Collective dynamics in life sciences Lecture 2: the Vicsek model

Pierre Degond

Imperial College London
pdegond@imperial.ac.uk (see http://sites.google.com/site/degond/)

Joint works with:

Amic Frouvelle (Dauphine), Jian-Guo Liu (Duke), Sébastien Motsch (ASU)

- 1. The Vicsek model
- 2. Mean-Field model
- 3. Self-Organized Hydrodynamics (SOH)
- 4. Properties of the SOH model and extensions
- 5. Conclusion

1. The Vicsek model

Individual-Based (aka particle) model

self-propelled \Rightarrow all particles have same constant velocity a align with their neighbours up to a certain noise

Time-discrete model

k-th particle position X_k^n , velocity direction V_k^n , at $t^n=n\Delta t$

$$\begin{split} X_k^{n+1} &= X_k^n + aV_k^n \Delta t, \quad |V_k^n| = 1 \\ \mathcal{J}_k^n &= \sum_{j, \, |X_j^n - X_k^n| \leq R} V_j^n, \quad \bar{V}_k^n = \frac{\mathcal{J}_k^n}{|\mathcal{J}_k^n|} \\ \arg(V_k^{n+1}) &= \arg(\bar{V}_k^n + \tau_k^n) \end{split}$$

 au_k^n drawn uniformly in [- au, au]; R= interaction range $\mathcal{J}_k^n=$ local particle flux in interaction disk $ar{V}_k^n=$ neighbors' average direction

2. Mean-Field model

Passage to time continuous dynamics: requires introduction of new parameter: interaction frequency ν

$$\dot{X}_k(t) = aV_k(t)$$

$$dV_k(t) = P_{V_k^{\perp}} \circ (\mathbf{v}\bar{V}_k dt + \sqrt{2\tau}\,dB_t^k), \quad P_{V_k^{\perp}} = \operatorname{Id} - V_k \otimes V_k$$

$$\mathcal{J}_k = \sum_{j, |X_j - X_k| \le R} V_j, \quad \bar{V}_k = \frac{\mathcal{J}_k}{|\mathcal{J}_k|}$$

Recover original Vicsek by:

Time discretization Δt s.t. $\nu \Delta t = 1$

Gaussian noise \rightarrow uniform

Dimension n=2; here $(X_k,V_k)\in\mathbb{R}^n\times\mathbb{R}^n$, $n\geq 2$

 $uar{v}$ f

v

f(x, v, t) = particle probability density satisfies a Fokker-Planck equation

$$\partial_t f + av \cdot \nabla_x f + \nabla_v \cdot (F_f f) = \tau \Delta_v f$$

$$F_f(x, v, t) = P_{v^{\perp}}(\nu \bar{v}_f(x, t)), \quad P_{v^{\perp}} = \operatorname{Id} - v \otimes v$$

$$\bar{v}_f(x, t) = \frac{\mathcal{J}_f(x, t)}{|\mathcal{J}_f(x, t)|}, \quad \mathcal{J}_f(x, t) = \int_{|y - x| < R} \int_{\mathbb{S}^{n-1}} f(y, w, t) \, w \, dw \, dy$$

 $\mathcal{J}_f(x,t)=$ particle flux in a neighborhood of x $\bar{v}_f(x,t)=$ direction of this flux $F_f(x,v,t))=$ projection of the flux direction on v^\perp $(x,v)\in\mathbb{R}^n\times\mathbb{S}^{n-1}$; $\nabla_v\cdot$, $\nabla_v\cdot$ div and grad on \mathbb{S}^{n-1} Δ_v Laplace-Beltrami operator on the sphere

Highlights important physical scales & small parameters

Choose time scale t_0 , space scale $x_0 = at_0$

Set f scale $f_0 = 1/x_0^n$, F scale $F_0 = 1/t_0$

Introduce dimensionless parameters $\bar{\nu}=\nu t_0$, $\bar{\tau}=\tau t_0$, $\bar{R}=\frac{R}{x_0}$

