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Permutation patterns
and permutation classes



Permutations

Permutation of size n = Bijection from [1..n] to itself.
Set Sn, and S =

⋃
n
Sn.
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Permutation of size n = Bijection from [1..n] to itself.
Set Sn, and S =

⋃
n
Sn.

Two-line notation:

σ =

(
1 2 3 4 5 6 7 8
1 8 3 6 4 2 5 7

)
One-line or word notation:
σ = 1 8 3 6 4 2 5 7

Description as a
product of cycles:
σ = (1) (2 8 7 5 4 6) (3)

Graphical description,
or diagram:

i

σi
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Permutations

Permutation of size n = Bijection from [1..n] to itself.
Set Sn, and S =

⋃
n
Sn.

Two-line notation:

σ =

(
1 2 3 4 5 6 7 8
1 8 3 6 4 2 5 7

)
One-line or word notation:
σ = 1 8 3 6 4 2 5 7

Description as a
product of cycles:
σ = (1) (2 8 7 5 4 6) (3)

Graphical description,
or diagram:

i

σi

This talk is about permutation patterns and permutation classes.
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6 1 3 2 7 5 4
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6 1 3 2 7 5 41 2 3 6 4 5 7
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6 1 3 2 7 5 4 = σS(σ) = 1 2 3 6 4 5 7

Equivalently, S(ε) = ε and S(LnR) = S(L)S(R)n, where n = max(LnR)
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6 1 3 2 7 5 4 = σS(σ) = 1 2 3 6 4 5 7

Equivalently, S(ε) = ε and S(LnR) = S(L)S(R)n, where n = max(LnR)

First result on permutation patterns [Knuth 68] :
A permutation σ is stack-sortable iff σ avoids the pattern 231
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The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6 1 3 2 7 5 4 = σS(σ) = 1 2 3 6 4 5 7

Equivalently, S(ε) = ε and S(LnR) = S(L)S(R)n, where n = max(LnR)

First result on permutation patterns [Knuth 68] :
A permutation σ is stack-sortable iff σ avoids the pattern 231

meaning that there are no i < j < k such that σk < σi < σj ,

or equivalently no subsequences · · ·σi · · ·σj · · ·σk · · · of σ whose elements
are in the same relative order as 231.
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6 1 3 2 7 5 4 = σS(σ) = 1 2 3 6 4 5 7

Equivalently, S(ε) = ε and S(LnR) = S(L)S(R)n, where n = max(LnR)

First result on permutation patterns [Knuth 68] :
A permutation σ is stack-sortable iff σ avoids the pattern 231

meaning that there are no i < j < k such that σk < σi < σj ,

or equivalently no subsequences · · ·σi · · ·σj · · ·σk · · · of σ whose elements
are in the same relative order as 231.

Next: other sorting devices and patterns [Even & Itai 71, Tarjan 72, Pratt 73]
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Permutation patterns

Pattern relation 4:
π ∈ Sk is a pattern of σ ∈ Sn if ∃ 1 ≤ i1 < . . . < ik ≤ n such that
σi1 . . . σik is in the same relative order (≡) as π.

Notation: π 4 σ.

Equivalently:
The normalization of σi1 . . . σik on
[1..k] yields π.

Example: 2 1 3 4 4 3 1 2 8 5 4 7 9 6
since 3 1 5 7 ≡ 2 1 3 4.
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Permutation patterns

Pattern relation 4:
π ∈ Sk is a pattern of σ ∈ Sn if ∃ 1 ≤ i1 < . . . < ik ≤ n such that
σi1 . . . σik is in the same relative order (≡) as π.

Notation: π 4 σ.

Equivalently:
The normalization of σi1 . . . σik on
[1..k] yields π.

Example: 2 1 3 4 4 3 1 2 8 5 4 7 9 6
since 3 1 5 7 ≡ 2 1 3 4.

Crucial remark: 4 is a partial order on S and “[4] is even more
interesting than the [sorting] networks we were characterizing” [Pratt 73].

