
↑ ↓Pierre Degond - Collective dynamics in life sciences, Lect. # 2 - CIRM, April 2017

1

Collective dynamics in life sciences

Lecture 2: the Vicsek model

Pierre Degond

Imperial College London

pdegond@imperial.ac.uk (see http://sites.google.com/site/degond/)

Joint works with:

Amic Frouvelle (Dauphine), Jian-Guo Liu (Duke),
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1. The Vicsek model
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4Vicsek model [Vicsek, Czirok, Ben-Jacob, Cohen, Shochet, PRL 95]

Individual-Based (aka particle) model

self-propelled ⇒ all particles have same constant velocity a

align with their neighbours up to a certain noise

Time-discrete model

k-th particle position Xn
k , velocity direction V n

k , at tn = n∆t

Xn+1

k = Xn
k + aV n

k ∆t, |V n
k | = 1

J n
k =

∑

j, |Xn
j −Xn

k
|≤R

V n
j , V̄ n

k =
J n
k

|J n
k |

arg(V n+1

k ) = arg(V̄ n
k + τnk )

τnk drawn uniformly in [−τ, τ ]; R = interaction range

J n
k = local particle flux in interaction disk

V̄ n
k = neighbors’ average direction

R

Xk

Vk
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2. Mean-Field model
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6Time continuous Vicsek model

Passage to time continuous dynamics:

requires introduction of new parameter: interaction frequency ν

Ẋk(t) = aVk(t)

dVk(t) = PV ⊥

k
◦ (νV̄kdt+

√
2τ dBk

t ), PV ⊥

k
= Id− Vk ⊗ Vk

Jk =
∑

j, |Xj−Xk|≤R

Vj , V̄k =
Jk

|Jk|

Recover original Vicsek by:

Time discretization ∆t s.t. ν∆t = 1

Gaussian noise → uniform

Dimension n = 2 ; here (Xk, Vk) ∈ R
n × R

n, n ≥ 2

Vk

V̄k
S
1

√

2τ dB
k
tνV̄kdt

dVk
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7Mean-field model

f(x, v, t) = particle probability density

satisfies a Fokker-Planck equation

∂tf + av · ∇xf +∇v · (Fff) = τ∆vf

Ff (x, v, t) = Pv⊥(νv̄f (x, t)), Pv⊥ = Id− v ⊗ v

v̄f (x, t) =
Jf (x, t)

|Jf (x, t)|
, Jf (x, t) =

∫

|y−x|<R

∫

Sn−1

f(y, w, t)w dw dy

Jf (x, t) = particle flux in a neighborhood of x

v̄f (x, t) = direction of this flux

Ff (x, v, t)) = projection of the flux direction on v⊥

(x, v) ∈ R
n × S

n−1 ; ∇v·, ∇v: div and grad on S
n−1

∆v Laplace-Beltrami operator on the sphere

Ff

S
1

v̄f

v

νv̄f
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8Passage to dimensionless units

Highlights important physical scales & small parameters

Choose time scale t0, space scale x0 = at0

Set f scale f0 = 1/xn0 , F scale F0 = 1/t0

Introduce dimensionless parameters ν̄ = νt0, τ̄ = τt0, R̄ = R
x0

Change variables x = x0x
′, t = t0t

′, f = f0f
′, F = F0F

′

Get the scaled Fokker-Planck system (omitting the primes):

∂tf + v · ∇xf +∇v · (Fff) = τ̄∆vf

Ff (x, v, t) = Pv⊥(ν̄v̄f (x, t)), Pv⊥ = Id− v ⊗ v

v̄f (x, t) =
Jf (x, t)

|Jf (x, t)|
, Jf (x, t) =

∫

|y−x|<R̄

∫

Sn−1

f(y, w, t)w dw dy
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9Macroscoping scaling

Choice of t0 such that τ̄ = 1
ε
, ε≪ 1

Macroscopic scale:

there are many velocity diffusion events within one time unit

Assumption 1: k := ν̄
τ̄
= O(1)

Social interaction and diffusion act at the same scale

Implies ν̄−1 = O(ε), i.e. mean-free path is microscopic

Assumption 2: R̄ = ε

Interaction range is microscopic

and of the same order as mean-free path ν̄−1

Possible variant: R̄ = O(
√
ε): interaction range still small

but large compared to mean-free path. To be investigated later
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10Fokker-Planck under macroscopic scaling

With Assumption 2 (R̄ = O(ε))

Interaction is local at leading order: by Taylor expansion:

