Studying permutation classes

using the substitution decomposition

Mathilde Bouvel
(Institut fiir Mathematik, Universitat Ziirich)

Universitat
Ziirich™

Combinatorics and interactions,
Introductory school at CIRM, Jan. 2017



Permutation patterns
and permutation classes



Permutation of size n = Bijection from [1..n] to itself.
Set G, and 6 = S,.
n
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Permutation of size n = Bijection from [1..n] to itself.
Set G, and & =J G,,.
n
@ Graphical description,

@ Two-line notation: or diagram:
U_<12345678> °

18364257

@ One-line or word notation:
c=18364257 hd

@ Description as a
product of cycles:
c=(1)(287546) (3)
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Permutation of size n = Bijection from [1..n] to itself.
Set G, and & =J G,,.
n
@ Graphical description,

@ Two-line notation: or diagram:
U_<12345678> °

18364257

@ One-line or word notation:

c=18364257 hd
e - - 0;

@ Description as a
product of cycles:
c=(1)(287546) (3)

1
This talk is about permutation patterns and permutation classes.

Mathilde Bouvel (I-Math, UZH) Permutation classes



The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

<ﬁﬁﬁlfﬁ2754
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

1 TN/ 754
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

12 AN 754
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

123 N 754
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

1236 N 754
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

1236 N 54
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

1236 N 4
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

~N o
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

12364 N

5
7

Mathilde Bouvel (I-Math, UZH) Permutation classes 4/25



The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

123645 N
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

1236457 N
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

1236457 ﬁﬁ6132754
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

S(c)=1236457 ﬁf6132754:a

Equivalently, S(¢) = € and S(LnR) = S(L)S(R)n, where n = max(LnR)
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

S(c)=1236457 ﬁf6132754:a

Equivalently, S(¢) = € and S(LnR) = S(L)S(R)n, where n = max(LnR)

First result on permutation patterns [Knuth 68] :
A permutation ¢ is stack-sortable iff o avoids the pattern 231
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

S(c)=1236457 ﬁf6132754:a

Equivalently, S(¢) = € and S(LnR) = S(L)S(R)n, where n = max(LnR)

First result on permutation patterns [Knuth 68] :
A permutation ¢ is stack-sortable iff o avoids the pattern 231

meaning that there are no i < j < k such that oy < 0; < 0y,

or equivalently no subsequences ---g;---0;-- 0 --- of 0 whose elements
are in the same relative order as 231.
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

S(c)=1236457 ﬁﬁ6132754=a

Equivalently, S(¢) = € and S(LnR) = S(L)S(R)n, where n = max(LnR)

First result on permutation patterns [Knuth 68] :
A permutation ¢ is stack-sortable iff o avoids the pattern 231

meaning that there are no i < j < k such that oy < 0; < 0y,

or equivalently no subsequences ---g;---0;-- 0 --- of 0 whose elements
are in the same relative order as 231.
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

S(c)=1236457 ﬁﬁ6132754=a

Equivalently, S(¢) = € and S(LnR) = S(L)S(R)n, where n = max(LnR)

First result on permutation patterns [Knuth 68] :
A permutation ¢ is stack-sortable iff o avoids the pattern 231

meaning that there are no i < j < k such that oy < 0; < 0y,

or equivalently no subsequences ---g;---0;-- 0 --- of 0 whose elements
are in the same relative order as 231.

Next: other sorting devices and patterns [Even & Itai 71, Tarjan 72, Pratt 73]
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Permutation patterns

Pattern relation <:

T € GSgisapatternof c € G, if 31 < i1 <... < i < nsuch that
Ojy ... 0, is in the same relative order (=) as 7.

Notation: 7 < 0.
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Permutation patterns

Pattern relation <:

T € GSgisapatternof c € G, if 31 < i1 <... < i < nsuch that
Ojy ... 0, is in the same relative order (=) as 7.

Notation: 7 < 0.

Equivalently:
The normalization of o}, ... 0;

. on
[1..k] yields 7.

Example: 2134 312854796
since 3157=2134.
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Permutation patterns

Pattern relation <:

T € GSgisapatternof c € G, if 31 < i1 <... < i < nsuch that
Ojy ... 0, is in the same relative order (=) as 7.

Notation: 7 < 0.

