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1 Introduction

Although we do not intend to give a general, formal definition, the stochastic mean-field dynamics
we present in these notes can be conceived as random evolution of a system comprised by N
interacting components which is: a) invariant in law for permutation of the components; b) the
contribution of each component to the evolution of any other is of order 1

N . The permutation
invariance clearly does not allow any freedom in the choice of the geometry of the interaction;
however, this is exactly the feature that makes these models analytically treatable, and therefore
attractive for a wide scientific community.
Originally designed as toy models in Statistical Mechanics, the emergence of applications in which
the interaction is typically of very long range and not determined by fundamental laws, have
renewed the interest in models of this sort. Applications include, in particular, Life Sciences and
Social Sciences.
The goal of these lectures is to
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• review some of the basic techniques allowing to derive the macroscopic limit of a mean-field
model, and provide quantitative estimates on the rate of convergence;

• illustrate, without technical details, some applications relevant to life sciences, in particular
for what concerns the study of the properties of the macroscopic limit.

Mainly inspired by [43], we introduce the topic by some heuristics on a simple class of models

2 The prototypical model

Consider a system of N interacting diffusions on Rd solving the following system of SDE:

dXi,N
t =

1

N

N∑
j=1

b(Xi,N
t , Xj,N

t )dt+ dW i
t

where b : Rd × Rd is a Lipschitz function, (W i)i≥1 are independent Brownian motions, and

we assume (Xi,N
0 )Ni=1 are i.i.d square integrable random variables. In particular, the dynamical

equation is well posed.
If we consider one component Xi,N , assume Xi,N

0 = Xi
0 does not depend on N , let N → +∞ and

“believe in laws of large numbers”, it is natural to guess that Xi,N converges, as N → +∞, to a

limit process X
i

solving

dX
i

t =

∫
b(X

i

t, y)qt(dy)dt+ dW i
t

X
i

0 = Xi
0

(2.1)

where qt = Law(X
i

t). Once the nontrivial problem of well posedness of this las equation is settled,
one aims at showing that for any given T > 0 and indicating by X[0,T ] ∈ C([0, T ]) the whole
trajectory up to time T : for any m ≥ 1

(X1,N
[0,T ], X

2,N
[0,T ], . . . , X

m,N
[0,T ])→ (X

1

[0,T ], X
2

[0,T ], . . . , X
m

[0,T ])

in distribution as N → +∞. Note that the components of the process (X
1

[0,T ], X
2

[0,T ], . . . , X
m

[0,T ])
are independent. Thus, independence at time 0 propagates in time, at least in the macroscopic
limit N → +∞. This property is referred to as propagation of chaos.
Propagation of chaos can be actually rephrased as a Law of Large Numbers. To this aim, given
a generic vector x = (x1, x2, . . . , xN ), denote by ρN (x; dy) := 1

N

∑N
i=1 δxi

(dy) the corresponding
empirical measure. The propagation of chaos property stated above, is equivalent to the fact
that the sequence of empirical measures ρN (XN

[0,T ]) converges in distribution to Q ∈ P(C([0, T ])),
where P(C([0, T ])) denotes the set of probabilities on C([0, T ]) provided with the topology of weak
convergence and Q is the law of the solution of (2.1). This is established in the following result.

Proposition 2.1. Let (Xi,N : N ≥ 1, 1 ≤ i ≤ N) be a triangular array of random variables taking
values in a topological space E, such that for each N the law of (Xi,N )1≤i≤N is symmetric (i.e.

invariant by permutation of components). Moreover let (X
i
)i≥1 be a i.i.d. sequence of E-valued

random variables. Then the following statements are equivalent:

(a) for every m ≥ 1

(X1,N , X2,N , . . . Xm,N )→ (X
1
, X

2
, . . . , X

m
)

in distribution as N → +∞;

(b) the sequence of empirical measures ρN (XN ) converges in distribution to Q := Law(X
1
) as

N → +∞.
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Proof. Denote by QN the joint law of (X1,N , X2,N , . . . XN,N ) in EN , and by ΠmQN its projection
on the first m components, i.e. the law of (X1,N , X2,N , . . . Xm,N ). The statements in (a) is
equivalent to: for each m ≥ 1

ΠmQN → Q⊗m (2.2)

weakly, where Q⊗m is the m-fold product of Q.
(a) ⇒ (b).
To begin with, let F : E → R be bounded and continuous. Writing 〈F, µ〉 for

∫
Fdµ and denoting

by EQN the expectation w.r.t. QN :

EQN
(
〈F, ρN (x)−Q〉2

)
=

1

N2

N∑
i,j=1

EQN [F (xi)F (xj)]−
2

N
〈F,Q〉

N∑
i=1

EQN [F (xi)] + 〈F,Q〉2

=
1

N
EQN [F 2(x1)] +

N − 1

N
EQN [F (x1)F (x2)]− 2〈F,Q〉EQN [F (x1)] + 〈F,Q〉2,

where we have used the symmetry of QN . By Assumption (a) this last expression goes to zero as
N → +∞.
Now, let Φ : P(E) → R be continuous and bounded. By definition of weak topology, given ε > 0
one can find δ > 0 and F1, . . . Fk : E → R bounded and continuos such that if

U := {P ∈ P(E) : |〈P −Q,Fj〉| < δ for j = 1, . . . , k}

then P ∈ U implies |Φ(P )− Φ(Q)| < ε. Thus∣∣EQN [Φ(ρN (x)]− Φ(Q)
∣∣ ≤ εQN (ρN (x) ∈ U) + ‖Φ‖∞QN (ρN (x) 6∈ U).

Therefore, to show (b), i.e.
∣∣EQN [Φ(ρN (x)]− Φ(Q)

∣∣→ 0 for every Φ bounded and continuous, it
is enough to show that

lim
N→+∞

QN (ρN (x) ∈ U) = 0.

