Universality for fluctuation of the dimer model

Gourab Ray

University of Cambridge

Joint work with Nathanael Berestycki and Benoit Laslier

January 13, 2017

Dimer model

G: Planar bipartite graph (vertices can be colored black or white such that always black is adjacent to white)

Definition

A dimer configuration: perfect matching of a bipartite graph (every black vertex is connected to exactly one white vertex via an edge or dimer).

Dimer on honeycomb/ hexagonal lattice

- Describes a surface in \mathbb{R}^3 .
- Boundary describes a curve in \mathbb{R}^3 .

Height function

- Can be described for general planar bipartite graphs.
- Describes a surface in \mathbb{R}^3 .

Definition

Given a domain, pick a dimer configuration uniformly. This describes a random surface.

Question

- "typical (mean) surface"?
- Fluctuations around typical surface (universality)?

Random surfaces from dimer

Figure: Arctic circle phenomenon ©Rick Kenyon

Random surfaces from dimer

Figure: A cardioid shape $r(\theta) = 2(1 + \cos(\theta))$. (Fig: Okounkov.)

Continuum GFF (2 D): the universal fluctuation field

- A "random function" $(h_x)_{x \in D}$
 - Marginals $h_x \sim$ Gaussian.
 - $Cov(h_x, h_y) \approx c \log |x y|.$

Continuum GFF (2 D): the universal fluctuation field

- A "random function" $(h_x)_{x \in D}$
 - Marginals $h_x \sim$ Gaussian.
 - $Cov(h_x, h_y) \approx c \log |x y|.$

Definition (Gaussian free field) $D \subset \mathbb{C}$.

- $h \equiv 0$ on ∂D .
- $(h, f) \sim N(0, \int G(x, y)f(x)f(y))$ for all test functions f. $G(x, y) \approx \log |x - y|$ as $x \to y$.

Can make sense as a **random distribution**. GFF is **conformaly invariant** in law.

GFF

Figure: ©Scott Sheffield

History

- Cohn, Larsen and Propp(NYJM '98) and Cohn, Kenyon and Propp (JAMS '01) the shape of a typical surface for general boundary condition.
- Kenyon (Ann. Probab. '00) Fluctuations of height function of domino tilings.
- Kenyon, Okounkov, Sheffield (Ann. Math '06) Surface tension and local Gibb's properties for periodic graphs.
- Petrov (Ann. Probab. '15)Fluctuations of lozenge tilings of Polygons.
- Li (AIHP '13) Fluctuations for Temperleyan version of isoradial graphs.

Our result setup: planar boundary

Definition

Planar boundary condition: Boundary curve in \mathbb{R}^3 lies within bounded distance from a plane.

A non planar boundary

Setup

•
$$h^{\delta}(z)$$
 height with cube size δ .

6

Main theorem

- Honeycomb lattice.
- $h^{\delta}(z)$ height with cube size δ .

Theorem (Berestycki, Laslier, R.'2015)

For all slopes, for all $D \subset \mathbb{C}$, $\exists D^{\delta}$ (approximating D) such that

$$\frac{1}{\delta} \Big(h^{\delta} \circ \ell(\cdot) - \mathbb{E}(h^{\delta} \circ \ell(\cdot)) \Big) \xrightarrow[\delta \to 0]{} \sqrt{2} GFF$$

 ℓ : an explicit linear map depending only on slope.

• Purely probabilistic viewpoint (without Kasteleyn matrices).

- Purely probabilistic viewpoint (without Kasteleyn matrices).
- Universality: use only CLT of random walk on certain graphs.
- Robustness: Recovers and extends the work of Kenyon,Li.

- Purely probabilistic viewpoint (without Kasteleyn matrices).
- Universality: use only CLT of random walk on certain graphs.
- Robustness: Recovers and extends the work of Kenyon, Li.
- Possible future applications: general topology, non-planar boundary, interacting dimers...

$\mathsf{Dimers} \leftrightarrow \mathsf{UST}: \mathsf{Temperley's} \ \mathsf{bijection}$

	<u> </u>		· · · · ·		
3	2	3	2	-1	-2
4	1	0	1	0	1
3	2	-1	2	-1	2
0	1	0	1	0	1
-1	2	-1	2	-1	-2
0	1	0	1	0	-3

A tool

Uniform spanning tree winding in a certain graph Dimer, height function

Uniform spanning trees

Definition

A spanning tree of a graph G is its subgraph with no cycles and spanning all the vertices of G.