Jf = Jf +O(ε2), Jf (x, t) =

∫

Sn−1

f(x,w, t)w dw

Jf (x, t) = local particle flux. From now on, neglect O(ε2) term

Fokker-Planck eq. in scaled variables

ε(∂tf
ε + v · ∇xf

ε) +∇v · (F εf ε) = ∆vf
ε

F ε(x, v, t) = kPv⊥ufε(x, t)

ufε(x, t) =
Jfε

|Jfε | , Jfε(x, t) =

∫

Sn−1

f ε(x,w, t)w dw

Hydrodynamic model is obtained in the limit ε→ 0
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3. Self-Organized Hydrodynamics
(SOH)
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12Collision operator

Model can be written

∂tf
ε + v · ∇xf

ε =
1

ε
Q(f ε)

with collision operator

Q(f) = −∇v · (Ff f) + ∆vf

Ff = kPv⊥uf

uf =
Jf
|Jf |

, Jf =

∫

Sn−1

f(x,w, t)w dw

When ε→ 0, f ε → f (formally) such that Q(f) = 0

⇒ importance of the solutions of Q(f) = 0 (equilibria)

Q acts on v-variable only ((x, t) are just parameters)
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13Algebraic preliminaries

Force Ff can be written: Ff (v) = k∇v(uf · v)
Note uf independent of v ((x, t) are fixed)

Rewrite:

Q(f)(v) = ∇v ·
[

− f k∇v(uf · v) +∇vf
]

= ∇v ·
[

f ∇v(−k uf · v + ln f)
]

Let u ∈ S
n−1 be given: Solutions of ∇v(−k u · v + ln f) = 0

are proportional to :

f(v) =Mku(v) :=
eku·v

∫

Sn−1 eku·vdv

von Mises-Fisher (VMF) distribution



↑ ↓Pierre Degond - Collective dynamics in life sciences, Lect. # 2 - CIRM, April 2017

14VMF distribution

Again:

Mku(v) :=
eku·v

∫

Sn−1 eku·vdv

k > 0: concentration parameter; u ∈ S
n−1: orientation

Order parameter: c1(k) =
∫

Sn−1 Mku(v) u · v dv

k
ր→ c1(k), 0 ≤ c1(k) ≤ 1

Flux:
∫

Sn−1 Mku(v) v dv = c1(k)u

Here:

concentration parameter k
and order parameter c1(k)
are constant
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15Equilibria

Definition: equilibrium manifold E = {f(v) |Q(f) = 0}

Theorem: E = { ρMku for arbitrary ρ ∈ R+ and u ∈ S
n−1}

Note: dim mediumblue E = n

Proof: follows from entropy inequality:

H(f) =
∫

Q(f) f
Mkuf

dv = −
∫

Mkuf

∣

∣

∣
∇v

(

f
Mkuf

)

∣

∣

∣

2

≤ 0

follows from Q(f) = ∇v ·
[

Mkuf
∇v

(

f
Mkuf

)]

Then, Q(f) = 0 implies H(f) = 0 and f
Mkuf

= Constant

and f is of the form ρMku

Reciprocally, if f = ρMku, then, uf = u and Q(f) = 0
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16Use of equilibria

f ε → f as ε→ 0 with v → f(x, v, t) ∈ E for all (x, t)

Implies that f(x, v, t) = ρ(x, t)Mku(x,t)

Need to specify the dependence of ρ and u on (x, t)

Requires n equations since (ρ, u) ∈ R+ × S
n−1 are determined

by n independent real quantities

f satisfies

∂tf + v · ∇xf = limε→0
1
ε
Q(f ε)

Problem: limε→0
1
ε
Q(f ε) is not known

Trick:

Collision invariant
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17Collision invariant

is a function ψ(v) such that
∫

Q(f)ψ dv = 0, ∀f
Form a linear vector space C

Multiply eq. by ψ: ε−1 term disappears

Find a conservation law:

∂t
(

∫

Sn−1

f(x, v, t)ψ(v) dv
)

+∇x ·
(

∫

Sn−1

f(x, v, t)ψ(v) v dv
)

= 0

Have used that ∂t or ∇x and
∫

. . . dv can be interchanged

Limit fully determined if dim C = dim E = n

C = Span{1}. Interaction preserves mass but no other quantity

Due to self-propulsion, no momentum conservation

dim C = 1 < dim E = n. Is the limit problem ill-posed ?
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18Use of CI: mass conservation eq.

Proof that ψ(v) = 1 is a CI ?