But, by what seen above and the Markov inequality,

QN (ρN (x) 6∈ U) ≤
k∑
j=1

QN (|〈ρN (x)−Q,Fj〉| ≥ δ) ≤
k∑
j=1

EQN
(
〈Fj , ρN (x)−Q〉2

)
δ2

→ 0.

(b) ⇒ (a).
It is enough to show that if F1, F2, . . . , Fm : E → R are bounded and continuous, then

EQN [F1(x1) · F2(x2) · · ·Fm(xm)]→
m∏
j=1

EQ[Fj(x)] (2.3)

Observe that∣∣∣∣∣∣EQN [F1(x1) · F2(x2) · · ·Fm(xm)]−
m∏
j=1

EQ[Fj(x)]

∣∣∣∣∣∣
≤

∣∣∣∣∣∣EQN [F1(x1) · F2(x2) · · ·Fm(xm)]− EQN

 m∏
j=1

〈ρN (x), Fj〉

∣∣∣∣∣∣
+

∣∣∣∣∣∣EQN

 m∏
j=1

〈ρN (x), Fj〉

− m∏
j=1

EQ[Fj(x)]

∣∣∣∣∣∣ (2.4)
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By (b), the last summand converges to 0. Using symmetry

EQN

 m∏
j=1

〈ρN (x), Fj〉

 =
1

Nm
EQN

 ∑
τ :{1,...,m}→{1,...,N}

m∏
j=1

Fj(xτ(j))


=
DN,m

Nm
EQN [F1(x1) · F2(x2) · · ·Fm(xm)]

+
1

Nm
EQN

 ∑
τ not injective

m∏
j=1

Fj(xτ(j))

 ,
whereDN,m = N !

(N−k)! is the number of injective functions {1, . . . ,m} → {1, . . . , N}. Since
DN,m

Nm →
1, we obtain

EQN

 m∏
j=1

〈ρN (x), Fj〉

→ EQN [F1(x1) · F2(x2) · · ·Fm(xm)]

which, by (2.4), completes the proof.

In view of Proposition 2.1, the empirical measure at time t, ρN (XN
t ) converges in distribution to

qt = Law(X
1

t ), for every t ≥ 0. Moreover, being the law of the solution of (2.1), qt solves the
so-called McKean-Vlasov equation

∂

∂t
qt −∇

[
qt

∫
b( · , y)qt(dy)

]
+

1

2
∆qt = 0.

3 Propagation of chaos for interacting systems

3.1 The microscopic model

In this section we introduce a wide class of Rd-valued interacting dynamics, which includes the
prototypical model above. The main aim is to introduce quenched disorder, which accounts for
inhomogeneities in the system, and jumps in the dynamics, which allows to include processes with
discrete state space. The dynamics is determined by the following characteristics.

• “Local” parameters (hi)
N
i=1, drawn independently from a distribution µ on Rd′ with compact

support.

• A drift b(xi, hi; ρN (x, h)), where

ρN (x, h) =
1

N

N∑
i=1

δ(xi,hi),

and
b : Rd × Rd

′
× P(Rd × Rd

′
)→ Rd.

• A diffusion coefficient σ(xi, hi; ρN (x, h))

σ : Rd × Rd
′
× P(Rd × Rd

′
)→ Rd×n,

where n is the dimension of the driving Brownian Motion.

• A jump rate λ(xi, hi; ρN (x, h)) with

λ : Rd × Rd
′
× P(Rd × Rd

′
)→ [0,+∞).
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• A distribution for the jump f(xi, hi; ρN (x, h); v)α(dv) with

f : Rd × Rd
′
× P(Rd × Rd

′
)× [0, 1]→ Rd

and α(dv) is a probability on [0, 1].

The dynamics could be introduced via generator and semigroup, but it will be convenient to
use the language of Stochastic Differential Equations (SDE). So let (W i)i≥1 be a i.i.d. sequence
of n-dimensional Brownian motions; (N i(dt, du, dv))i≥1 be i.i.d. Poisson random measures on
[0,+∞)× [0,+∞)× [0, 1] with characteristic measure dt⊗ du⊗ α(dv). The microscopic model is
given as solution of the SDE for every given realization of the local parameters (hi):

Xi,N
t =Xi

0 +

∫ t

0

b
(
Xi,N
s , hi, ρ(XN

s , h)
)
ds+

∫ t

0

σ
(
Xi,N
s , hi, ρ(XN

s , h)
)
dW i

s

+

∫
[0,t]×[0,+∞)×[0,1]

f
(
Xi,N
s− , hi; ρN (XN

s− , h);α
)

1[0,λ(Xi,N

s−
,hi,ρ(XN

s−
,h))](u)N i(ds, du, dv)

(3.1)

It will be assumed, without further notice, that the initial states Xi
0 are i.i.d., square integrable,

independent of both the local parameters (hi) and of the driving noises (W i, N i).

3.2 The macroscopic limit

At heuristic level it is not hard to identify the limit of a given component Xi,N of (3.1) subject
to a local field h. We omit the apex i on the process and of the driving noises

Xt(h) =X0 +

∫ t

0

b
(
Xs(h), h, rs

)
ds+

∫ t

0

σ
(
Xs(h), h, rs

)
dWs

+

∫
[0,t]×[0,+∞)×[0,1]

f
(
Xs−(h), h; rs;α

)
1[0,λ(Xs− (h),h,rs)](u)N(ds, du, dv)

(3.2)

where rs = Law(Xs(h))⊗ µ(dh). Choosing X0 = Xi
0, and driving noises W i, N i, we indicate by

X
i

the corresponding solution (3.2).