Equivalently:
The normalization of o/, ... 0}, on °
[1..k] yields 7.

Example: 2134 312854796
since 3157 =2134. bt
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Permutation patterns

Pattern relation <:

T € GSgisapatternof c € G, if 31 < i1 <... < i < nsuch that
Ojy ... 0, is in the same relative order (=) as 7.

Notation: 7 < 0.

Equivalently:
The normalization of o/, ... 0}, on °
[1..k] yields 7.

Example: 2134 312854796
since 3157=2134.
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Permutation patterns

Pattern relation <:

T € GSgisapatternof c € G, if 31 < i1 <... < i < nsuch that
Ojy ... 0, is in the same relative order (=) as 7.

Notation: 7 < 0.

Equivalently:
The normalization of o/, ... 0}, on °
[1..k] yields 7.

Example: 2134 312854796
since 3157=2134.

Mathilde Bouvel (I-Math, UZH) Permutation classes




Permutation patterns

Pattern relation <:

T € GSgisapatternof c € G, if 31 < i1 <... < i < nsuch that
Ojy ... 0, is in the same relative order (=) as 7.

Notation: 7 < 0.

Equivalently:
The normalization of o/, ... 0}, on °
[1..k] yields 7.

Example: 2134 312854796
since 3157=2134.

Crucial remark: < is a partial order on & and “[x] is even more
interesting than the [sorting] networks we were characterizing” [Pratt 73].

This is the key to defining permutation classes.
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Permutation classes

e A permutation class is a set C of permutations that is downward closed
for <, i.e. whenever 7 < o and o € C, then w € C.
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Permutation classes

e A permutation class is a set C of permutations that is downward closed
for <, i.e. whenever 7 < o and o € C, then w € C.

1423

123 132 213 231 312 32

means T X O
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Permutation classes

e A permutation class is a set C of permutations that is downward closed
for <, i.e. whenever 7 < o and o € C, then w € C.

1423

123 132 213 231 312 32

means T X O
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Permutation classes

e A permutation class is a set C of permutations that is downward closed
for <, i.e. whenever 7 < o and o € C, then w € C.

1423

123 132 213 231 312 32

means T X O
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Permutation classes

e A permutation class is a set C of permutations that is downward closed
for <, i.e. whenever 7 < o and o € C, then w € C.

means T X O

5
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Permutation classes

e A permutation class is a set C of permutations that is downward closed
for <, i.e. whenever 7 < o and o € C, then w € C.

e Notations: Av(m) = the set of permutations that avoid the pattern =
Av(B) = ) Av(m)
TEB
e Fact: For every permutation class C, C = Av(B) for
B={0¢C:Vrm <o suchthat m # 0,7 €C}.
B is an antichain (set of elements incomparable for <),
called the basis of C.

Mathilde Bouvel (I-Math, UZH) Permutation classes



Permutation classes

e A permutation class is a set C of permutations that is downward closed
for <, i.e. whenever 7 < o and o € C, then w € C.

e Notations: Av(m) = the set of permutations that avoid the pattern =

Av(B) = QBAV(T(')

e Fact: For every permutation class C, C = Av(B) for
B={0o ¢ C:Vm <o suchthat 7 # 0,7 € C}.

B is an antichain (set of elements incomparable for <),
called the basis of C.

e Remarks:
o Conversely, every set Av(B) is a permutation class.

@ There exist infinite antichains in the permutation pattern poset, hence
some permutation classes have infinite basis.
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A biased overview of important results



Specific enumeration results

For C a permutation class, C, is the set of permutations of size n in C and
C(z) =>_,|Cn|z" is its generating function.
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Specific enumeration results

For C a permutation class, C, is the set of permutations of size n in C and
C(z) =>_,|Cn|z" is its generating function.

e One excluded pattern:

e of size 3: By symmetry, focus on Av(321) and Av(231) only.
Description of Av(321) [MacMahon 1915] and Av(231) [Knuth 68].
Enumeration by the Catalan numbers in both cases.