• A graph G.

Uniform spanning trees

Definition

A spanning tree of a graph G is its subgraph with no cycles and spanning all the vertices of G.

- A graph G.
- A spanning tree of G.

$\mathsf{Dimers} \leftrightarrow \mathsf{UST}: \mathsf{Temperley's} \ \mathsf{bijection}$

	<u> </u>		· · · · ·		
3	2	3	2	-1	-2
4	1	0	1	0	1
3	2	-1	2	-1	2
0	1	0	1	0	1
-1	2	-1	2	-1	-2
0	1	0	1	0	-3

$\mathsf{Dimers} \leftrightarrow \mathsf{UST}: \mathsf{Temperley's} \mathsf{ bijection}$

			~			
3	2	3	2	-1	-2	
4	1	0	1	0	1	
3	2	-1	2	-1	2	
0	1	0	1	0	1	
-1	2	-1	2	-1	-2	
0	1	0	1	0	-3	
	, ,					•

$\mathsf{Dimers} \leftrightarrow \mathsf{UST}: \mathsf{Temperley's} \mathsf{ bijection}$

Such a connection also holds for hexagonal lattice and an associated graph called a T-graph. (Kenyon and Sheffield)

Height function of hexagonal lattice = winding of uniform spanning tree on T-graph.

• Winding of uniform spanning tree (UST) branches = height function.

Main idea

- Winding of uniform spanning tree (UST) branches = height function.
- Need to study winding field of UST and their scaling limits.

Since dimers on \mathcal{G} correspond to Uniform Spanning Trees (USTs) on Γ , and USTs can be generated from LERWS ([33]), this suggests universality of dimers when the underlying RW converges to BM. Remark also that the dimer height can be expressed in terms of windings of LERWS ([22]). However at this stage it is unclear how to implement rigorously this heuristic.

–Dubedat,Gheissari '14.

Our theorem...

Theorem (Berestycki, Laslier, R.' 2016)

 $D \subset \mathbb{C}$ a domain with locally connected boundary. $D^{\delta} \subset G^{\delta}$ approximating D. h^{δ} : winding of UST from a marked point $x^{\delta} \in \partial D^{\delta}$.

$$h^{\delta}(\cdot) - \mathbb{E}(h^{\delta}(\cdot)) o \sqrt{2} GFF$$

with Dirichlet boundary condition if G satisfies the following conditions.

- Simple random walk satisfies a CLT. (CLT holds for T graphs (Laslier' 14)).
- Uniform crossing condition:

This holds for T graphs (not obvious!).

Scaling limits

Theorem (Lawler, Schramm, Werner '03, Schramm '00) $D \subset \mathbb{C}$

 Uniform spanning tree on D ∩ δZ² → "A continuum tree" (continuum uniform spanning tree).

Continuum UST

Figure: UST in a square with 1000 branches

Theorem (Lawler, Schramm, Werner '03, Schramm '00) $D \subset \mathbb{C}$

- Uniform spanning tree on D ∩ δZ² → "A continuum tree" (continuum uniform spanning tree).
- Branches of the continuum uniform spanning tree are SLE₂ curves.

Theorem (Schramm)

 SLE_{κ} is the only one parameter family of random curves satisfying Domain Markov property + Conformal invariance.

Winding on rough curves?

• $\theta_t = \arg(\gamma'(t))$ taken continuously.

- Intrinsic winding: $\int_0^1 d\theta_t = -13\pi/2$.
- Defined only on smooth curves.

Winding on rough curves? Topological winding

Figure: Topological winding around $\gamma(1)$

- $\alpha_t := \arg(\gamma(t) \gamma(1)) \arg(\gamma(0) \gamma(1))$ taken continuously.
- Topological winding around $\gamma(1)$: $\int_0^1 d\alpha_t = -4\pi$.
- Defined on curves smooth near target point (in this case $\gamma(1)$).

Winding on rough curves?

- Topological winding around $\gamma(1)$: = $\int_0^1 d\alpha_t = -4\pi$.
- Topological winding around $\gamma(0) = -5\pi/2$
- Intrinsic winding: $\int_0^1 d\theta_t = -13\pi/2$.