3.3 Well posedness of the microscopic model: Lipschitz conditions

We now give conditions that guarantee well posedness of (3.1) and (3.2); they are far from being
optimal, but allow a reasonable economy of notations. Weaker conditions can be found, for instance
in [1]. It is useful to work with probability measures possessing mean value:

P1(Rd) :=

{
ν ∈ P(Rd) :

∫
|x|ν(dx) < +∞

}
which is provided with the Wasserstein metric

d(ν, ν′) := inf

{∫
|x− y|Π(dx, dy) : Π has marginals ν and ν′

}
.

• [L1] The function b(x, h, r) and σ(x, h, r), defined in Rd×Rd′×P1(Rd×Rd′) are continuous,
and globally Lipschitz in (x, r) uniformly in h.

• [L2] The Lipschitz condition of the jumps is slightly less obvious. We assume f : Rd×Rd′ ×
P1(Rd × Rd′)× [0, 1]→ Rd and λ : Rd × Rd′ × P(Rd × Rd′)→ [0,+∞) are continuous, and
obey the following condition∫ ∣∣f(x, h, r, v)1[0,λ(x,h,r)](u)− f(y, h, r′, v)1[0,λ(x,h,r)](u)

∣∣ duα(dv) ≤ L [|x− x′|+ d(r, r′)]

(3.3)
for all x, y, r, r′, h.
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Remark 3.1. The above assumptions imply that when one replaces r by the empirical measure
ρN (x, h), one recovers a Lipschitz condition in x. For instance, the function b(xi, hi; ρN (x, h)) is
globally Lipschitz in x uniformly in h.

Remark 3.2. Continuity, global Lipscitzianity and compactness of the support of µ imply the
linear growth conditions

|b(x, h, r)| ≤ C
[
1 + |x|+

∫
|y|r(dy, dh)

]
|s(x, h, r)| ≤ C

[
1 + |x|+

∫
|y|r(dy, dh)

]
∫
|f(x, h, r, v)|λ(x, h, r)α(dv) ≤ C

[
1 + |x|+

∫
|y|r(dy, dh)

]
.

(3.4)

Remark 3.3. Condition L2 is satisfied if both f and λ are continuous, bounded and globally
Lipschitz in x, r uniformly of the other variables. In the case f does not depend on x, r but on
h, v only, unbounded Lipschitz jump rate λ can be afforded.

Using Remark 3.1, together with standard methods in stochastic analysis, one obtains the following
result. A detailed proof can be found e.g. in [29].

Proposition 3.1. Under L1 and L2, the system (3.1) admits a unique strong solution.

3.4 Well posedness of the macroscopic limit

The proof of the convergence of one component of (3.1) toward a solution of (3.2) allows two alter-
native strategies. One consists in: (a) showing tightness of the sequence of microscopic processes;
(b) showing that any limit point solves weakly (3.2); (c) showing that for (3.2) uniqueness in law
holds true. We rather follow the following approach, which is somewhat simpler and allows for
quantitative error estimates: (a) we show that (3.2) is well posed; (b) by a coupling argument we
show L1-convergence of one component of (3.1) to a solution of (3.2) driven by the same noise.

Proposition 3.2. Under L1 and L2, the system (3.2) admits a unique strong solution.

Proof. We sketch the proof of existence. We use a standard Picard iteration. Define X
(0)
t (h) ≡ X0

and

X
(k+1)
t (h) =X0 +

∫ t

0

b
(
X(k)
s (h), h, r(k)s

)
ds+

∫ t

0

σ
(
X(k)
s (h), h, r(k)s

)
dWs

+

∫
[0,t]×[0,+∞)×[0,1]

f
(
X

(k)
s− (h), h; r(k)s ;α

)
1[

0,λ
(
X

(k)

s−
(h),h,r

(k)
s

)](u)N(ds, du, dv)

(3.5)

where

r(k)s = Law
(
X(k)
s (h)

)
⊗ µ(dh).

We estimate

E
(k)
T :=

∫
E

[
sup
t∈[0,T ]

∣∣∣X(k+1)
t (h)−X(k)

t (h)
∣∣∣]µ(dh). (3.6)

If we use (3.5) and subtract the equations for X(k+1) and X(k), take the supt∈[0,T ] and use the
triangular inequality, we obtain the sum of three terms.

6



(A). The first term comes from the drift.

sup
t∈[0,T ]

∣∣∣∣∫ t

0

b
(
X(k)
s (h), h, r(k)s

)
ds−

∫ t

0

b
(
X(k−1)
s (h), h, r(k−1)s

)
ds

∣∣∣∣
≤
∫ T

0

∣∣∣b(X(k)
s (h), h, r(k)s

)
− b

(
X(k−1)
s (h), h, r(k−1)s

)∣∣∣ ds
≤ L

∫ T

0

(∣∣∣X(k)
s (h)−X(k−1)

s (h)
∣∣∣+ d(r(k)s , r(k−1)s )

)
ds

≤ L
∫ T

0

(∣∣∣X(k)
s (h)−X(k−1)

s (h)
∣∣∣+

∫
E
∣∣∣X(k)

s (h′)−X(k−1)
s (h′)

∣∣∣µ(dh′)

)
ds

where the inequality

d(r(k)s , r(k−1)s ) ≤
∫

E
∣∣∣X(k)

s (h′)−X(k−1)
s (h′)

∣∣∣µ(dh′) (3.7)

comes directly form the definition of the metric d, and we have used (L1). Averaging:∫
E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

b
(
X(k)
s (h), h, r(k)s

)
ds−

∫ t

0

b
(
X(k−1)
s (h), h, r(k−1)s

)
ds

∣∣∣∣
]
µ(dh)

≤ 2L

∫ T

0

∫
E
∣∣∣X(k)

s (h)−X(k−1)
s (h)

∣∣∣µ(dh) ≤ 2LTE
(k−1)
T .