Bijections: [Simion, Schmidt 85] [Claesson, Kitaev 08].
But these two classes have a very different structure.
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Specific enumeration results

For C a permutation class, C, is the set of permutations of size n in C and
C(z) =>_,|Cn|z" is its generating function.

e One excluded pattern:
e of size 3: By symmetry, focus on Av(321) and Av(231) only.

e of size 4: Only three different enumerations. Representatives are:

o Av(1342) [Béna 97], algebraic generating function
o Av(1234) [Gessel 90], holonomic (or D-finite) generating function
e Av(1324) ...remains an open problem
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Specific enumeration results

For C a permutation class, C, is the set of permutations of size n in C and
C(z) =>_,|Cn|z" is its generating function.
e One excluded pattern:

e of size 3: By symmetry, focus on Av(321) and Av(231) only.

e of size 4: Only three different enumerations.

e Systematic enumeration of Av(B) when B contains small excluded
patterns (size 3 or 4).

Often combining general methods briefly discussed later.

[Simion&Schmidt, Gessel, Béna, Gire, Guibert, Stankova, West. . . in the nineties]
[Albert, Atkinson, Brignall, Callan, Kremer, Pantone, Shiu, Vatter, ...nowadays|
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Specific enumeration results

For C a permutation class, C, is the set of permutations of size n in C and
C(z) =>_,|Cn|z" is its generating function.

e One excluded pattern:
e of size 3: By symmetry, focus on Av(321) and Av(231) only.

e of size 4: Only three different enumerations.

e Systematic enumeration of Av(B) when B contains small excluded
patterns (size 3 or 4).

Often combining general methods briefly discussed later.

[Simion&Schmidt, Gessel, Béna, Gire, Guibert, Stankova, West. . . in the nineties]
[Albert, Atkinson, Brignall, Callan, Kremer, Pantone, Shiu, Vatter, ...nowadays|

e Enumeration of classes (with more excluded patterns) appearing in a
different context (e.g. indices of Schubert varieties [Albert, Brignall 13])
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Growth rates of permutation classes

e Upper growth rate: Gr(C) = limsup,, {/|Cy|
o Lower growth rate: Gr(C) = liminf, {/|Chp|
Marcus-Tardos theorem (2004, former Stanley-Wilf conjecture):

Gr(C) < oo for any class C # &.
That is to say, permutation classes grow at most exponentially.
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Growth rates of permutation classes

e Upper growth rate: Gr(C) = limsup,, {/|Cy|
o Lower growth rate: Gr(C) = liminf, {/|Chp|
Marcus-Tardos theorem (2004, former Stanley-Wilf conjecture):

Gr(C) < oo for any class C # &.
That is to say, permutation classes grow at most exponentially.

Conjecture: For any class C, Gr(C) = Gr(C). Growth rate, denoted Gr(C).
This holds for all principal classes, i.e., C = Av(n),
and more generally for all sum-closed or skew-closed classes.
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Growth rates of permutation classes

e Upper growth rate: Gr(C) = limsup,, {/|Cy|
o Lower growth rate: Gr(C) = liminf, {/|Chp|
Marcus-Tardos theorem (2004, former Stanley-Wilf conjecture):
Gr(C) < oo for any class C # 6.
That is to say, permutation classes grow at most exponentially.

Conjecture: For any class C, Gr(C) = Gr(C). Growth rate, denoted Gr(C).
Arratia’s (false) conjecture:
Gr(Av(n)) < (k — 1)? = Gr(Av(k...21)) for |7| = k
@ Gr(Av(1324)) > 9.47 [Albert, Elder, Rechnitzer, Westcott, Zabrocki 06]

@ Remark: Gr(Av(1324)) is > 9.81 [Bevan 15], < 13.74 [Béna 15] and
conjectured to be ~ 11.60 [Conway, Guttmann 15]

@ Gr(Av(m)) is typically exponential in |7| [Fox, 2017+]
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Growth rates of permutation classes

e Upper growth rate: Gr(C) = limsup,, {/|Cy|
o Lower growth rate: Gr(C) = liminf, {/|Chp|
Marcus-Tardos theorem (2004, former Stanley-Wilf conjecture):

Gr(C) < oo for any class C # &.
That is to say, permutation classes grow at most exponentially.

Conjecture: For any class C, Gr(C) = Gr(C). Growth rate, denoted Gr(C).