This is the key to defining permutation classes.
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Permutation classes

• A permutation class is a set C of permutations that is downward closed
for 4, i.e. whenever π 4 σ and σ ∈ C, then π ∈ C.
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Permutation classes

• A permutation class is a set C of permutations that is downward closed
for 4, i.e. whenever π 4 σ and σ ∈ C, then π ∈ C.

1

12 21

123 132 213 231 312 321

1234 4321. . . . . .. . .1423 3142

σ

means π 4 σ

π

. . .
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Permutation classes

• A permutation class is a set C of permutations that is downward closed
for 4, i.e. whenever π 4 σ and σ ∈ C, then π ∈ C.

σ

means π 4 σ

π

. . .

C
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Permutation classes

• A permutation class is a set C of permutations that is downward closed
for 4, i.e. whenever π 4 σ and σ ∈ C, then π ∈ C.

• Notations: Av(π) = the set of permutations that avoid the pattern π
Av(B) =

⋂
π∈B

Av(π)

• Fact: For every permutation class C, C = Av(B) for
B = {σ /∈ C : ∀π 4 σ such that π 6= σ, π ∈ C}.
B is an antichain (set of elements incomparable for 4),
called the basis of C.
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Permutation classes

• A permutation class is a set C of permutations that is downward closed
for 4, i.e. whenever π 4 σ and σ ∈ C, then π ∈ C.

• Notations: Av(π) = the set of permutations that avoid the pattern π
Av(B) =

⋂
π∈B

Av(π)

• Fact: For every permutation class C, C = Av(B) for
B = {σ /∈ C : ∀π 4 σ such that π 6= σ, π ∈ C}.
B is an antichain (set of elements incomparable for 4),
called the basis of C.

• Remarks:

Conversely, every set Av(B) is a permutation class.

There exist infinite antichains in the permutation pattern poset, hence
some permutation classes have infinite basis.
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A biased overview of important results



Specific enumeration results

For C a permutation class, Cn is the set of permutations of size n in C and
C (z) =

∑
n |Cn|zn is its generating function.

Mathilde Bouvel (I-Math, UZH) Permutation classes 8 / 25



Specific enumeration results

For C a permutation class, Cn is the set of permutations of size n in C and
C (z) =

∑
n |Cn|zn is its generating function.

• One excluded pattern:

• of size 3: By symmetry, focus on Av(321) and Av(231) only.

Description of Av(321) [MacMahon 1915] and Av(231) [Knuth 68].
Enumeration by the Catalan numbers in both cases.
Bijections: [Simion, Schmidt 85] [Claesson, Kitaev 08].
But these two classes have a very different structure.
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Specific enumeration results

For C a permutation class, Cn is the set of permutations of size n in C and
C (z) =

∑
n |Cn|zn is its generating function.

• One excluded pattern:

• of size 3: By symmetry, focus on Av(321) and Av(231) only.

• of size 4: Only three different enumerations. Representatives are:

Av(1342) [Bóna 97], algebraic generating function
Av(1234) [Gessel 90], holonomic (or D-finite) generating function
Av(1324) . . . remains an open problem
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Specific enumeration results

For C a permutation class, Cn is the set of permutations of size n in C and
C (z) =

∑
n |Cn|zn is its generating function.

• One excluded pattern:

• of size 3: By symmetry, focus on Av(321) and Av(231) only.

• of size 4: Only three different enumerations.

• Systematic enumeration of Av(B) when B contains small excluded
patterns (size 3 or 4).
Often combining general methods briefly discussed later.
[Simion&Schmidt, Gessel, Bóna, Gire, Guibert, Stankova, West. . . in the nineties]

[Albert, Atkinson, Brignall, Callan, Kremer, Pantone, Shiu, Vatter, . . . nowadays]
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Specific enumeration results

For C a permutation class, Cn is the set of permutations of size n in C and
C (z) =

∑
n |Cn|zn is its generating function.