Change variables $x = x_0x'$, $t = t_0t'$, $f = f_0f'$, $F = F_0F'$

Get the scaled Fokker-Planck system (omitting the primes):

$$\begin{split} \partial_t f + v \cdot \nabla_x f + \nabla_v \cdot (F_f f) &= \bar{\tau} \Delta_v f \\ F_f(x, v, t) &= P_{v^{\perp}}(\bar{\nu}\bar{v}_f(x, t)), \quad P_{v^{\perp}} = \operatorname{Id} - v \otimes v \\ \bar{v}_f(x, t) &= \frac{\mathcal{J}_f(x, t)}{|\mathcal{J}_f(x, t)|}, \quad \mathcal{J}_f(x, t) &= \int_{|y - x| < \bar{R}} \int_{\mathbb{S}^{n-1}} f(y, w, t) \, w \, dw \, dy \end{split}$$

Choice of
$$t_0$$
 such that $\bar{\tau} = \frac{1}{\varepsilon}$, $\varepsilon \ll 1$

Macroscopic scale:

there are many velocity diffusion events within one time unit

Assumption 1:
$$k := \frac{\bar{\nu}}{\bar{\tau}} = \mathcal{O}(1)$$

Social interaction and diffusion act at the same scale Implies $\bar{\nu}^{-1}=\mathcal{O}(\varepsilon)$, i.e. mean-free path is microscopic

Assumption 2:
$$\bar{R} = \varepsilon$$

Interaction range is microscopic

and of the same order as mean-free path $\bar{\nu}^{-1}$

Possible variant: $\bar{R}=\mathcal{O}(\sqrt{\varepsilon})$: interaction range still small but large compared to mean-free path. To be investigated later

With Assumption 2 ($\bar{R} = \mathcal{O}(\varepsilon)$)

Interaction is local at leading order: by Taylor expansion:

$$\mathcal{J}_f = J_f + \mathcal{O}(\varepsilon^2), \quad J_f(x,t) = \int_{\mathbb{S}^{n-1}} f(x,w,t) w \, dw$$

 $J_f(x,t) = \text{local particle flux. From now on, neglect } \mathcal{O}(\varepsilon^2) \text{ term}$

Fokker-Planck eq. in scaled variables

$$\varepsilon(\partial_t f^{\varepsilon} + v \cdot \nabla_x f^{\varepsilon}) + \nabla_v \cdot (F^{\varepsilon} f^{\varepsilon}) = \Delta_v f^{\varepsilon}$$

$$F^{\varepsilon}(x, v, t) = k P_{v^{\perp}} u_{f^{\varepsilon}}(x, t)$$

$$u_{f^{\varepsilon}}(x, t) = \frac{J_{f^{\varepsilon}}}{|J_{f^{\varepsilon}}|}, \quad J_{f^{\varepsilon}}(x, t) = \int_{\mathbb{S}^{n-1}} f^{\varepsilon}(x, w, t) w \, dw$$

Hydrodynamic model is obtained in the limit $\varepsilon \to 0$

3. Self-Organized Hydrodynamics (SOH)

Model can be written

$$\partial_t f^{\varepsilon} + v \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon} Q(f^{\varepsilon})$$

with collision operator

$$Q(f) = -\nabla_v \cdot (F_f f) + \Delta_v f$$

$$F_f = k P_{v^{\perp}} u_f$$

$$u_f = \frac{J_f}{|J_f|}, \quad J_f = \int_{\mathbb{S}^{n-1}} f(x, w, t) w \, dw$$

When $\varepsilon \to 0$, $f^{\varepsilon} \to f$ (formally) such that Q(f) = 0

 \Rightarrow importance of the solutions of Q(f) = 0 (equilibria)

Q acts on v-variable only ((x,t) are just parameters)