Arratia’s (false) conjecture:
Gr(Av(m)) < (k — 1)2 = Gr(Av(k...21)) for || = k

Classification of growth rates:
Exactly which numbers can occur as (upper) growth rates is known,
except between & ~ 2.305 and A\ < 2.36 [Vatter and collaborators].
@ Before &: countably many growth rates, all characterized

@ After X: all real numbers

Mathilde Bouvel (I-Math, UZH) Permutation classes



Nature of the generating functions of permutation classes

A variety of behaviors can occur: rational, algebraic, D-finite, non D-finite.

e For Av(231) and Av(321): Catalan numbers, algebraic GF. But:
@ All proper subclasses of Av(231) are rational [Albert, Atkinson 05].
@ Av(321) contains non D-finite subclasses.

@ However, every proper subclass of Av(321) which has finite basis or is
wqo is rational [Albert, Brignall, Rugkuc, Vatter 2017+].
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Nature of the generating functions of permutation classes

A variety of behaviors can occur: rational, algebraic, D-finite, non D-finite.

e For Av(231) and Av(321): Catalan numbers, algebraic GF. But:
@ All proper subclasses of Av(231) are rational [Albert, Atkinson 05].
@ Av(321) contains non D-finite subclasses.

@ However, every proper subclass of Av(321) which has finite basis or is
wqo is rational [Albert, Brignall, Rugkuc, Vatter 2017+].

e (Tight?) connection between wqo and nice GF:
@ A class is wqgo (well quasi-ordered) if it contains no infinite antichains.
@ If a class C and all its subclasses are algebraic, then C is wqo.

@ Vatter conjectures that the converse holds.
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Nature of the generating functions of permutation classes

A variety of behaviors can occur: rational, algebraic, D-finite, non D-finite.

e For Av(231) and Av(321): Catalan numbers, algebraic GF. But:
@ All proper subclasses of Av(231) are rational [Albert, Atkinson 05].
@ Av(321) contains non D-finite subclasses.

@ However, every proper subclass of Av(321) which has finite basis or is
wqo is rational [Albert, Brignall, Rugkuc, Vatter 2017+].

e (Tight?) connection between wqo and nice GF:
@ A class is wqgo (well quasi-ordered) if it contains no infinite antichains.
@ If a class C and all its subclasses are algebraic, then C is wqo.

@ Vatter conjectures that the converse holds.

e Sufficient algebricity condition [Albert, Atkinson 05]:
When a class contains finitely many simple permutations.
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A probabilistic look at permutation classes

Typical diagrams of large permutations in classes: what do they look like?
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A probabilistic look at permutation classes

Typical diagrams of large permutations in classes: what do they look like?
e One excluded pattern of size 3:

uuuuu

Av(231)

nnnnn

6000

Av(321)

:::::

[Miner, Pak 14] [Hoffman, Rizzolo, Slivken 16]
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A probabilistic look at permutation classes

Typical diagrams of large permutations in classes: what do they look like?

e One excluded pattern of size 3:

@ Precise local description of the asymptotic shape [Miner, Pak 14]
[Madras and collaborators].

@ Scaling limits and link with the Brownian excursion (for the
fluctuations around the main diagonal) [Hoffman, Rizzolo, Slivken 16].

@ For any pattern , the following quantity converges in distribution to
a strictly positive random variable [Janson 16]:

number of occurrences of 7 in uniform JEAV,,(132)
n(l7[+ number of descents of 7+1))/2
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A probabilistic look at permutation classes

Typical diagrams of large permutations in classes: what do they look like?

e One excluded pattern of size 3:

@ Precise local description of the asymptotic shape [Miner, Pak 14]
[Madras and collaborators].

@ Scaling limits and link with the Brownian excursion (for the
fluctuations around the main diagonal) [Hoffman, Rizzolo, Slivken 16].

