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Study the macroscopic properties of a physics system
whose interactions are described on the microscopic level

The general framework is the following.

I The structure of the physics system is represented by
a finite graph G = (V,E).



S 

I Set of configurations on the graph G: C(G),
I vertex configurations,
I edge configurations,
I vertex/edge configurations.

I Parameters representing:
I the intensity of interactions between microscopic components,
I the external temperature.

⇒ Positive weight function w on edges/vertices.



S 

I To a configuration C, one assigns an energy Ew(C).

I Boltzmann probability on configurations:

∀C ∈ C(G), P(C) =
e−Ew(C)

Z(G,w)
,

where Z(G,w) =
∑

C∈C(G)
e−Ew(C) is the partition function.

Understand the model
when the graph is large (infinite).



T  

Adsorption of di-atomic molecules on the surface of a crystal

Sir Ralph H. Fowler (1889-1944)
Congrès Solvay 1927.

George S. Rushbrooke (1915-1995)

I Graph G = (V,E).
I A dimer configuration or perfect matching: subset of edges such

that every vertex is incident to exactly one edge.
⇒ M(G) = set of dimer configurations.



T  
I A dimer configuration

I Positive weight function on the edges: ν = (νe)e∈E.
I Energy of a configuration M: Eν(M) = −

∑
e∈M log νe.

I Dimer Boltzmann measure:

∀M ∈M(G), Pdimer(M) =

∏
e∈M

νe

Zdimer(G, ν)
.

I The highest the weight νe, the more likely is the edge e.
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Model of ferromagnetism / mixture of two materials

Wilhelm Lenz (1888-1957) Ernst Ising (1900-1998)

I Graph G = (V,E).
I A spin configuration σ assigns to every vertex x of the graph G a

spin σx ∈ {−1, 1}.
⇒ C(G) = {−1, 1}V = set of spin configurations.



T I 

I A spin configuration
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I A spin configuration / two interpretations.

Magnetic moments:
+1/→, −1/←

Mixture of two materials:
+1/•, -1/•.
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I Positive weight function: coupling constants J = (Je)e∈E.

I Energy of a spin configuration: EJ(σ) = −
∑

e=xy∈E
Jxyσxσy.

I Ising Boltzmann measure:

∀σ ∈ {−1, 1}V, PIsing(σ) =
e−EJ(σ)

ZIsing(G, J)
.

I Two neighboring spins σx, σy tend to align.
I The higher the coupling Jxy, the strongest is this tendency.
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I P: flow of a liquid through a porous material.
I S /: related to electrical networks and

random walks.
I R  :

includes percolation, Ising, Potts, spanning trees.
I V  (6-8-· · · ): 6-vertex is a model for ice.
I O(n)  .
I ...



M 
I Rhombus tilings ↔ dimers on the honeycomb lattice

(illustration by R. Kenyon)
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I Ising model on the square lattice (illustrations by R. Cerf)

J small J critical J large
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I Identification of the phase transition.

I Understanding of the sub/super critical regimes.

I Understanding the critical model (at the phase transition):

I Universality and conformal invariance.
I Conjectures: Cardy, Duplantier, Nienhuis . . .
Proofs: Lawler, Schramm, Werner, D. Chelkak, S. Smirnov . . .



E  

I One of the tools to study the macroscopic behavior is the
partition function:

Z(G,w) =
∑

C∈C(G)

e−Ew(C),

the normalizing constant of the Boltzmann measure

∀C ∈ C(G), P(C) =
e−Ew(C)

Z(G,w)
.

I The model is exactly solvable if there exists an exact, explicit
formula, for the partition function

I The two models considered are exactly solvable in 2d:
I Ising: Onsager (1944) - Kaufman - Kac & Ward (1952) - Fisher
(1966).

I Dimers: Kasteleyn - Temperley & Fisher (1961).
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I Dimer model on a finite, planar graph G with weights ν.
I Computation of the partition function,

Zdimer(G, ν) =
∑

M∈M(G)

∏
e∈E

νe.
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I Let M1, M2 be two dimer configurations of G and let M1 ∪M2 be
their superimposition.

I M1 ∪M2 is a disjoint union of alternating cycles, where an
alternating cycle has edges alternating between M1 and M2. An
alternating cycle of length 2 is a doubled edge.
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I A graph is isoradial if it is planar and can be embedded in the
plane in such a way that all inner faces are inscribable in a circle
of radius 1 and all circumcenters are in the interior of the faces
(Duffin-Mercat-Kenyon).
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I Take the center of the circumcircles.
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I Join each center to the “neighboring” vertices of G.
⇒ Associated rhombus graph G�.
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I To every edge e, one assigns the half-angle θ̄e of the
corresponding rhombus.

e

eθ