Force F_f can be written: $F_f(v) = k \nabla_v (u_f \cdot v)$

Note u_f independent of v ((x,t) are fixed)

Rewrite:

$$Q(f)(v) = \nabla_v \cdot \left[-f k \nabla_v (u_f \cdot v) + \nabla_v f \right]$$
$$= \nabla_v \cdot \left[f \nabla_v (-k u_f \cdot v + \ln f) \right]$$

Let $u \in \mathbb{S}^{n-1}$ be given: Solutions of $\nabla_v(-k\,u\cdot v + \ln f) = 0$ are proportional to :

$$f(v) = M_{ku}(v) := \frac{e^{ku \cdot v}}{\int_{\mathbb{S}^{n-1}} e^{ku \cdot v} dv}$$

von Mises-Fisher (VMF) distribution

Again:

$$M_{ku}(v) := \frac{e^{ku \cdot v}}{\int_{\mathbb{S}^{n-1}} e^{ku \cdot v} dv}$$

k > 0: concentration parameter; $u \in \mathbb{S}^{n-1}$: orientation

$$u \in \mathbb{S}^{n-1}$$
: orientation

Order parameter: $c_1(k) = \int_{\mathbb{S}^{n-1}} M_{ku}(v) \ u \cdot v \ dv$

$$k \stackrel{\nearrow}{\to} c_1(k), \quad 0 \le c_1(k) \le 1$$

Flux:
$$\int_{\mathbb{S}^{n-1}} M_{ku}(v) v dv = c_1(k)u$$

Here:

concentration parameter kand order parameter $c_1(k)$ are constant

Definition: equilibrium manifold $\mathcal{E} = \{f(v) \mid Q(f) = 0\}$

Theorem: $\mathcal{E} = \{ \rho M_{ku} \text{ for arbitrary } \rho \in \mathbb{R}_+ \text{ and } u \in \mathbb{S}^{n-1} \}$

Note: dim mediumblue $\mathcal{E} = n$

Proof: follows from entropy inequality:

$$H(f) = \int Q(f) \frac{f}{M_{ku_f}} dv = -\int M_{ku_f} \left| \nabla_v \left(\frac{f}{M_{ku_f}} \right) \right|^2 \le 0$$
 follows from $Q(f) = \nabla_v \cdot \left[M_{ku_f} \nabla_v \left(\frac{f}{M_{ku_f}} \right) \right]$

Then, Q(f)=0 implies H(f)=0 and $\frac{f}{M_{ku_f}}=$ Constant and f is of the form ρM_{ku}

Reciprocally, if $f = \rho M_{ku}$, then, $u_f = u$ and Q(f) = 0

$$f^{\varepsilon} \to f$$
 as $\varepsilon \to 0$ with $v \to f(x,v,t) \in \mathcal{E}$ for all (x,t) Implies that $f(x,v,t) = \rho(x,t) M_{ku(x,t)}$ Need to specify the dependence of ρ and u on (x,t) Requires n equations since $(\rho,u) \in \mathbb{R}_+ \times \mathbb{S}^{n-1}$ are determined

by n independent real quantities

f satisfies

$$\partial_t f + v \cdot \nabla_x f = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} Q(f^{\varepsilon})$$

Problem: $\lim_{\varepsilon\to 0} \frac{1}{\varepsilon} Q(f^{\varepsilon})$ is not known

Trick:

Collision invariant

- is a function $\psi(v)$ such that $\int Q(f)\psi\,dv=0, \quad \forall f$ Form a linear vector space $\mathcal C$
- Multiply eq. by ψ : ε^{-1} term disappears Find a conservation law:

$$\partial_t \left(\int_{\mathbb{S}^{n-1}} f(x, v, t) \, \psi(v) \, dv \right) + \nabla_x \cdot \left(\int_{\mathbb{S}^{n-1}} f(x, v, t) \, \psi(v) \, v \, dv \right) = 0$$

Have used that ∂_t or ∇_x and $\int \dots dv$ can be interchanged Limit fully determined if dim $\mathcal{C} = \dim \mathcal{E} = n$

 $\mathcal{C}=\mathsf{Span}\{1\}$. Interaction preserves mass but no other quantity Due to self-propulsion, no momentum conservation $\dim \mathcal{C}=1<\dim \mathcal{E}=n.$ Is the limit problem ill-posed?