@ For any pattern , the following quantity converges in distribution to
a strictly positive random variable [Janson 16]:

number of occurrences of 7 in uniform aEAv,,(132)
n(l7[+ number of descents of 7+1))/2

e Other known cases:

@ Connected monotone grid classes (deterministic limit) [Bevan 15]

@ Separable permutations (non-deterministic limit) [Bassino, B., Féray,
Gerin, Pierrot 2017+]
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Some general methods

To prove general results on families of permutation classes (e.g. growth
rates, nature of GF), some general methods are often used, which each
capture a notion of nice structure of permutations in these classes:
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Some general methods

To prove general results on families of permutation classes (e.g. growth
rates, nature of GF), some general methods are often used, which each
capture a notion of nice structure of permutations in these classes:

Generating trees
Substitution decomposition
Merging and splitting
(Geometric) grid classes

(]
o
o
o
@ Encodings by words over a finite alphabet
o
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Some general methods

To prove general results on families of permutation classes (e.g. growth
rates, nature of GF), some general methods are often used, which each
capture a notion of nice structure of permutations in these classes:

@ Generating trees

@ Substitution decomposition

o Merging and splitting

o (Geometric) grid classes

@ Encodings by words over a finite alphabet
°

These methods are also sometimes used to prove results about (or
enumerate) specific classes.
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Substitution decomposition



Substitution for permutations

Substitution is an operation building a permutation from smaller ones.

Notation for substitution (or inflation): o = w[a®),a®, ... k)]
with k = size of 7.
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Substitution for permutations

Substitution is an operation building a permutation from smaller ones.
Notation for substitution (or inflation): o = w[a(®), () ... a(¥)]

with k = size of 7.
a®) =21= Eﬂ

Example: Here, m =132, and * o
a® =132="e
aB®) =1=1¢
® ..' ..
° ° S 5
° i% 2

Hence 0 =132[21,132,1] =214653.
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Substitution for permutations

Substitution is an operation building a permutation from smaller ones
Notation for substitution (or inflation): o = w[a(®), () ... a(¥)]

with k = size of 7.
a®) =21= Eﬂ

Example: Here, m =132, and * o
a® =132="e
aB®) =1=1¢
® ..' ..
° ° S 5
° i% 2

Hence 0 =132[21,132,1] =214653.
In general, many substitutions give o, but we will see a canonical one.
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Simple permutations

Interval (or block) = set of elements of o whose ~ Not simple:

positions and values form intervals of integers hd
Example: 5746 is an interval of 2574613 .
Simple permutation = permutation with no > o
interval, except the trivial ones: 1,2,...,nand o °
Example: 3174625 is simple hd
Simple
[ J
[ ]
[ J
[ ]
[ ]
[ ]
[ ]
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Simple permutations

Interval (or block) = set of elements of o whose ~ Not simple:

positions and values form intervals of integers hd
Example: 5746 is an interval of 2574613 .
Simple permutation = permutation with no > o
interval, except the trivial ones: 1,2,...,nand o °
Example: 3174625 is simple hd
The smallest simple permutations: Simple:
12,21, 2413,3142, 6 ofsize 5, ... hd 5
But: For us, it is convenient to consider that 12 °
and 21 are not simple permutations. . hd

[ ]

[ ]
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Simple permutations

Interval (or block) = set of elements of o whose ~ Not simple:

positions and values form intervals of integers hd
Example: 5746 is an interval of 2574613 .
Simple permutation = permutation with no > o
interval, except the trivial ones: 1,2,...,nand o °
Example: 3174625 is simple hd
The smallest simple permutations: Simple:
12,21, 2413,3142, 6 ofsize 5, ... hd 5
But: For us, it is convenient to consider that 12 °
and 21 are not simple permutations. . hd

[ ]
Remark: Enumeration of simple permutations: °

e Generating function is not D-finite
e Asymptotically 2—2! of size n [Albert, Atkinson, Klazar 03]
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Substitution decomposition theorem for permutations

Notation:
@ @ represents any permutation 12... k for k > 2
@ O represents any permutation k...21 for k > 2
o @-indecomposable: that cannot be written as G[5(1), 5(?)]
o &-indecomposable: that cannot be written as S[3(1), 5(2)]
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Substitution decomposition theorem for permutations

Notation:
@ @ represents any permutation 12... k for k > 2
@ O represents any permutation k...21 for k > 2
o @-indecomposable: that cannot be written as G[5(1), 5(?)]
o &-indecomposable: that cannot be written as S[3(1), 5(2)]

Theorem: [Albert, Atkinson, Klazar 03]
Every o (#1) is uniquely decomposed as

° @[a(l), el a(k)], where the o) are ®-indecomposable
° @[a(l), ey a(k)], where the o) are ©-indecomposable
o [, ..., alk], where 7 is simple of size k > 4