(B). The second term comes from the diffusion coefficient.

sup
t∈[0,T ]

∣∣∣∣∫ t

0

σ
(
X(k)
s (h), h, r(k)s

)
ds−

∫ t

0

σ
(
X(k−1)
s (h), h, r(k−1)s

)
dWs

∣∣∣∣ .
By the L1 Burkholder-Davis-Gundy inequality (see e.g. [39])

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

[
σ
(
X(k)
s (h), h, r(k)s

)
− σ

(
X(k−1)
s (h), h, r(k−1)s

)]
dWs

∣∣∣∣
]

≤ CE

(∫ T

0

∣∣∣σ (X(k)
s (h), h, r(k)s

)
− σ

(
X(k−1)
s (h), h, r(k−1)s

)∣∣∣2 ds) 1
2


≤ CLE

(∫ T

0

(∣∣∣X(k)
s (h)−X(k−1)

s (h)
∣∣∣+ d(r(k)s , r(k−1)s )

)2
ds

) 1
2


≤ CL

√
TE

[
sup

s∈[0,T ]

(∣∣∣X(k)
s (h)−X(k−1)

s (h)
∣∣∣+ d(r(k)s , r(k−1)s )

)
ds

]
Averaging over h and using (3.7) as before, we obtain∫

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

[
σ
(
X(k)
s (h), h, r(k)s

)
− σ

(
X(k−1)
s (h), h, r(k−1)s

)]
dWs

∣∣∣∣
]
µ(dh) ≤ 2CL

√
TE

(k−1)
T .

(C). Finally, we have the term coming from the jumps.

sup
t∈[0,T ]

∣∣∣∣∣
∫
[0,t]×[0,+∞)×[0,1]

f
(
X

(k)
s− (h), h; r(k)s ; v

)
1[

0,λ
(
X

(k)

s−
(h),h,r

(k)
s

)](u)N(ds, du, dv)

−
∫
[0,t]×[0,+∞)×[0,1]

f
(
X

(k−1)
s− (h), h; r(k−1)s ; v

)
1[

0,λ
(
X

(k−1)

s−
(h),h,r

(k−1)
s

)](u)N(ds, du, dv)

∣∣∣∣∣ (3.8)
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Let

F ks := f
(
X

(k)
s− (h), h; r(k)s ; v

)
1[

0,λ
(
X

(k)

s−
(h),h,r

(k)
s

)](u).

Since N is a positive measure, (3.8) is bounded above by,∫ T

0

|F ks −F k−1s |N(ds, du, dv) =

∫ T

0

|F ks −F k−1s |dsduα(dv)+

∫ T

0

|F ks −F k−1s |Ñ(ds, du, dv), (3.9)

where
∫ T
0
|F ks −F k−1s |Ñ(ds, du, dv) has mean zero, since dsduα(dv) is the compensator ofN(ds, du, dv).

Thus averaging, we are only left with the term
∫ T
0
|F ks −F k−1s |dsduα(dv), which is dealt with using

(L2), and gives an upper bound similar of that of part (A).
Summing up the contributions of (A), (B) and (C), we get, for a sufficiently large constant C,

E
(k)
T ≤ C(T +

√
T )E

(k−1)
T .

We now observe that the processes X(k), k ≥ 0, h ∈ Rd′ are progressively measurable for the
filtration generated by the initial condition and the driving noise W,N , and satisfy∫

E

[
sup
t∈[0,T ]

∣∣∣X(k)
t (h)

∣∣∣]µ(dh) < +∞.

This can be seen by induction on k, replicating the steps above but using, rather than the Lipschitz
conditions, the linear growth conditions (3.4). If we denote by M the space of progressively
measurable, cadlag, Rd valued processes such that

‖X‖ := E

[
sup
t∈[0,T ]

|Xt|

]
< +∞,

and we take T sufficiently small, we have shown that∑
k

∫
‖X(k)(h)‖µ(dh) < +∞,

and therefore for all h in a set F of µ-full measure∑
k

‖X(k)(h)‖ < +∞.

The norm ‖ · ‖ is not complete in M, as the sup-norm is not complete in the space of cadlag
functions. To get a complete metric, we replace the distance in sup-norm by the Skorohod distance
dS (see [5]), i.e.

DS(X,Y ) := E [dS(X,Y )] .

Since the Skorohod distance is dominated by the distance in sup-norm, a Cauchy sequence for
‖ · ‖ is also Cauchy for the metric DS . Thus, the limit X(h) of the sequence X(k)(h) can be
defined for all h ∈ F , where F is a set of measure one for µ, and it is not hard to show (using also
Proposition 2.1) that (3.2) holds for the limit. X(h) can be then easily defined for h 6∈ F just by
imposing that (3.2) holds.
This establishes existence of solution inM for T small. Since the condition on T does not involve
the initial condition, the argument can be iterated on adjacent time intervals, obtaining a solution
on any time interval.
Establishing uniqueness would actually be easy by using similar arguments. For us it is not
actually needed, as uniqueness will follow from the convergence result in next section (Theorem
3.1).
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Remark 3.4. It is more customary to use L2 norms rather that L1 norms for constructing solutions
to SDE. The main difference is in (C), where we estimate (3.8). When estimating the mean of
the square of (3.9), the martingale contributes with∫ T

0

|F ks − F k−1s |2dsduα(dv).

To complete the argument one needs a Lipschitz condition of the form∫ ∣∣f(x, h, r, v)1[0,λ(x,h,r)](u)− f(y, h, r′, v)1[0,λ(y,h,r′)](u)
∣∣2 duα(dv) ≤ L

[
|x− x′|2 + d22(r, r′)

]
,

(3.10)
where, in the whole argument, the distance

d2(ν, ν′) :=

(
inf{

∫
|x− y|2Π(dx, dy) : Π has marginals ν and ν′}

) 1
2

would be used. The Lipschitz condition (3.10) is harder to check then (3.3), for the simple reason
that “squaring an indicator function does not produce any square”.