• One excluded pattern:

• of size 3: By symmetry, focus on Av(321) and Av(231) only.

• of size 4: Only three different enumerations.

• Systematic enumeration of Av(B) when B contains small excluded
patterns (size 3 or 4).
Often combining general methods briefly discussed later.
[Simion&Schmidt, Gessel, Bóna, Gire, Guibert, Stankova, West. . . in the nineties]

[Albert, Atkinson, Brignall, Callan, Kremer, Pantone, Shiu, Vatter, . . . nowadays]

• Enumeration of classes (with more excluded patterns) appearing in a
different context (e.g. indices of Schubert varieties [Albert, Brignall 13])
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Growth rates of permutation classes

Upper growth rate: Gr(C) = lim supn
n
√
|Cn|

Lower growth rate: Gr(C) = lim infn
n
√
|Cn|

Marcus-Tardos theorem (2004, former Stanley-Wilf conjecture):
Gr(C) <∞ for any class C 6= S.
That is to say, permutation classes grow at most exponentially.
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n
√
|Cn|

Lower growth rate: Gr(C) = lim infn
n
√
|Cn|

Marcus-Tardos theorem (2004, former Stanley-Wilf conjecture):
Gr(C) <∞ for any class C 6= S.
That is to say, permutation classes grow at most exponentially.

Conjecture: For any class C, Gr(C) = Gr(C). Growth rate, denoted Gr(C).
This holds for all principal classes, i.e., C = Av(π),
and more generally for all sum-closed or skew-closed classes.
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Growth rates of permutation classes

Upper growth rate: Gr(C) = lim supn
n
√
|Cn|

Lower growth rate: Gr(C) = lim infn
n
√
|Cn|

Marcus-Tardos theorem (2004, former Stanley-Wilf conjecture):
Gr(C) <∞ for any class C 6= S.
That is to say, permutation classes grow at most exponentially.

Conjecture: For any class C, Gr(C) = Gr(C). Growth rate, denoted Gr(C).

Arratia’s (false) conjecture:
Gr(Av(π))≤ (k − 1)2 = Gr(Av(k . . . 21)) for |π| = k

Gr(Av(1324)) > 9.47 [Albert, Elder, Rechnitzer, Westcott, Zabrocki 06]

Remark: Gr(Av(1324)) is > 9.81 [Bevan 15], < 13.74 [Bóna 15] and
conjectured to be ≈ 11.60 [Conway, Guttmann 15]

Gr(Av(π)) is typically exponential in |π| [Fox, 2017+]
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Growth rates of permutation classes

Upper growth rate: Gr(C) = lim supn
n
√
|Cn|

Lower growth rate: Gr(C) = lim infn
n
√
|Cn|

Marcus-Tardos theorem (2004, former Stanley-Wilf conjecture):
Gr(C) <∞ for any class C 6= S.
That is to say, permutation classes grow at most exponentially.

Conjecture: For any class C, Gr(C) = Gr(C). Growth rate, denoted Gr(C).

Arratia’s (false) conjecture:
Gr(Av(π))≤ (k − 1)2 = Gr(Av(k . . . 21)) for |π| = k

Classification of growth rates:
Exactly which numbers can occur as (upper) growth rates is known,

except between ξ ≈ 2.305 and λ < 2.36 [Vatter and collaborators].

Before ξ: countably many growth rates, all characterized

After λ: all real numbers
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Nature of the generating functions of permutation classes

A variety of behaviors can occur: rational, algebraic, D-finite, non D-finite.

• For Av(231) and Av(321): Catalan numbers, algebraic GF. But:

All proper subclasses of Av(231) are rational [Albert, Atkinson 05].

Av(321) contains non D-finite subclasses.

However, every proper subclass of Av(321) which has finite basis or is
wqo is rational [Albert, Brignall, Ruškuc, Vatter 2017+].
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All proper subclasses of Av(231) are rational [Albert, Atkinson 05].