Proof idea: The a(?) represent the maximal proper intervals of o.
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Substitution decomposition theorem for permutations

Notation:
@ @ represents any permutation 12... k for k > 2
@ O represents any permutation k...21 for k > 2
o @-indecomposable: that cannot be written as G[5(1), 5(?)]
o &-indecomposable: that cannot be written as S[3(1), 5(2)]

Theorem: [Albert, Atkinson, Klazar 03]
Every o (#1) is uniquely decomposed as

° @[a(l), el a(k)], where the o) are ®-indecomposable
° @[a(l), ey a(k)], where the o) are ©-indecomposable
o [, ..., alk], where 7 is simple of size k > 4

Proof idea: The a(?) represent the maximal proper intervals of o.

Decomposing recursively inside the o) = decomposition tree
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Decomposition tree

Example: Decomposition tree of Notation and properties:

0 — 101312111411819202117161548329567

o Nodes labeled by @&, © or 7
3142 simple of size > 4.

// N S e No edge & — @ nor & — ©.
© 24153 e Rooted ordered trees.

/@\ © /\\ //@\}@ e These conditions characterize
A\ /j\\ /\ A\ decomposition trees.

o=3142[@[1,2[1,1,1],1],1,8[®[1,1,1,1],1,1,1],24153[1,1,5[1, 1], 1,&[1, 1, 1]]]
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Decomposition tree

Example: Decomposition tree of Notation and properties:

o Nodes labeled by @&, © or 7
3142 simple of size > 4.

// N S e No edge & — @ nor & — ©.
© 24153 e Rooted ordered trees.

/@\ © /\\ //@\}@ e These conditions characterize
A\ /j\\ /\ A\ decomposition trees.

o=3142[@[1,2[1,1,1],1],1,8[®[1,1,1,1],1,1,1],24153[1,1,5[1, 1], 1,&[1, 1, 1]]]

0 — 101312111411819202117161548329567

The substitution decomposition theorem provides a bijection between
permutations of size n and decomposition trees with n leaves.
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Decomposition tree

Example: Decomposition tree of Notation and properties:

e Nodes labeled by &, © or 7

0 — 101312111411819202117161548329567

3142 simple of size > 4.
AN e No edge & — @ nor © — ©.
// © 24153
N e Rooted ordered trees.
/9\ S5} /\\ //@\ S5 e These conditions characterize

A\ /j\\ /\ A\ decomposition trees.

o=3142[@®[1,0[1,1,1],1],1,0[®[1,1,1,1],1,1,1],24153[1,1,©[1,1],1,®[1, 1, 1]]]
The substitution decomposition theorem provides a bijection between
permutations of size n and decomposition trees with n leaves.

Very convenient, since “trees are the prototypical recursive structure’
[Flajolet, Sedgewick 09]
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A tree grammar for permutations

With S the set of simple permutations, the substitution decomposition
theorem says:

@ o
6:. e coe S
+6+/ \6++G‘/ \e—+z"e G/G/\\G

+7. =
S =et SN T TN
- ®
ST =ek SN T NN
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A tree grammar for permutations

With S the set of simple permutations, the substitution decomposition
theorem says:

@ o
6:. e coe S
+6+/ \6++G‘/ \6‘ ¥ 2 G/G/-\\G

+t_ o =

6" = +6_/\G_ +Z7r€3 6/6/.\\6
- . b

ot 6+/'\6+ ¥ 2mes 6/6/\\6

Can we specialize this tree grammar to subsets of &, and in particular to
permutation classes C = Av(B)?

Can we do it automatically? even algorithmically?

What kind of results can be obtained from such a tree grammar describing
a permutation class C?
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Some (general) results obtained
using substitution decomposition



How it all started

e Theorem [Albert, Atkinson 05]: For any permutation class C,
if C contains finitely many simple permutations,

then C has a finite basis and an algebraic generating function C(z).
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How it all started

e Theorem [Albert, Atkinson 05]: For any permutation class C,
if C contains finitely many simple permutations,
then C has a finite basis and an algebraic generating function C(z).

e Constructive proof (of the GF part of the theorem):

@ Propagate avoidance constraints in
@ S
= JON /N
S o+ sf &t + &- &— + Zﬂ-ES G/G/'\\'G
S
+ = /N
OT=et gl To- Tt imes 6/6/\\6
®
& =e+ 6+/ : \6+ + Zwes 6/6/\\6

@ Obtain a (possibly ambiguous) context-free tree grammar for C.