Winding on rough curves?

For smooth curves:

Topological winding around $(\gamma(1) + \gamma(0)) =$ Intrinsic winding.

Lemma

Let γ be a rough curve which is smooth near endpoints obtained as a limit of a discrete curve. Then intrinsic winding of the discrete curve converges and is equal to sum of topological windings of the continuous curve around the end points.

• Parametrize the tree branches according to capacity. This means

Conformal radius
$$(D\setminus\gamma[0,t])=e^{-t}$$
 (1)

• h_t^{δ} : topological winding up to capacity t around end points. • $h^{\delta} = h_t^{\delta} + e^{\delta}$.

Second moment convergence

$$\mathbb{E}((\int_{D} h^{\delta}(z)f(z)dz)^{2}) = \int_{D^{2}} h^{\delta}(z_{1})h^{\delta}(z_{2})f(z_{1})f(z_{2})dz_{1}dz_{2}$$

Second moment convergence

$$\mathbb{E}((\int_{D} h^{\delta}(z)f(z)dz)^{2}) = \int_{D^{2}} h^{\delta}(z_{1})h^{\delta}(z_{2})f(z_{1})f(z_{2})dz_{1}dz_{2}$$

$$\mathbb{E}((\int_{D} h^{\delta}(z)f(z)dz)^{2})$$

= $\int_{D^{2}} (h_{t}^{\delta}(z_{1}) + e^{\delta}(z_{1}))(h_{t}^{\delta}(z_{2}) + e^{\delta}(z_{2}))f(z_{1})f(z_{2})dz_{1}dz_{2}$

- h^δ_t is continuous in δ. Need to somehow show that the truncated continuous windings converge to GFF.
- Done if e^{δ} are independent since we subtract the mean.

- h_t^{δ} : topological winding up to capacity t around end points.
- h_t : topological winding of continuum UST branch up to capacity t.

Steps in proof:

• Step 1: $h_t^{\delta} \xrightarrow[\delta \to 0]{} h_t$ (discrete winding up to capacity $t \to$ continuum winding up to capacity t).

- h_t^{δ} : topological winding up to capacity t around end points.
- h_t : topological winding of continuum UST branch up to capacity t.

Steps in proof:

• Step 1: $h_t^{\delta} \xrightarrow[\delta \to 0]{} h_t$ (discrete winding up to capacity $t \to$ continuum winding up to capacity t).

• Step 2:
$$h_t - \mathbb{E}h_t \xrightarrow[t \to \infty]{} \sqrt{2}GFF$$
.

- h_t^{δ} : topological winding up to capacity t around end points.
- h_t : topological winding of continuum UST branch up to capacity t.

Steps in proof:

• Step 1: $h_t^{\delta} \xrightarrow[\delta \to 0]{} h_t$ (discrete winding up to capacity $t \to$ continuum winding up to capacity t).

• Step 2:
$$h_t - \mathbb{E}h_t \xrightarrow[t \to \infty]{} \sqrt{2}GFF$$
.

• Step 3: Discrete winding from t to ∞ are independent from point to point.

• h_t^{δ} : topological winding up to capacity *t* around end points.

Theorem (Berestycki, Laslier, R. 2016)

 h_t^δ (winding in the discrete) $ightarrow h_t$ in the sense of convergence of moments.

Proof.

Use Yadin, Yehudayoff along with crossing estimate to prove exponential tail of winding in annulus.

Theorem (Yadin, Yehudayoff)

CLT for random walk \Rightarrow branches of UST \rightarrow SLE₂.

Convergence of continuum winding

Step 2:

Theorem (Berestycki, Laslier, R. 2016)

$$h_t \xrightarrow{L^p} \sqrt{2}h_{GFF}$$

for any p > 1 in $H^{-1-\eta}$ for all $\eta > 0$.

Proof.

• Convergence of joint moment of winding at k points. (Need to understand how winding behaves under conformal maps).

Convergence of continuum winding

Step 2:

Theorem (Berestycki, Laslier, R. 2016)

$$h_t \xrightarrow{L^p} \sqrt{2}h_{GFF}$$

for any p > 1 in $H^{-1-\eta}$ for all $\eta > 0$.

Proof.

- Convergence of joint moment of winding at k points. (Need to understand how winding behaves under conformal maps).
- Identification of the limit using SLE/GFF coupling. (winding field, UST) pair behaves similarly as coupled (GFF,UST) pair.