Proof that $\psi(v) = 1$ is a CI ?

Obvious. $Q(f) = \nabla_v \cdot [\dots]$ is a divergence By Stokes theorem on the sphere, $\int Q(f) \, dv = 0$

Use of the CI $\psi(v)=1$: Get the conservation law

$$\partial_t \left(\int_{\mathbb{S}^{n-1}} f(x, v, t) \, dv \right) + \nabla_x \cdot \left(\int_{\mathbb{S}^{n-1}} f(x, v, t) \, v \, dv \right) = 0$$

With $f = \rho M_{ku}$ we have

$$\int f(x, v, t) dv = \rho(x, t), \quad \int f(x, v, t) v dv = \rho c_1 u$$

We end up with the mass conservation eq.

$$\partial_t \rho + c_1 \nabla_x \cdot (\rho u) = 0$$

Given
$$u \in \mathbb{S}^{n-1}$$
, Define $\mathcal{Q}_u(f) = \nabla_v \cdot \left[M_{ku} \nabla_v \left(\frac{f}{M_{ku}} \right) \right]$

Note $f \to \mathcal{Q}_u(f)$ is linear and $Q(f) = \mathcal{Q}_{u_f}(f)$

A function $\psi_u(v)$ is a GCI associated to u, iff

$$\int \mathcal{Q}_u(f)\psi_u\,dv = 0, \quad \forall f \text{ such that } u_f \parallel u$$

The set of GCI \mathcal{G}_u is a linear vector space

Theorem: Given $u \in \mathbb{S}^{n-1}$, \mathcal{G}_u is the n-dim vector space :

$$\mathcal{G}_u = \{v \mapsto C + h(u \cdot v) \, \beta \cdot v, \text{ with arbitrary } C \in \mathbb{R} \text{ and } \beta \in \mathbb{R}^n \text{ with } \beta \cdot u = 0\}.$$

Introduce $\cos \theta = u \cdot v$ and $h(\cos \theta) = g(\theta)/\sin \theta$

g is the unique solution in V of problem $Lg = \sin \theta$ with

$$Lg(\theta) = -\sin^{2-n}\theta \ e^{-k \cos \theta} \ \left(\sin^{n-2}\theta \ e^{k \cos \theta} \ g'(\theta)\right)' + (n-2)\sin^{-2}\theta \ g(\theta)$$
$$V = \left\{g \mid (n-2)(\sin \theta)^{\frac{n}{2}-2} g \in L^2(0,\pi), \ (\sin \theta)^{\frac{n}{2}-1} g \in H_0^1(0,\pi)\right\}$$

Use GCI $h(u\cdot v)\beta\cdot v$ for $\beta\in\mathbb{R}^n$ with $\beta\cdot u=0$ Equivalently, use the vector valued function $\vec{\psi}_u(v)=h(u\cdot v)P_{u^\perp}v$

Multiply FP eq by GCI $\vec{\psi}_{u_{f^{\varepsilon}}}$: $O(\varepsilon^{-1})$ terms disappear

$$\int Q(f)\,\vec{\psi}_{u_f}\,dv = \int \mathcal{Q}_{u_f}(f)\vec{\psi}_{u_f}\,dv = 0 \quad \text{by property of GCI}$$
 Gives:
$$\int (\partial_t f^\varepsilon + v\cdot\nabla_x f^\varepsilon)\,\vec{\psi}_{u_f\varepsilon}\,dv = 0$$