Obvious. Q(f) = ∇v ·
[

. . .
]

is a divergence

By Stokes theorem on the sphere,
∫

Q(f) dv = 0

Use of the CI ψ(v) = 1: Get the conservation law

∂t
(

∫

Sn−1

f(x, v, t) dv
)

+∇x ·
(

∫

Sn−1

f(x, v, t) v dv
)

= 0

With f = ρMku we have
∫

f(x, v, t) dv = ρ(x, t),

∫

f(x, v, t) v dv = ρc1u

We end up with the mass conservation eq.

∂tρ+ c1∇x · (ρu) = 0
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19Generalized collision invariants (GCI)

Given u ∈ S
n−1, Define Qu(f) = ∇v ·

[

Mku∇v

(

f
Mku

)]

Note f → Qu(f) is linear and Q(f) = Quf
(f)

A function ψu(v) is a GCI associated to u, iff
∫

Qu(f)ψu dv = 0, ∀f such that uf ‖ u

The set of GCI Gu is a linear vector space

Theorem: Given u ∈ S
n−1, Gu is the n-dim vector space :

Gu = {v 7→ C+h(u·v)β·v, with arbitrary C ∈ R and β ∈ R
n with β·u = 0}.

Introduce cos θ = u · v and h(cos θ) = g(θ)/ sin θ

g is the unique solution in V of problem Lg = sin θ with

Lg(θ) = − sin2−n θ e−k cos θ
(

sinn−2 θ ek cos θ g′(θ)
)′
+(n−2) sin−2 θ g(θ)

V = {g | (n− 2) (sin θ)
n
2
−2 g ∈ L2(0, π), (sin θ)

n
2
−1 g ∈ H1

0 (0, π)}
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20Use of GCI: velocity equation

Use GCI h(u · v)β · v for β ∈ R
n with β · u = 0

Equivalently, use the vector valued function ~ψu(v) = h(u · v)Pu⊥v

Multiply FP eq by GCI ~ψufε
: O(ε−1) terms disappear

∫

Q(f) ~ψuf
dv =

∫

Quf
(f)~ψuf

dv = 0 by property of GCI

Gives:
∫

(∂tf
ε + v · ∇xf

ε) ~ψufε dv = 0

As ε→ 0: f ε → ρMku and ~ψufε
→ ~ψu Leads to:

∫

(

∂t(ρMku) + v · ∇x(ρMku)
)

~ψu dv = 0

Not a conservation equation

because of dependence of ~ψu upon (x, t) through u

∂t or ∇x and
∫

. . . dv cannot be interchanged
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21Velocity equation (II)

Velocity equation takes the form:

ρ
(

∂tu+ c2(u · ∇x)u
)

+ Pu⊥∇xρ = 0

Computations are straightforward but tedious

Coefficient c2 depends on GCI

c2 =

∫ π

0
cos θ h(cos θ) ek cos θ sinn θ dθ
∫ π

0
h(cos θ) ek cos θ sinn θ dθ
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22Resulting system: SOH

Self-Organized Hydrodynamics (SOH)

System for the density ρ(x, t) and velocity direction u(x, t):

∂tρ+ c1∇x(ρu) = 0

ρ
(

∂tu+ c2(u · ∇x)u
)

+ Pu⊥∇xρ = 0

|u| = 1

Rigorous limit ε→ 0

[N Jiang, L Xiong, T-F Zhang, arXiv:1508.04640]
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4. Properties of the SOH model and
extensions
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24Properties

∂tρ+ c1∇x · (ρu) = 0

ρ
(

∂tu+ c2(u · ∇x)u
)

+ Pu⊥∇xρ = 0, |u| = 1

Similar to Compressible Euler eqs. of gas dynamics
System of hyperbolic eqs.

But major differences:

Geometric constraint |u| = 1
Preserved in time if satisfied by the initial condition

thanks to the projection operator Pu⊥

But system not in conservative form

i.e. spatial derivatives not in divergence form

c2 6= c1: loss of Galilean invariance
Vision anisotropy (or blind zone) reinforces this effect

[Frouvelle, M3AS 2012]
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25Existence of solutions

Local existence of smooth solutions

[PD Liu Motsch Panferov, MAA 20 (2013) 089]

in 2D and in 3D under the condition:
∃ a direction ω and |u0 × ω| ≥ C > 0 at t = 0

Both rely on symmetrization and energy estimates

Non-smooth solutions

Non-conservative model, no entropy

Shock relations unknown

SOH is relaxation limit ζ → 0 of:

∂t(ρu) + c2∇x · (ρu⊗ u) +∇xρ = −1

ζ
ρ(1− |u|2)u

But limit system not conservative:

Relaxation theory not applicable
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26Shock-wave solutions

Selection principle: physically valid solutions =

consistent approximations of the Vicsek particle system

Numerical observation [S Motsch, L Navoret, MMS 9 (2011) 1253]

Relaxation based scheme → valid solutions

Standard shock capturing methods → not valid

Initial conditions Relaxation-based Standard

Ω

0
x

L−L

ρ

-1

-0.5

0

0.5

1

1.5

2

0 2 4 6 8 10

x

rho
theta

variance theta

-1

-0.5

0

0.5

1

1.5

2

0 2 4 6 8 10

x

rho
theta

variance theta

Vicsek (dots), SOH (solid line), ρ (blue), θ (green), c1 (red)
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27Mills / Bibliographical remarks

Mills: ρ(r) = ρ0 (r / r0)
c/d, u = x⊥/r

are stationary solutions. Stability ?

Shape depends on noise level

small noise: ρ(r) convex: sharp edged mills

large noise: ρ(r) concave: fuzzy edges

Previous models of active fluids

use average velocity (i.e. c1u)

[Toner, Tu & Ramaswamy, Annals of Physics 2005]

except e.g. [Baskaran & Marchetti, PRL 2008]

who use ’polarization vector’ ρu

u

r

ρ

r

ρ
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28Ext. 1: large interaction range (i)

So far: scaling of interaction range R̄ is such that R̄ = ε

R̄ is microscopic and of the same order as the mean-free path ν̄−1

Different possibility is R̄ =
√
ε

R̄ is still microscopic

i.e. infinitesimally small at the macroscopic scale

but much larger than the mean-free path ν̄−1

Interaction force must be Taylor expanded at the next order

Ff = kPv⊥

(

uf + ε
H

|Jf |
Pu⊥

f
∆xJf

)

+O(ε2)

H is a constant which only depends on the dimension
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29Ext. 1: large interaction range (ii)

The O(ε) term comes into the FP eq

∂tf
ε + v · ∇xf

ε +
kH

|Jfε |∇v ·
(

Pv⊥Pu⊥

fε
∆xJfε f ε

)

=
1

ε
Q(f ε)

Its contribution in the SOH model needs to be evaluated

The resulting model is:

∂tρ+ c1∇x · (ρu) = 0

ρ
(

∂tu+ c2(u · ∇x)u
)

+ Pu⊥∇xρ = c3Pu⊥∆x(ρu), |u| = 1

Viscous version of the SOH model

Similar to the compressible Navier-Stokes system

Scaling retains non-local effects via velocity diffusion

Local existence of smooth solutions in 2D. No result in 3D.

c3 = kH((n− 1) + c2) > 0
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30Ext 2: curvature control

Agents control curvature instead of direction

like driver with steering wheel

and try to align with neighbors

Persistent Turner [Gautrais et al, J. Math. Biol. 2009]

Macro model is SOH
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31Ext. 3: precession

Add precession (dimension = 3)

ε(∂tf + v · ∇xf) = −∇v · (Fff) + ∆vf

Ff = kPv⊥ v̄f + αv̄f × v

v̄f = uf + ε
H

|Jf |
Pu⊥

f
∆xJf , uf =

Jf
|Jf |

The limit model is SOH with precession

∂tρ+ c1∇x(ρu) = 0

ρ{∂tu+ c2 cos δ (u · ∇x)u+ c2 sin δ u× ((u · ∇x)u)}+ Pu⊥∇xρ+

+kH {−(2 + c2 cos δ)Pu⊥∆x(ρu) + (c2 sin δ − α)u×∆x(ρu)} = 0

δ related to precession speed α

Ω

v
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32The Landau-Lifschitz-Gilbert equation

Special case: no self-propulsion and ρ = 1. Gives:

∂tu+ kH
{

(2d+ c2 cos δ) (u× (u×∆xu))

+(c2 sin δ − α) (u×∆xu)
}

= 0

Landau-Lifschitz-Gilbert equation

First (to our knowledge) microscopic derivation of LLG eq.
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5. Conclusion
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34Summary & Perspectives

Macroscopic models of collective dynamics

require new concepts to face new challenges

lack of conservation properties, phase transitions, . . .

The Self-Organized Hydrodynamic (SOH) model

is the paradigmatic fluid model for collective dynamics

Its mathematical analysis is widely open

It has potential to model a vast category of

self-organization phenomena
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