3.5 Propagation of chaos

Theorem 3.1. Suppose conditions L1 and L2 hold. For i ≥ 1 denote by X
i
(h) the solution of

(3.2) with the local parameter h and the same initial condition Xi
0 of (3.1). Then for each i and

T > 0

lim
N→+∞

∫
E

[
sup
t∈[0,T ]

∣∣∣Xi,N
t −Xi

t(hi)
∣∣∣]µ⊗N (dh) = 0

where µ⊗N is the N -fold product of µ.

Proof. As in the proof of Proposition 3.2 we subtract the two equations for Xi,N and X
i
. Using the

triangular inequality, we estimate supt∈[0,T ]

∣∣∣Xi,N
t −Xi

t(hi)
∣∣∣ as sum of three terms, corresponding

respectively to drift, diffusion and jumps. In this proof we only show how to deal with the drift
term. The other two terms, involving stochastic integrals, are reduced to terms with Lebesgue
time integrals as in the proof of Proposition 3.2, and then are estimated as the drift term.
We therefore give estimates for

∫
E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

b
(
Xi,N
s , hi, ρ(XN

s , h)
)
ds−

∫ t

0

b
(
X
i

s(hi), hi, rs

)
ds

∣∣∣∣
]
µ⊗N (dh)

≤
∫

E

[∫ T

0

∣∣∣b (Xi,N
s , hi, ρ(XN

s , h)
)
− b

(
X
i

s(hi), hi, rs

)∣∣∣]µ⊗N (dh) (3.11)

By (L1)∣∣∣b (Xi,N
s , hi, ρ(XN

s , h)
)
− b

(
X
i

s(hi), hi, rs

)∣∣∣ ≤ L [∣∣∣Xi,N
s −Xi

s(hi)
∣∣∣+ d

(
ρ(XN

s , h), rs
)]
. (3.12)

Now,
d
(
ρ(XN

s , h), rs
)
≤ d

(
ρ(XN

s , h), ρ(Xs, h)
)

+ d
(
ρ(Xs, h), rs

)
. (3.13)

We consider the two summands in the r.h.s. of (3.13) separately. By definition of the metric d(·, ·)

d
(
ρ(XN

s , h), ρ(Xs, h)
)
≤ 1

N

N∑
j=1

∣∣∣Xj,N
s −Xj

s

∣∣∣ ,
9



so, by symmetry,∫
E
[
d
(
ρ(XN

s , h), ρ(Xs, h)
)]
µ⊗N (dh) ≤

∫
E
[∣∣∣Xi,N

s −Xi

s(hi)
∣∣∣]µ⊗N (dh). (3.14)

For the second summand in (3.13) we observe that, under P ⊗ µ⊗∞, the random variables(
X
i

s(hi), hi

)
are i.i.d. with law rs ∈ P(Rd+d′). By a recent version of the Law of Large Number

([26], Theorem 1), there exists a constant C > 0, only depending on d and d′, and γ > 0 (any
γ < 1

d+d′ does the job) such that∫
E
[
d
(
ρ(Xs, h), rs

)]
µ⊗N (dh) ≤ C

Nγ
. (3.15)

Inserting what obtained in (3.12), (3.13) and (3.14) in (3.11) we get for some C > 0, which may
also depend on T ,

∫
E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

b
(
Xi,N
s , hi, ρ(XN

s , h)
)
ds−

∫ t

0

b
(
X
i

s(hi), hi, rs

)
ds

∣∣∣∣
]
µ⊗N (dh)

≤ C
∫

E

[∫ T

0

∣∣∣Xi,N
s −Xi

s(hi)
∣∣∣]µ⊗N (dh) +

C

Nγ
.

Dealing similarly with all terms arising in supt∈[0,T ]

∣∣∣Xi,N
t −Xi

t(hi)
∣∣∣, if we set

Et :=

∫
E

[
sup
s∈[0,t]

∣∣∣Xi,N
s −Xi

s(hi)
∣∣∣]µ⊗N (dh)

we obtain

Et ≤ C
∫ t

0

Esds+
C

Nγ
,

which, by Gromwall’s Lemma and the fact that E0 = 0 yields

ET ≤
CT
Nγ

for some T -dependent constant CT , and this complete the proof.

4 Applications

In this section we review some classes of models that are relevant for life sciences. Some key results
will be stated, but no proofs are given.

4.1 The stochastic Kuramoto model

Synchronization phenomena leading to macroscopic rhythms are ubiquitous in science. Most
(ab)used examples include

• applauses;

• flashing fireflies;

• protein concentration within cells in a multicellular system (reprissilators).
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In these examples the systems are comprised by many units, each unit tending to behave period-
ically. Under circumstances depending on how units communicates, oscillation may synchronize,
producing macroscopic pulsing. The (stochastic) Kuramoto model ([32]) is perhaps the most
celebrated stylized model to capture this behavior.
In the Kuramoto model units are rotators, i.e. the state variable is an angle. Denoting by Xi,N

the angular variable (phase) of the i-th rotator, with i = 1, 2, . . . , N , the evolution is given by

dXi,N
t = hidt+

θ

N

N∑
j=1

sin
(
Xj,N
t −Xi,N

t

)
dt+ dW i

t . (4.1)

Here hi is the characteristic angular velocity of the i-th rotator. The effect of the interaction term
is to favor phases to stay close. We assume the hi’s are i.i.d., drawn from a distribution µ on R
with compact support. By possibly adding a constant speed rotation, there is no further loss of
generality to assume that µ has mean zero. We further assume µ is symmetric, i.e. invariant by
reflection around zero.
Clearly all results in Section 3 apply, and we get the following macroscopic limit:

dXt(h) = hdt+ θ

∫
sin(y −Xt)qt(dy;h′)µ(dh′)dt+ dWt, (4.2)

where qt(dy;h′) is the law of Xt(h
′). The flow of measures qt( · , h) solves (indeed in the classical

sense for the density w.r.t. the Lebesgue measure)

∂

∂t
qt(x;h) =

1

2

∂2

∂x2
qt(x;h)− ∂

∂x
[(h+ θrqt sin(ϕqt − x)) qt(x, h)] =:M[qt](h), (4.3)

where

rqte
iϕqt :=

∫
eixqt(dx;h)µ(dh).