Av(321) contains non D-finite subclasses.

However, every proper subclass of Av(321) which has finite basis or is
wqo is rational [Albert, Brignall, Ruškuc, Vatter 2017+].

• (Tight?) connection between wqo and nice GF:

A class is wqo (well quasi-ordered) if it contains no infinite antichains.

If a class C and all its subclasses are algebraic, then C is wqo.

Vatter conjectures that the converse holds.
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Nature of the generating functions of permutation classes

A variety of behaviors can occur: rational, algebraic, D-finite, non D-finite.

• For Av(231) and Av(321): Catalan numbers, algebraic GF. But:

All proper subclasses of Av(231) are rational [Albert, Atkinson 05].

Av(321) contains non D-finite subclasses.

However, every proper subclass of Av(321) which has finite basis or is
wqo is rational [Albert, Brignall, Ruškuc, Vatter 2017+].

• (Tight?) connection between wqo and nice GF:

A class is wqo (well quasi-ordered) if it contains no infinite antichains.

If a class C and all its subclasses are algebraic, then C is wqo.

Vatter conjectures that the converse holds.

• Sufficient algebricity condition [Albert, Atkinson 05]:
When a class contains finitely many simple permutations.
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A probabilistic look at permutation classes

Typical diagrams of large permutations in classes: what do they look like?
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A probabilistic look at permutation classes

Typical diagrams of large permutations in classes: what do they look like?

• One excluded pattern of size 3:

Av(231)

Av(321)

[Miner, Pak 14] [Hoffman, Rizzolo, Slivken 16]
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A probabilistic look at permutation classes

Typical diagrams of large permutations in classes: what do they look like?

• One excluded pattern of size 3:

Precise local description of the asymptotic shape [Miner, Pak 14]

[Madras and collaborators].

Scaling limits and link with the Brownian excursion (for the
fluctuations around the main diagonal) [Hoffman, Rizzolo, Slivken 16].

For any pattern π, the following quantity converges in distribution to
a strictly positive random variable [Janson 16]:

number of occurrences of π in uniform σ∈Avn(132)
n(|π|+ number of descents of π+1))/2 .
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A probabilistic look at permutation classes

Typical diagrams of large permutations in classes: what do they look like?

• One excluded pattern of size 3:

Precise local description of the asymptotic shape [Miner, Pak 14]

[Madras and collaborators].

Scaling limits and link with the Brownian excursion (for the
fluctuations around the main diagonal) [Hoffman, Rizzolo, Slivken 16].

For any pattern π, the following quantity converges in distribution to
a strictly positive random variable [Janson 16]:

number of occurrences of π in uniform σ∈Avn(132)
n(|π|+ number of descents of π+1))/2 .

• Other known cases:

Connected monotone grid classes (deterministic limit) [Bevan 15]

Separable permutations (non-deterministic limit) [Bassino, B., Féray,

Gerin, Pierrot 2017+]
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Some general methods

To prove general results on families of permutation classes (e.g. growth
rates, nature of GF), some general methods are often used, which each
capture a notion of nice structure of permutations in these classes:
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Some general methods

To prove general results on families of permutation classes (e.g. growth
rates, nature of GF), some general methods are often used, which each
capture a notion of nice structure of permutations in these classes:

Generating trees

Substitution decomposition

Merging and splitting

(Geometric) grid classes

Encodings by words over a finite alphabet

. . .
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Some general methods

To prove general results on families of permutation classes (e.g. growth
rates, nature of GF), some general methods are often used, which each
capture a notion of nice structure of permutations in these classes:

Generating trees

Substitution decomposition

Merging and splitting

(Geometric) grid classes

Encodings by words over a finite alphabet

. . .

These methods are also sometimes used to prove results about (or
enumerate) specific classes.
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Substitution decomposition



Substitution for permutations

Substitution is an operation building a permutation from smaller ones.

Notation for substitution (or inflation): σ = π[α(1), α(2), . . . , α(k)]
with k = size of π.
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Substitution for permutations

Substitution is an operation building a permutation from smaller ones.