@ Inclusion-exclusion gives a polynomial system for C(z).
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How it all started

e Theorem [Albert, Atkinson 05]: For any permutation class C,
if C contains finitely many simple permutations,
then C has a finite basis and an algebraic generating function C(z).

e Constructive proof (of the GF part of the theorem):

@ Propagate avoidance constraints in
@ S
= JON /N
S o+ sf &t + &- &— + Zﬂ'es G/G/'\\'G
S
+ = /N
OT=et gl To- Tt imes 6/6/\\6
®
& =e+ 6+/ : \6+ + ZWES 6/6/\\6

@ Obtain a (possibly ambiguous) context-free tree grammar for C.

@ Inclusion-exclusion gives a polynomial system for C(z).

e Next steps: Automatic computation of a tree grammar for C,
possibly unambiguous (=combinatorial specification).
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Algorithmization

e Input: a finite basis B defining C = Av(B)
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Algorithmization

e Input: a finite basis B defining C = Av(B)

e Decide whether C contains finitely many simples:
@ Naive semi-decision procedure [Schmerl, Trotter 93]
@ Decision procedure [Brignall, Ruskuc, Vatter 08]

@ “Much more practical” algorithm [Bassino, B., Pierrot, Rossin 15]
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Algorithmization

e Input: a finite basis B defining C = Av(B)

e Decide whether C contains finitely many simples:
@ Naive semi-decision procedure [Schmerl, Trotter 93]
@ Decision procedure [Brignall, Ruskuc, Vatter 08]

@ “Much more practical” algorithm [Bassino, B., Pierrot, Rossin 15]

e Compute the set of simples in C:

@ In a naive way [Albert, Atkinson 05] using [Schmerl, Trotter 93]
@ Using the structure of the poset of simples [Pierrot, Rossin 2017+]
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Algorithmization

e Input: a finite basis B defining C = Av(B)

e Decide whether C contains finitely many simples:
@ Naive semi-decision procedure [Schmerl, Trotter 93]
@ Decision procedure [Brignall, Ruskuc, Vatter 08]

@ “Much more practical” algorithm [Bassino, B., Pierrot, Rossin 15]

e Compute the set of simples in C:

@ In a naive way [Albert, Atkinson 05] using [Schmerl, Trotter 93]
@ Using the structure of the poset of simples [Pierrot, Rossin 2017+]

e Compute an unambiguous tree grammar for C:
e With query-complete sets (not effective) [Brignall, Huczynska, Vatter 08]

@ Algorithm propagating pattern avoidance and containment constraints
in the tree grammar [Bassino, B., Pierrot, Pivoteau, Rossin 2017+]
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Experimenting with the results of this algorithm

The algorithm produces a combinatorial specification for C.

From it, we automatically derive a Boltzmann sampler of permutations in
C [Flajolet, Fusy, Pivoteau 07].
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Experimenting with the results of this algorithm

The algorithm produces a combinatorial specification for C.
From it, we automatically derive a Boltzmann sampler of permutations in
C [Flajolet, Fusy, Pivoteau 07].

Example: C = Av(2413,3142) the class of separable permutations:
Two separable permutations of size 204523 and 903073, drawn uniformly
at random among those of the same size:
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Experimenting with the results of this algorithm

The algorithm produces a combinatorial specification for C.
From it, we automatically derive a Boltzmann sampler of permutations in
C [Flajolet, Fusy, Pivoteau 07].

Example: C = Av(2413,3142) the class of separable permutations:
Two separable permutations of size 204523 and 903073, drawn uniformly
at random among those of the same size:

Goal: Explain these diagrams, by describing the “limit shape” of random
separable permutations of size n — +oc.
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Proportion of patterns in separable permutations

e Notation:
° O/&I(W, U) — _number of occu:;ences of minao for n = |U‘ and k = ’7T’
k

@ O, = a uniform random separable permutation of size n

e Theorem [Bassino, B., Féray, Gerin, Pierrot 2017+]:

There exist random variables (A;), m ranging over all permutations,
such that for all , 0 < A, <1 and when n — +o0,

occ(m, O ) converges in distribution to A;.