Equation (4.3) describes the collective behavior of the system of rotators. rqt captures the degree
of synchronization of the system: rqt = 0 indicates total lack of synchronization, while a perfectly
synchronized systems has rqt = 1.
One is interested in the long time behavior of solutions of (4.3), in particular stable equilibria.
Note that, since the model is rotation invariant, if q(x;h) solves M[q] = 0, then also q(x+ x0;h)
does; thus there is no loss of generality in looking for equilibria satisfying ϕq = 0.
The proof of the following statement can be found in [7].

Theorem 4.1. q∗ is a solution of M[q] = 0 with ϕq∗ = 0 if and only if it is of the form

q∗(x;h) = (Z∗)
−1 · e2(hx+θr∗ cos x)

[
e4πh

∫ 2π

0

e−2(hx+θr∗ cos x)dx

+(1− e4πh)

∫ x

0

e−2(hy+θr∗ cos y)dy

]
, (4.4)

where Z∗ is a normalization factor and r∗ satisfies the consistency relation

r∗ =

∫
eix q∗(x, h)µ(dh) dx . (4.5)

r∗ = 0 is a solution of (4.5), and it corresponds to the incoherent solution

q∗(x;h) ≡ 1

2π
,

i.e. the phases of the rotators are uniformly distributed on the torus.
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Linear stability of the incoherent solution depends in a highly nontrivial way on θ and on the
distribution µ of the local parameters. It is rather well understood in some special cases ([7, 8, 19]).

Theorem 4.2. Denote by

θc =

[∫
µ(dh)

1 + 4h2

]−1
. (4.6)

(a) Suppose µ is unimodal, i.e. it has a (even) density decreasing on (0,+∞). Then the inco-
herent solution is linearly stable if and only if θ < θc. At θc one (circle of) synchronized
solution (i.e. with rq > 0 bifurcates for the incoherent solution.

(b) Suppose µ = 1
2 (δ−h0 + δh0) for some h0 > 0. Then the incoherent solution is linearly stable

if and only if θ < θc∧2. For θc < 2 at θ = θc one (circle of) synchronized solution (i.e. with
rq > 0 bifurcates. For θc > 2 (which occurs for h0 sufficiently large), at θ = 2 the incoherent
solution loses stability via a Hopf bifurcation: it is believed, but not rigorously proved, that
stable time-periodic solutions emerge.

It is not true in general that when the incoherent solution is stable then it is unique. It is believed
it is in the unimodal case, but proved ether for θ small, or up to the critical point if µ is sufficiently
concentrated around zero [36]. In the binary case, for certain values of the parameters it is known
that there are values of θ smaller that the critical value for which two distinct circles of synchronized
solutions exists [36].

In general, when the support of µ is contained in a sufficiently small interval, then synchronized
solutions exist if and only if θ > θc, are unique up to rotation, and are linearly stable ([4, 27])

4.2 Interacting Fitzhugh-Nagumo neurons

Designed as reduction of more realistic models (e.g. the Hodgkin-Huxley model), the Fitzhugh-
Nagumo model describes the evolution of the membrane potential xt of a neuron through the
following differential equation

ẋt = xt −
1

3
x3t + yt + Iextt

ẏt = ε(a+ bxt − γyt)
(4.7)

where

• yt is a recovery variable obtained by reduction of other variables;

• Iextt is the input current, assumed to be random and stationary. Without loss of generality,
choosing a properly, we can assume Iextt has mean zero.

• b is the interaction strength between x and y, γ ≥ 0 is a dissipation parameter. a is a kinetic
parameter related with input current and synaptic conductance.

The parameter ε can be used to separate the time scales of the evolutions of the two variables. In
what follows we assume dIextt = σdWt for a Brownian motion W .

To begin with, consider the equation in absence of randomness in the input current (σ = 0), and
set b = −1, γ = 0 to make the analysis simpler. In this case (4.7) has a unique equilibrium in
(a,−a + a3/3), which is globally stable for |a| < 1, is has a Hopf bifurcation at |a| = 1 and a
stable periodic orbit emerges for |a| > 1. Thus, the system can be excited by the input, producing,
at least for appropriate choice of the parameters, rapid variations of the potential (spikes) which
occur periodically.

There are various ways to make several neurons interact in a network, even within the mean-field
scheme, depending of how we model synapsis (see [2]). The simplest, corresponding to electrical
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synapsis, leads to the following system. Xi,N denotes the membrane potential of the i-th neuron.
The local parameter hi may be interpreted as the macroscopic location of the neuron, or its type.

dXi,N
t =

(
Xi,N
t − 1

3
(Xi,N

t )3 + Y i,Nt

)
dt+

1

N

N∑
j=1

J(hi, hj)
(
Xi,N
t −Xj,N

t

)
dt+ σdW i

t

dY i,Nt = ε(hi)
[
a(hi) + b(hi)X

i,N
t − γ(hi)Y

i,N
t

]
dt,

(4.8)

where the coupling parameters J(hi, hj) tune the interaction petween pairs of neurons.

The model become more interesting if one introduces a delay τ in the transmission of informations
between different neurons:

dXi,N
t =

(
Xi,N
t − 1

3
(Xi,N

t )3 + Y i,Nt

)
dt+

1

N

N∑
j=1

J(hi, hj)
(
Xi,N
t −Xj,N

t−τ(hi,hj)

)
dt+ σdW i

t

dY i,Nt = ε(hi)
[
a(hi) + b(hi)X

i,N
t − γ(hi)Y

i,N
t

]
dt.