Notation for substitution (or inflation): σ = π[α(1), α(2), . . . , α(k)]
with k = size of π.

Example: Here, π = 1 3 2, and


α(1) = 2 1 =

α(2) = 1 3 2 =

α(3) = 1 =

.

Hence σ = 1 3 2[2 1, 1 3 2, 1] = 2 1 4 6 5 3.
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Substitution for permutations

Substitution is an operation building a permutation from smaller ones.

Notation for substitution (or inflation): σ = π[α(1), α(2), . . . , α(k)]
with k = size of π.

Example: Here, π = 1 3 2, and


α(1) = 2 1 =

α(2) = 1 3 2 =

α(3) = 1 =

.

Hence σ = 1 3 2[2 1, 1 3 2, 1] = 2 1 4 6 5 3.
In general, many substitutions give σ, but we will see a canonical one.
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Simple permutations

Interval (or block) = set of elements of σ whose
positions and values form intervals of integers
Example: 5 7 4 6 is an interval of 2 5 7 4 6 1 3

Simple permutation = permutation with no
interval, except the trivial ones: 1, 2, . . . , n and σ
Example: 3 1 7 4 6 2 5 is simple

Not simple:

Simple:
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interval, except the trivial ones: 1, 2, . . . , n and σ
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The smallest simple permutations:
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But: For us, it is convenient to consider that 12
and 21 are not simple permutations.
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Simple permutations

Interval (or block) = set of elements of σ whose
positions and values form intervals of integers
Example: 5 7 4 6 is an interval of 2 5 7 4 6 1 3

Simple permutation = permutation with no
interval, except the trivial ones: 1, 2, . . . , n and σ
Example: 3 1 7 4 6 2 5 is simple

The smallest simple permutations:
12, 21, 2413, 3142, 6 of size 5, . . .

But: For us, it is convenient to consider that 12
and 21 are not simple permutations.

Remark: Enumeration of simple permutations:

Not simple:

Simple:

• Generating function is not D-finite
• Asymptotically n!

e2
of size n [Albert, Atkinson, Klazar 03]
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Substitution decomposition theorem for permutations

Notation:

⊕ represents any permutation 12 . . . k for k ≥ 2

	 represents any permutation k . . . 21 for k ≥ 2

⊕-indecomposable: that cannot be written as ⊕[β(1), β(2)]

	-indecomposable: that cannot be written as 	[β(1), β(2)]
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	 represents any permutation k . . . 21 for k ≥ 2

⊕-indecomposable: that cannot be written as ⊕[β(1), β(2)]

	-indecomposable: that cannot be written as 	[β(1), β(2)]

Theorem: [Albert, Atkinson, Klazar 03]

Every σ ( 6= 1) is uniquely decomposed as

⊕[α(1), . . . , α(k)], where the α(i) are ⊕-indecomposable

	[α(1), . . . , α(k)], where the α(i) are 	-indecomposable

π[α(1), . . . , α(k)], where π is simple of size k ≥ 4

Proof idea: The α(i) represent the maximal proper intervals of σ.
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Substitution decomposition theorem for permutations

Notation:

⊕ represents any permutation 12 . . . k for k ≥ 2

	 represents any permutation k . . . 21 for k ≥ 2

⊕-indecomposable: that cannot be written as ⊕[β(1), β(2)]

	-indecomposable: that cannot be written as 	[β(1), β(2)]

Theorem: [Albert, Atkinson, Klazar 03]

Every σ ( 6= 1) is uniquely decomposed as

⊕[α(1), . . . , α(k)], where the α(i) are ⊕-indecomposable

	[α(1), . . . , α(k)], where the α(i) are 	-indecomposable

π[α(1), . . . , α(k)], where π is simple of size k ≥ 4

Proof idea: The α(i) represent the maximal proper intervals of σ.