As $\varepsilon \to 0$: $f^{\varepsilon} \to \rho M_{ku}$ and $\vec{\psi}_{u_f \varepsilon} \to \vec{\psi}_u$ Leads to:

$$\int \left(\partial_t (\rho M_{ku}) + v \cdot \nabla_x (\rho M_{ku}) \right) \vec{\psi}_u \, dv = 0$$

Not a conservation equation

because of dependence of $\vec{\psi}_u$ upon (x,t) through u ∂_t or ∇_x and $\int \dots dv$ cannot be interchanged

Velocity equation takes the form:

$$\rho (\partial_t u + c_2 (u \cdot \nabla_x) u) + P_{u^{\perp}} \nabla_x \rho = 0$$

Computations are straightforward but tedious Coefficient c_2 depends on GCI

$$c_2 = \frac{\int_0^{\pi} \cos \theta \, h(\cos \theta) \, e^{k \cos \theta} \, \sin^n \theta \, d\theta}{\int_0^{\pi} h(\cos \theta) \, e^{k \cos \theta} \, \sin^n \theta \, d\theta}$$

Self-Organized Hydrodynamics (SOH)

System for the density $\rho(x,t)$ and velocity direction u(x,t):

$$\partial_t \rho + c_1 \nabla_x (\rho u) = 0$$

$$\rho \left(\partial_t u + c_2 (u \cdot \nabla_x) u \right) + P_{u^{\perp}} \nabla_x \rho = 0$$

$$|u| = 1$$

Rigorous limit $\varepsilon \to 0$

[N Jiang, L Xiong, T-F Zhang, arXiv:1508.04640]

4. Properties of the SOH model and extensions

Properties

$$\partial_t \rho + c_1 \nabla_x \cdot (\rho u) = 0$$

$$\rho \left(\partial_t u + c_2 (u \cdot \nabla_x) u \right) + P_{u^{\perp}} \nabla_x \rho = 0, \quad |u| = 1$$

Similar to Compressible Euler eqs. of gas dynamics System of hyperbolic eqs.

But major differences:

Geometric constraint |u|=1

Preserved in time if satisfied by the initial condition thanks to the projection operator P_{u^\perp}

But system not in conservative form

i.e. spatial derivatives not in divergence form

 $c_2 \neq c_1$: loss of Galilean invariance

Vision anisotropy (or blind zone) reinforces this effect [Frouvelle, M3AS 2012]

Existence of solutions

Local existence of smooth solutions

[PD Liu Motsch Panferov, MAA 20 (2013) 089]

in 2D and in 3D under the condition:

$$\exists$$
 a direction ω and $|u_0 \times \omega| \geq C > 0$ at $t = 0$

Both rely on symmetrization and energy estimates

Non-smooth solutions

Non-conservative model, no entropy

Shock relations unknown

SOH is relaxation limit $\zeta \to 0$ of:

$$\partial_t(\rho u) + c_2 \nabla_x \cdot (\rho u \otimes u) + \nabla_x \rho = -\frac{1}{\zeta} \rho (1 - |u|^2) u$$

But limit system not conservative:

Relaxation theory not applicable

Shock-wave solutions

Selection principle: physically valid solutions = consistent approximations of the Vicsek particle system

Numerical observation [S Motsch, L Navoret, MMS 9 (2011) 1253]

Relaxation based scheme \rightarrow valid solutions

Standard shock capturing methods \rightarrow not valid

Mills:
$$\rho(r) = \rho_0 (r / r_0)^{c/d}$$
, $u = x^{\perp} / r$

are stationary solutions. Stability?