(4.9)

Delay makes a bit more painful the well posedness analysis for both the model and its macroscopic
limit, but for propagation of chaos the same proof carries through (see [45] for details), giving the
following macroscopic limit

dXt(h) =

(
Xt(h)− 1

3
X

3

t (h) + Y t(h) +

∫
J(h, h′)

(
Xt(h)− y

)
qt−τ(h,h′)(dy;h′)µ(dh′)

)
dt+ σdWt

dY t(h) = ε(h)(a(h) + b(h)Xt(h)− γ(h)Y t(h))dt,

(4.10)

where qt(dx;h) denotes the law of Xt(h). Not much is known at this level of generality, so we
consider the simplest, homogeneous case in which h is constant, γ = 0, b = −1 which gives

dXt =

[
Xt)−

1

3
X

3

t + Y t + J(Xt − E(Xt−τ ))

]
dt+ σdWt

dY t = ε(a−Xt)dt

(4.11)

A further simplification consists in letting the noise going to zero, in both the diffusion and the
initial condition. Note the the noise is essential to prove propagation of chaos, so this must be
meant as a limiting procedure at macroscopic level. We obtain the deterministic system with
delay

ẋt = xt −
1

3
x3t + yt + J(xt − xt−τ )

ẏ = ε(a− xt).
(4.12)

This system has been extensively studies in [31]. Here we assume J ≥ 0

• The point (a,−a + a3/3) is still the unique fixed point, and it is stable for |a| >
√

1 + 2J
and unstable for |a| < 1, no matter what τ is.

• For 1 < τ <
√

1 + 2J loss of stability via a Hopf bifurcation can be obtained by increasing
τ : interaction and transmission delay may produce oscillations even if single neurons are in
the stability region.

Does noise play any role in exciting the neuronal network?
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This question has only partial and non-rigorous answers (see e.g [34]). Consider the simplified
system (4.11) and remove the delay.

dXt =

[
Xt)−

1

3
X

3

t + Y t + J(Xt − E(Xt))

]
dt+ σdWt

dY t = ε(a−Xt)dt

(4.13)

Some indications on the behavior of this system, confirmed by numerical simulations, are obtained
via the following heuristic argument. For a similar model details can be found in [17]

• Writing down the equation for the moments of (Xt, Y t) and pretending the system is Gaus-
sian, we get at formal level a closed equation for the means and the covariance matrix.

• This equation corresponds to a truly Gaussian process (X̃, Ỹ ), which can be shown to be a
good approximation of (X,Y ) for σ small.

The evolution of the law of (X̃, Ỹ ) can be studied at least locally around the fixed point. It can
be shown that for |a| > 1 but sufficiently close to 1, periodic solutions for the law of (X̃t, Ỹt)
emerge for moderate values of σ, i.e. within some interval 0 < σ0 < σ < σ1: we therefore obtain
noise-induced oscillations. It should be remarked noise-induced oscillations were pointed out in
similar Gaussian models long time ago ([42])

4.3 Interacting Hawkes processes

The Fitzhugh-Nagumo model exhibits some qualitative features of neuronal dynamics, in particular
excitability. Periodicity of spikes for a single neuron is however unrealistic: spike trains are more
effectively modeled by point processes. An appropriate model in this context is obtained by using
Hawkes processes ([14, 13, 15]).

Let Zi,Nt be the counting process that counts the spikes of neuron i, having local parameter

(position, type...) hi. It is assumed that Zi,Nt jumps with a rate λNi (t) of the form

λNi (t) = f

hi; 1

N

N∑
j=1

J(hi, hj)

∫
[0,t]

k(t− s)dZj,Ns


where f(h; · ) is a positive, increasing function, and k( · ) is a given positive function modeling
the memory of the system, including possible transmission delay. If J(hi, hj) > 0 then spikes of
neuron j tend to favor future spikes of neuron i (excitatory link), while the opposites holds true
(inhibitory link) when J(hi, hj) < 0.
There are convenient choices for the kernel k( · ) which allow a simple “Markovianization” of the
system, namely the Erlang kernels: k(r) = c r

m

m! e
−λr, c, λ > 0. Note that for m ≥ 1 the function

k attains its maximum at some positive r∗ = τ , producing a “smoothed” form of delay. For
simplicity, we deal here with the case k(r) = e−λr, corresponding to no delay.
Define

Xi,N
t :=

∫
[0,t]

k(t− s)dZi,Ns ,

the “discounted” number of spikes of neuron i before time t. The exponential form of k( · ) yields

Xi,N
t = −λ

∫ t

0

Xi,N
s ds+ Zi,Nt

= −λ
∫ t

0

Xi,N
s ds+

∫
[0,t]

1[0,f(hi,
1
N

∑N
j=1 J(hi,hj)X

j,N

s−
](u)N i(du, ds),

(4.14)

where the N i are i.i.d. Poisson random measures on [0,+∞) × [0,+∞) with characteristic mea-
sure duds. The system is therefore in the form seen in Section 3. Assuming f( · ) is Lipschitz,
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propagation of chaos holds, and we obtain the macroscopic limit

Xt(h) = −λ
∫ t

0

Xs(h)ds+

∫
[0,t]

1[0,f(h,
∫
J(h,h′)E[Xs− (h′)]µ(dh′)](u)N(du, ds). (4.15)

Letting mt(h) := E[Xt(h)], we obtain from (4.15) a closed equation for mt:

ṁt(h) = −λmt(h) + f

(
h,

∫
J(h, h′)ms(h

′)µ(dh′)

)
. (4.16)

If the support of µ is finite, this is a finite dimensional dynamical system. A case considered
recently [24] is that of the so-called cyclic negative feedback systems.

Theorem 4.3. Suppose µ is supported on the discrete torus Z/nZ, J(h, h′) = 0 unless h′ = h+ 1
mod n. Set

δ :=
∏

h∈Z/nZ

J(h, h+ 1).