Decomposing recursively inside the α(i) ⇒ decomposition tree
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Decomposition tree

Example: Decomposition tree of
σ = 10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7

3 1 4 2

⊕

	

	

⊕

2 4 1 5 3

	 ⊕

Notation and properties:

• Nodes labeled by ⊕, 	 or π
simple of size ≥ 4.

• No edge ⊕−⊕ nor 	−	.

• Rooted ordered trees.

• These conditions characterize
decomposition trees.

σ = 31 4 2[⊕[1,	[1, 1, 1], 1], 1,	[⊕[1, 1, 1, 1], 1, 1, 1], 2 4 1 5 3[1, 1,	[1, 1], 1,⊕[1, 1, 1]]]

Mathilde Bouvel (I-Math, UZH) Permutation classes 17 / 25



Decomposition tree

Example: Decomposition tree of
σ = 10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7

3 1 4 2

⊕
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Notation and properties:

• Nodes labeled by ⊕, 	 or π
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The substitution decomposition theorem provides a bijection between
permutations of size n and decomposition trees with n leaves.
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Decomposition tree

Example: Decomposition tree of
σ = 10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7

3 1 4 2

⊕

	

	

⊕

2 4 1 5 3

	 ⊕

Notation and properties:

• Nodes labeled by ⊕, 	 or π
simple of size ≥ 4.

• No edge ⊕−⊕ nor 	−	.

• Rooted ordered trees.

• These conditions characterize
decomposition trees.

σ = 31 4 2[⊕[1,	[1, 1, 1], 1], 1,	[⊕[1, 1, 1, 1], 1, 1, 1], 2 4 1 5 3[1, 1,	[1, 1], 1,⊕[1, 1, 1]]]

The substitution decomposition theorem provides a bijection between
permutations of size n and decomposition trees with n leaves.

Very convenient, since “trees are the prototypical recursive structure”
[Flajolet, Sedgewick 09]
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A tree grammar for permutations

With S the set of simple permutations, the substitution decomposition
theorem says:

S = •+
⊕

S+
. . .

S+
+

	

S−
. . .

S−
+

∑
π∈S

π

S S . . . S

S+ = •+
	

S−
. . .

S−
+

∑
π∈S

π

S S . . . S

S− = •+
⊕

S+
. . .

S+
+

∑
π∈S

π

S S . . . S
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A tree grammar for permutations

With S the set of simple permutations, the substitution decomposition
theorem says:

S = •+
⊕

S+
. . .

S+
+

	

S−
. . .

S−
+

∑
π∈S

π

S S . . . S

S+ = •+
	

S−
. . .

S−
+

∑
π∈S

π

S S . . . S

S− = •+
⊕

S+
. . .

S+
+

∑
π∈S

π

S S . . . S

Can we specialize this tree grammar to subsets of S, and in particular to
permutation classes C = Av(B)?

Can we do it automatically? even algorithmically?

What kind of results can be obtained from such a tree grammar describing
a permutation class C?
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Some (general) results obtained
using substitution decomposition



How it all started

• Theorem [Albert, Atkinson 05]: For any permutation class C,
if C contains finitely many simple permutations,
then C has a finite basis and an algebraic generating function C (z).
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How it all started

• Theorem [Albert, Atkinson 05]: For any permutation class C,
if C contains finitely many simple permutations,
then C has a finite basis and an algebraic generating function C (z).

• Constructive proof (of the GF part of the theorem):

Propagate avoidance constraints in

S = •+
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S−
. . .

S−
+

∑
π∈S

π

S S . . . S

S+ = •+
	

S−
. . .

S−
+

∑
π∈S

π

S S . . . S

S− = •+
⊕

S+
. . .

S+
+

∑
π∈S

π

S S . . . S

Obtain a (possibly ambiguous) context-free tree grammar for C.

Inclusion-exclusion gives a polynomial system for C (z).
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How it all started

• Theorem [Albert, Atkinson 05]: For any permutation class C,
if C contains finitely many simple permutations,
then C has a finite basis and an algebraic generating function C (z).