Imaginary geometry

• Work of Dubédat and Miller, Sheffield (Imaginary geometry). Given a GFF *h* in a domain, a **flow line** η at angle θ is the solution to the following equation

$$rac{\partial \eta(t)}{\partial t} = e^{i(rac{h(\eta(t))}{\chi} + heta)}$$

 $\chi = \frac{2}{\sqrt{\kappa}} - \frac{\sqrt{\kappa}}{2}.$ 1------11111 11111 1000111 1 - - - - - 11 <>+++/////////// 111100 12-2211111122-

37/47

• Work of Dubédat and Miller, Sheffield (Imaginary geometry). Given a GFF *h* in a domain, a **flow line** η at angle θ is the solution to the following equation

$$rac{\partial \eta(t)}{\partial t} = e^{i(rac{h(\eta(t))}{\chi} + heta)}$$

$$\chi = \frac{2}{\sqrt{\kappa}} - \frac{\sqrt{\kappa}}{2}.$$

• Work of Dubédat and Miller, Sheffield (Imaginary geometry). Given a GFF *h* in a domain, a **flow line** η at angle θ is the solution to the following equation

$$rac{\partial \eta(t)}{\partial t} = e^{i(rac{h(\eta(t))}{\chi} + heta)}$$

$$\chi = \frac{2}{\sqrt{\kappa}} - \frac{\sqrt{\kappa}}{2}.$$

Flow lines

(c) $\alpha = \chi$; 4π range of angles

(d) $\alpha = 2\chi$; 6π range of angles

Figure: ©Jason Miller

$\mathsf{UST}/\mathsf{GFF}\ (\kappa=2)$

Lemma (Uniqueness)

Our limit of winding satisfies some uniqueness properties of the flowlines.

Coupling

Step 3

Theorem (Berestycki, Laslier, R. 2016)

The blue parts are roughly independent.

Coupling

Step 3

Theorem (Berestycki, Laslier, R. 2016)

The blue parts are roughly independent.

The proof is technical and uses multiscale arguments. Thus overall

$$h = h_t + e_t$$

 $e_t = \mathbb{E}(e_t) pprox$ independent from point to point with mean zero.

Main idea: Discrete coupling with a full plane UST. Main tool:

Lemma (Schramm's finiteness lemma.)

For all $\epsilon > 0$ there exists $j(\epsilon)$ branches such that all other branches except these $j(\epsilon)$ branches have diameter $\leq \epsilon$ with probability $\geq 1 - \epsilon$

• Temperleyan bijection extends to cycle-rooted spanning forests. All cycles non-contractible.

- Temperleyan bijection extends to cycle-rooted spanning forests. All cycles non-contractible.
- Height function no longer a function. But height difference (or winding) along the forest make sense (i.e. makes sense as a 1-form, which is exact).

- Temperleyan bijection extends to cycle-rooted spanning forests. All cycles non-contractible.
- Height function no longer a function. But height difference (or winding) along the forest make sense (i.e. makes sense as a 1-form, which is exact).
- Hodge theorem

$$\omega = h \bigoplus df$$

 ω : **closed** 1-form, *h* : harmonic 1-form, *f*-function. So

Height difference $\rightarrow d(GFF) \bigoplus h =$ compactified GFF

h: Harmonic 1-form (Instanton component).

- \bullet On torus, for $\mathbb{Z}^2,$ full convergence proved by Dubédat. (ref. Dimers and analytic torsion.)
- On torus, for general graphs satisfying CLT, convergence of instanton component proved by Dubedat and Gheissari.

- \bullet On torus, for $\mathbb{Z}^2,$ full convergence proved by Dubédat. (ref. Dimers and analytic torsion.)
- On torus, for general graphs satisfying CLT, convergence of instanton component proved by Dubedat and Gheissari.
- We prove (disclaimer: writing in progress!!)
 - Convergence in a Riemann surface with finitely many handles and holes.
 - Full convergence to compacified GFF for general graphs on torus.
 - Identification in general? Imaginary geometry on general surfaces.

More science fiction!

Generalize to $\kappa \neq 2$. Let $\chi = 2/\sqrt{\kappa} - \sqrt{\kappa}/2$ (constant in imaginary geometry).

Thanks for listening!