Substitution decomposition is essential to the proof.
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Proportion of patterns in separable permutations

e Notation:
° O/&I(W, U) — _number of occu:;ences of minao for n = |U‘ and k = ’7T’
k
@ O, = a uniform random separable permutation of size n

e Theorem [Bassino, B., Féray, Gerin, Pierrot 2017+]:

There exist random variables (A;), m ranging over all permutations,
such that for all , 0 < A, <1 and when n — +o0,

occ(m, O ) converges in distribution to A;.

Substitution decomposition is essential to the proof.
Moreover,
@ We describe a construction of A;.
@ This holds jointly for patterns 1, ..., m,.
o If 7 is separable of size at least 2, A; is non-deterministic.

@ Combinatorial formula for all moments of A,.
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What does this say about limit shapes of diagrams?

e Permutons and permuton convergence:

@ Permuton = measure on [0, 1] with uniform marginals
~ diagram of a finite or infinite permutation.

@ The convergence of occ(m, o) for all 7 characterizes the convergence
of permutons [Hoppen, Kohayakawa, Moreira, Rath, Sampaio 13; brought
to a probabilistic setting].

@ Hence, denoting i, the permuton associated with o, there exists a

random permuton [4 such that pr tends to [4 in distribution (in
the weak convergence topology).
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What does this say about limit shapes of diagrams?

e Permutons and permuton convergence:

@ Permuton = measure on [0, 1] with uniform marginals
~ diagram of a finite or infinite permutation.

@ The convergence of occ(m, o) for all 7 characterizes the convergence
of permutons [Hoppen, Kohayakawa, Moreira, Rath, Sampaio 13; brought
to a probabilistic setting].

@ Hence, denoting i, the permuton associated with o, there exists a
random permuton [4 such that pr tends to [4 in distribution (in
the weak convergence topology).

e Properties of [i:
@ [b is not deterministic [Bassino, B., Féray, Gerin, Pierrot 2017+].

@ Construction of [/ directly in the continuum [Maazoun 2017+].
@ [4 has Hausdorff dimension 1 [Maazoun 2017+].
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Extension to substitution-closed classes

A permutation class C is substitution-closed when:
o [, ol . alk)] belongs to C as soon as 7 and all al?) do;
@ equivalently, the decomposition trees of permutations in C are all

decomposition trees built using simple permutations in C.

Remark: The class of separable permutations is the smallest (non-trivial)
substitution-closed class (it contains no simples).
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Extension to substitution-closed classes

A permutation class C is substitution-closed when:
o [, ol . alk)] belongs to C as soon as 7 and all al?) do;

@ equivalently, the decomposition trees of permutations in C are all
decomposition trees built using simple permutations in C.

Remark: The class of separable permutations is the smallest (non-trivial)
substitution-closed class (it contains no simples).

Theorem [Bassino, B., Féray, Gerin, Maazoun, Pierrot 2017+]:

Let C be a substitution-closed class, whose set S of simple permutations
satisfies (mild?) enumeration conditions.

(e.g. S finite, or |S,| uniformly bounded, or GF of S rational or of radius
of convergence > V2 — 1, ... are sufficient conditions)

There exists a random permuton ,LLC (a one-parameter deformation of /1)
which is the limit of permutons of uniform random permutations in C.
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Extension to substitution-closed classes

A permutation class C is substitution-closed when:
o [, ol . alk)] belongs to C as soon as 7 and all al?) do;

@ equivalently, the decomposition trees of permutations in C are all
decomposition trees built using simple permutations in C.

Remark: The class of separable permutations is the smallest (non-trivial)
substitution-closed class (it contains no simples).

Theorem [Bassino, B., Féray, Gerin, Maazoun, Pierrot 2017+]:

Let C be a substitution-closed class, whose set S of simple permutations
satisfies (mild?) enumeration conditions.

(e.g. S finite, or |S,| uniformly bounded, or GF of S rational or of radius
of convergence > V2 — 1, ... are sufficient conditions)

There exists a random permuton ,LLC (a one-parameter deformation of /1)
which is the limit of permutons of uniform random permutations in C.

Thank you for listening!
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