If n ≥ 3, δ < 0 and |δ| is large enough, then (4.16) has at least one stable periodic orbit. This
orbit is unique for n = 3.

Although single neurons have no intrinsic tendency of spiking periodically, the collective spike
train may be periodic if

• the macroscopic geometry of the network is circular;

• at macroscopic level there is an odd number of inhibitory links;

• the interaction is sufficiently strong.

5 Further reading

These notes on mean field models have been essentially dealing with propagation of chaos and, for
what applications are concerned, with the analysis of the attractors of the macroscopic dynamics.
We briefly mention here some further developments, well aware of being far from exhaustive.

5.1 Long-time behavior of the microscopic system

Theorem 3.1 states that if we fix the time interval [0, T ] then the microscopic and the macroscopic
systems are close if N is large enough. How large, for a giver error threshold, might indeed depend
on T . In other words for a given large N , this “closeness” might deteriorate as time increases: the
long time behavior of the microscopic system is not necessarily reflected in the macroscopic one.

Whenever such “deterioration” does not occur, we say there is uniform propagation of chaos.
One consequence of uniform propagation of chaos is that stationary measures for the microscopic
system are close to products of stationary measures of the macroscopic one.

Uniform propagation of chaos has been proves in cases in which the microscopic process satisfies
very strong ergodicity properties, see e.g. [38, 44, 23, 6, 46].

When uniform propagation of chaos fails, it is of interest to identify the time scale (possibly
diverging with N) in which the limit macroscopic system still approximate the microscopic one,
and determine the behavior beyond this time scale. In general this is a very delicate problem.
Quite remarkable results for a class of system inspired by the Kuramoto model are obtained in
[28].
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5.2 Fluctuations

We have seen (Proposition 2.1) that propagation of chaos is equivalent to a Law of Large Numbers:

ρN (XN ) =
1

N

N∑
i=1

δXi,N −→ Q (5.1)

as N → +∞, where Q is the law of the macroscopic dynamics. It is therefore natural to consider
a corresponding Central Limit Theorem, describing fluctuations around the limit. In particular,
one considers the distribution-valued process

ΦNt :=
√
N

[
1

N

N∑
i=1

δXi,N
t
− qt

]
,

where qt is the marginal of Q at time t. One can prove, with remarkable generality, that for any
bounded time-interval [0, T ], the process ΦN converges weakly to a distribution valued Gaussian
process. Classical results in this direction can be found in [18, 19, 25, 30].
When quenched disorder is present, fluctuations of the disorder compete with state fluctuations,
producing phenomena which are not seen if the disorder is averaged out; the dynamics of state
fluctuations are different for different realizations of the disorder. Sharp results have been obtained
for the Kuramoto model in [35].

5.3 Critical fluctuations

All examples we have treated undergo a phase transition: in the macroscopic dynamics, the
stationary solution that is unique for small interaction, loses its stability as the interaction strength
crosses a threshold, and is subject to bifurcation. At the critical point, the fluctuations process
ΦN defined above exhibit, if evaluated on certain observables, a peculiar space-time scaling, that
typically leads to non-Gaussian fluctuations. Literature on this subject has a long history, going
back to [21, 18]. Possible effects of quenched disorder are dealt with in [16]. Recently, examples
of mean field dynamics in which critical fluctuations self-organize, i.e. do not require tuning
parameters to critical values, are provided in [12]
The results just cited apply to cases in which the bifurcation at the critical point is of pitchfork
type. Various interesting models, including the Kuramoto model with large quenched disorder,
undergoes a Hopf bifurcation. Some indications on how critical fluctuations look like in this case
can be found in [20].

5.4 Large Deviations

A refinement of the Law of Large Numbers in (5.1) different from the Central Limit Theorems
consists in obtaining a Large Deviation Principle, i.e. the exponential decay in N of probabilities
of the form

P(ρN (XN ) ∈ U) for U 63 Q.

The case of mean-field interacting diffusions with a constant diffusion coefficient given by a multiple
of the identity matrix dates back to [22] and [19], where spin-flip dynamics have also been dealt
with. Large deviation principles for system as general as those in Section 3 of these note require
more sophisticated tools, see [9].
In presence of quenched disorder, it would be desirable to obtain a Large deviation Principle that
holds for almost every realization of the disorder. For interacting diffusions this is done in [37].

5.5 Generalizing network’s microscopic geometry

In the models presented in these notes the quenched disorder is introduced via the local parameters
hi, one per each component. An interesting alternative way of introducing disorder is to associate
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it with links, i.e. to pairs of components. For instance, this would modify the prototypical model
in Section 2 as

dXi,N
t =

1

N

N∑
j=1

b(hij , X
i,N
t , Xj,N

t )dt+ dW i
t

where the hij are random parameters, describing the microscopic architecture of the network.
Model of this type, motivated by neurosciences, are dealt with in [40]. We remark that these
models are reminiscent of mean field spin-glass dynamics (see e.g. [3]), but actually have very
different nature: in spin glasses the contribution of each pair scales as 1√

N
rather that as 1

N ;

the thermodynamic limit for spin glasses is in general much harder to analyze, and the resulting
dynamic behavior is quite different.

5.6 Mean-field games

In many applications, mainly in social science, collective dynamics are the result of a competitive
optimization procedure involving several entities (players). Each player controls, to some extent,
his own dynamics, and aims at maximizing his utility; he is therefore taking part to a dynamic
game. Under symmetry conditions of the players, letting the number of players going to infinity,
one expect to obtain a macroscopic game, called mean field game.
Introduced in the seminal paper [33], the theory of mean field games has had a tremendous
development. The actual convergence of the microscopic dynamics to the mean-field game has
been however left open for several years, and recently proved, under rather severe conditions, in
[10]. Further developments, such as fluctuations around the limit and Large Deviations, have not
appeared yet.
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