• Constructive proof (of the GF part of the theorem):

Propagate avoidance constraints in

S = •+
⊕

S+
. . .

S+
+

	

S−
. . .

S−
+

∑
π∈S

π

S S . . . S

S+ = •+
	

S−
. . .

S−
+

∑
π∈S

π

S S . . . S

S− = •+
⊕

S+
. . .

S+
+

∑
π∈S

π

S S . . . S

Obtain a (possibly ambiguous) context-free tree grammar for C.

Inclusion-exclusion gives a polynomial system for C (z).

• Next steps: Automatic computation of a tree grammar for C,
possibly unambiguous (=combinatorial specification).
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Algorithmization

• Input: a finite basis B defining C = Av(B)
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Algorithmization

• Input: a finite basis B defining C = Av(B)

• Decide whether C contains finitely many simples:

Naive semi-decision procedure [Schmerl, Trotter 93]

Decision procedure [Brignall, Ruškuc, Vatter 08]

“Much more practical” algorithm [Bassino, B., Pierrot, Rossin 15]
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• Compute the set of simples in C:

In a naive way [Albert, Atkinson 05] using [Schmerl, Trotter 93]

Using the structure of the poset of simples [Pierrot, Rossin 2017+]
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Algorithmization

• Input: a finite basis B defining C = Av(B)

• Decide whether C contains finitely many simples:

Naive semi-decision procedure [Schmerl, Trotter 93]

Decision procedure [Brignall, Ruškuc, Vatter 08]

“Much more practical” algorithm [Bassino, B., Pierrot, Rossin 15]

• Compute the set of simples in C:

In a naive way [Albert, Atkinson 05] using [Schmerl, Trotter 93]

Using the structure of the poset of simples [Pierrot, Rossin 2017+]

• Compute an unambiguous tree grammar for C:

With query-complete sets (not effective) [Brignall, Huczynska, Vatter 08]

Algorithm propagating pattern avoidance and containment constraints
in the tree grammar [Bassino, B., Pierrot, Pivoteau, Rossin 2017+]

Mathilde Bouvel (I-Math, UZH) Permutation classes 21 / 25



Experimenting with the results of this algorithm

The algorithm produces a combinatorial specification for C.
From it, we automatically derive a Boltzmann sampler of permutations in
C [Flajolet, Fusy, Pivoteau 07].
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Experimenting with the results of this algorithm

The algorithm produces a combinatorial specification for C.
From it, we automatically derive a Boltzmann sampler of permutations in
C [Flajolet, Fusy, Pivoteau 07].

Example: C = Av(2413, 3142) the class of separable permutations:
Two separable permutations of size 204523 and 903073, drawn uniformly
at random among those of the same size:
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Experimenting with the results of this algorithm

The algorithm produces a combinatorial specification for C.
From it, we automatically derive a Boltzmann sampler of permutations in
C [Flajolet, Fusy, Pivoteau 07].

Example: C = Av(2413, 3142) the class of separable permutations:
Two separable permutations of size 204523 and 903073, drawn uniformly
at random among those of the same size:

Goal: Explain these diagrams, by describing the “limit shape” of random
separable permutations of size n→ +∞.
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Proportion of patterns in separable permutations

• Notation:

õcc(π, σ) = number of occurrences of π in σ

(nk)
for n = |σ| and k = |π|

σn = a uniform random separable permutation of size n

• Theorem [Bassino, B., Féray, Gerin, Pierrot 2017+]:
There exist random variables (Λπ), π ranging over all permutations,
such that for all π, 0 ≤ Λπ ≤ 1 and when n→ +∞,
õcc(π,σn) converges in distribution to Λπ.