Shape depends on noise level

small noise: $\rho(r)$ convex: sharp edged mills

large noise: $\rho(r)$ concave: fuzzy edges

Previous models of active fluids

use average velocity (i.e. c_1u)

[Toner, Tu & Ramaswamy, Annals of Physics 2005]

except e.g. [Baskaran & Marchetti, PRL 2008]

who use 'polarization vector' ρu

So far: scaling of interaction range \bar{R} is such that $\bar{R}=\varepsilon$

 $ar{R}$ is microscopic and of the same order as the mean-free path $ar{
u}^{-1}$

Different possibility is $\bar{R}=\sqrt{\varepsilon}$

 $ar{R}$ is still microscopic

i.e. infinitesimally small at the macroscopic scale

but much larger than the mean-free path $\bar{\nu}^{-1}$

Interaction force must be Taylor expanded at the next order

$$F_f = kP_{v^{\perp}} \left(u_f + \varepsilon \frac{H}{|J_f|} P_{u_f^{\perp}} \Delta_x J_f \right) + \mathcal{O}(\varepsilon^2)$$

H is a constant which only depends on the dimension

The $\mathcal{O}(\varepsilon)$ term comes into the FP eq

$$\partial_t f^{\varepsilon} + v \cdot \nabla_x f^{\varepsilon} + \frac{kH}{|J_{f^{\varepsilon}}|} \nabla_v \cdot \left(P_{v^{\perp}} P_{u_{f^{\varepsilon}}} \Delta_x J_{f^{\varepsilon}} f^{\varepsilon} \right) = \frac{1}{\varepsilon} Q(f^{\varepsilon})$$

Its contribution in the SOH model needs to be evaluated

The resulting model is:

$$\partial_t \rho + c_1 \nabla_x \cdot (\rho u) = 0$$

$$\rho \left(\partial_t u + c_2 (u \cdot \nabla_x) u \right) + P_{u^{\perp}} \nabla_x \rho = c_3 P_{u^{\perp}} \Delta_x (\rho u), \quad |u| = 1$$

Viscous version of the SOH model

Similar to the compressible Navier-Stokes system

Scaling retains non-local effects via velocity diffusion

Local existence of smooth solutions in 2D. No result in 3D.

$$c_3 = kH((n-1) + c_2) > 0$$

Agents control curvature instead of direction

like driver with steering wheel and try to align with neighbors

Persistent Turner [Gautrais et al, J. Math. Biol. 2009]

Macro model is SOH

Add precession (dimension = 3)

$$\varepsilon(\partial_t f + v \cdot \nabla_x f) = -\nabla_v \cdot (F_f f) + \Delta_v f$$

$$F_f = k P_{v^{\perp}} \bar{v}_f + \alpha \bar{v}_f \times v$$

$$\bar{v}_f = u_f + \varepsilon \frac{H}{|J_f|} P_{u_f^{\perp}} \Delta_x J_f, \quad u_f = \frac{J_f}{|J_f|}$$

The limit model is SOH with precession

$$\partial_t \rho + c_1 \nabla_x (\rho u) = 0$$

$$\rho\{\partial_t u + c_2 \cos \delta (u \cdot \nabla_x) u + c_2 \sin \delta u \times ((u \cdot \nabla_x) u)\} + P_{u^{\perp}} \nabla_x \rho + kH \{-(2 + c_2 \cos \delta) P_{u^{\perp}} \Delta_x (\rho u) + (c_2 \sin \delta - \alpha) u \times \Delta_x (\rho u)\} = 0$$

 δ related to precession speed α

Special case: no self-propulsion and $\rho = 1$. Gives:

$$\partial_t u + kH \{ (2d + c_2 \cos \delta) (\mathbf{u} \times (\mathbf{u} \times \Delta_x \mathbf{u})) + (c_2 \sin \delta - \alpha) (\mathbf{u} \times \Delta_x \mathbf{u}) \} = 0$$

Landau-Lifschitz-Gilbert equation

First (to our knowledge) microscopic derivation of LLG eq.

5. Conclusion

Macroscopic models of collective dynamics require new concepts to face new challenges lack of conservation properties, phase transitions,

The Self-Organized Hydrodynamic (SOH) model is the paradigmatic fluid model for collective dynamics Its mathematical analysis is widely open It has potential to model a vast category of self-organization phenomena