local effects via velocity diffusion

Local existence of smooth solutions in 2D. No result in 3D.

cs=kH((n—1)4+c2) >0
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Ext 2: curvature control 30
Agents control curvature instead of direction
like driver with steering wheel
and try to align with neighbors
Persistent Turner [Gautrais et al, J. Math. Biol. 2009]
Macro model is SOH
Pierre Degond - Collective dynamics in life sciences, Lect. # 2 - CIRM, April 2017 {



Ext. 3: precession

31

Add precession (dimension = 3)

5(atf+vvxf):_vv(Fff)+Avf
Fy =FkP,.0s + vy X v

The limit model is SOH with precession

Otp+c1Va(pu) =0

p{Ou + cacosd (u-Vy)u+ cosindu x ((u-Vy)u)t + P, Vep+
+kH {—(24+ cacos6) P, Ap(pu) + (cosind — a)u x A, (pu

) related to precession speed «

)} =0
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The Landau-Lifschitz-Gilbert equation 32

Special case: no self-propulsion and p = 1. Gives:

Oyu + kH{(2d + co cos8) (u x (ux Ayu))
+(cosind — ) (u x Ayu)} =0

Landau-Lifschitz-Gilbert equation

First (to our knowledge) microscopic derivation of LLG eq.

T
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5. Conclusion

T
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Summary & Perspectives 34

Macroscopic models of collective dynamics
require new concepts to face new challenges

lack of conservation properties, phase transitions, ...

The Self-Organized Hydrodynamic (SOH) model

Is the paradigmatic fluid model for collective dynamics
lts mathematical analysis is widely open

It has potential to model a vast category of
self-organization phenomena

T Pierre Degond - Collective dynamics in life sciences, Lect. # 2 - CIRM, April 2017 d



	
	hypertarget {sum}{Summary}
	
	Vicsek model {	iny [Vicsek, Czirok, Ben-Jacob, Cohen, Shochet, PRL 95]}
	
	Time continuous Vicsek model
	Mean-field model
	Passage to dimensionless units
	Macroscoping scaling
	Fokker-Planck under macroscopic scaling
	
	Collision operator
	Algebraic preliminaries
	VMF distribution
	Equilibria
	Use of equilibria
	Collision invariant
	Use of CI: mass conservation eq.
	Generalized collision invariants (GCI)
	Use of GCI: velocity equation
	Velocity equation (II)
	Resulting system: SOH
	
	Properties
	Existence of solutions
	Shock-wave solutions
	Mills / Bibliographical remarks
	Ext. 1: large interaction range (i)
	Ext. 1: large interaction range (ii)
	Ext 2: curvature control
	Ext. 3: precession 
	The Landau-Lifschitz-Gilbert equation
	
	Summary & Perspectives