Substitution decomposition is essential to the proof.
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Proportion of patterns in separable permutations

• Notation:

õcc(π, σ) = number of occurrences of π in σ

(nk)
for n = |σ| and k = |π|

σn = a uniform random separable permutation of size n

• Theorem [Bassino, B., Féray, Gerin, Pierrot 2017+]:
There exist random variables (Λπ), π ranging over all permutations,
such that for all π, 0 ≤ Λπ ≤ 1 and when n→ +∞,
õcc(π,σn) converges in distribution to Λπ.

Substitution decomposition is essential to the proof.

Moreover,

We describe a construction of Λπ.

This holds jointly for patterns π1, . . . , πr .

If π is separable of size at least 2, Λπ is non-deterministic.

Combinatorial formula for all moments of Λπ.
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What does this say about limit shapes of diagrams?

• Permutons and permuton convergence:

Permuton = measure on [0, 1]2 with uniform marginals
≈ diagram of a finite or infinite permutation.

The convergence of õcc(π, σ) for all π characterizes the convergence
of permutons [Hoppen, Kohayakawa, Moreira, Rath, Sampaio 13; brought

to a probabilistic setting].

Hence, denoting µσ the permuton associated with σ, there exists a
random permuton µ such that µσn

tends to µ in distribution (in
the weak convergence topology).
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What does this say about limit shapes of diagrams?

• Permutons and permuton convergence:

Permuton = measure on [0, 1]2 with uniform marginals
≈ diagram of a finite or infinite permutation.

The convergence of õcc(π, σ) for all π characterizes the convergence
of permutons [Hoppen, Kohayakawa, Moreira, Rath, Sampaio 13; brought

to a probabilistic setting].

Hence, denoting µσ the permuton associated with σ, there exists a
random permuton µ such that µσn

tends to µ in distribution (in
the weak convergence topology).

• Properties of µ:

µ is not deterministic [Bassino, B., Féray, Gerin, Pierrot 2017+].

Construction of µ directly in the continuum [Maazoun 2017+].

µ has Hausdorff dimension 1 [Maazoun 2017+].
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Extension to substitution-closed classes

A permutation class C is substitution-closed when:

π[α(1), α(2), . . . , α(k)] belongs to C as soon as π and all α(i) do;

equivalently, the decomposition trees of permutations in C are all
decomposition trees built using simple permutations in C.

Remark: The class of separable permutations is the smallest (non-trivial)
substitution-closed class (it contains no simples).
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Extension to substitution-closed classes

A permutation class C is substitution-closed when:

π[α(1), α(2), . . . , α(k)] belongs to C as soon as π and all α(i) do;

equivalently, the decomposition trees of permutations in C are all
decomposition trees built using simple permutations in C.

Remark: The class of separable permutations is the smallest (non-trivial)
substitution-closed class (it contains no simples).

Theorem [Bassino, B., Féray, Gerin, Maazoun, Pierrot 2017+]:
Let C be a substitution-closed class, whose set S of simple permutations
satisfies (mild?) enumeration conditions.
(e.g. S finite, or |Sn| uniformly bounded, or GF of S rational or of radius
of convergence >

√
2− 1, . . . are sufficient conditions)

There exists a random permuton µC (a one-parameter deformation of µ)
which is the limit of permutons of uniform random permutations in C.
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Extension to substitution-closed classes

A permutation class C is substitution-closed when:

π[α(1), α(2), . . . , α(k)] belongs to C as soon as π and all α(i) do;

equivalently, the decomposition trees of permutations in C are all
decomposition trees built using simple permutations in C.

Remark: The class of separable permutations is the smallest (non-trivial)
substitution-closed class (it contains no simples).

Theorem [Bassino, B., Féray, Gerin, Maazoun, Pierrot 2017+]:
Let C be a substitution-closed class, whose set S of simple permutations
satisfies (mild?) enumeration conditions.
(e.g. S finite, or |Sn| uniformly bounded, or GF of S rational or of radius
of convergence >

√
2− 1, . . . are sufficient conditions)

There exists a random permuton µC (a one-parameter deformation of µ)
which is the limit of permutons of uniform random permutations in C.

Thank you for listening!
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