Nonmixing sets of algebraic \mathbb{Z}^{d}-actions

Klaus Schmidt

Vienna

Ergodic Theory and its Connections with Arithmetic and Combinatorics
CIRM, December 12-16, 2016

Mixing

Let $T: \mathbf{n} \mapsto T^{\mathbf{n}}$ be a \mathbb{Z}^{d}-action by measure-preserving transformations of a probability space (X, \mathcal{S}, μ). The action T is mixing if

$$
\lim _{\mathbf{n} \rightarrow \infty} \mu\left(B_{1} \cap T^{-\mathbf{n}} B_{2}\right)=\mu\left(B_{1}\right) \mu\left(B_{2}\right)
$$

for all $B_{1}, B_{2} \in \mathcal{S}$. Mixing obviously implies ergodicity.

Mixing

Let $T: \mathbf{n} \mapsto T^{\mathbf{n}}$ be a \mathbb{Z}^{d}-action by measure-preserving transformations of a probability space (X, \mathcal{S}, μ). The action T is mixing if

$$
\lim _{\mathbf{n} \rightarrow \infty} \mu\left(B_{1} \cap T^{-\mathbf{n}} B_{2}\right)=\mu\left(B_{1}\right) \mu\left(B_{2}\right)
$$

for all $B_{1}, B_{2} \in \mathcal{S}$. Mixing obviously implies ergodicity.
More generally, the action T is r-mixing with $r \geq 2$ if, for all $B_{1}, \ldots, B_{r} \in \mathcal{S}$,
$\mu\left(\bigcap_{i=1}^{r} T^{-\mathbf{n}_{i}} B_{i}\right) \longrightarrow \prod_{i=1}^{r} \mu\left(B_{i}\right)$ as $\left|\mathbf{n}_{i}-\mathbf{n}_{j}\right| \rightarrow \infty$ for $1 \leq i<j \leq r$.

Mixing

Let $T: \mathbf{n} \mapsto T^{\mathbf{n}}$ be a \mathbb{Z}^{d}-action by measure-preserving transformations of a probability space (X, \mathcal{S}, μ). The action T is mixing if

$$
\lim _{\mathbf{n} \rightarrow \infty} \mu\left(B_{1} \cap T^{-\mathbf{n}} B_{2}\right)=\mu\left(B_{1}\right) \mu\left(B_{2}\right)
$$

for all $B_{1}, B_{2} \in \mathcal{S}$. Mixing obviously implies ergodicity.
More generally, the action T is r-mixing with $r \geq 2$ if, for all $B_{1}, \ldots, B_{r} \in \mathcal{S}$,
$\mu\left(\bigcap_{i=1}^{r} T^{-\mathbf{n}_{i}} B_{i}\right) \longrightarrow \prod_{i=1}^{r} \mu\left(B_{i}\right)$ as $\left|\mathbf{n}_{i}-\mathbf{n}_{j}\right| \rightarrow \infty$ for $1 \leq i<j \leq r$.
Astrology is based on a breakdown of r-mixing for some appropriate $r \geq 3$.

Examples

- The irrational rotation R_{α} on $\left(\mathbb{T}=\mathbb{R} / \mathbb{Z}, \mathcal{B}_{\mathbb{T}}, \lambda_{\mathbb{T}}\right)$ is ergodic, but not mixing.

Examples

- The irrational rotation R_{α} on $\left(\mathbb{T}=\mathbb{R} / \mathbb{Z}, \mathcal{B}_{\mathbb{T}}, \lambda_{\mathbb{T}}\right)$ is ergodic, but not mixing.
- The matrix $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ acts as a linear automorphism T_{A} of the 2-torus $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$. It preserves the Lebesgue measure $\lambda_{\mathbb{T}^{2}}$ and is mixing; in fact, T_{A} is mixing of every order.

Examples

- The irrational rotation R_{α} on $\left(\mathbb{T}=\mathbb{R} / \mathbb{Z}, \mathcal{B}_{\mathbb{T}}, \lambda_{\mathbb{T}}\right)$ is ergodic, but not mixing.
- The matrix $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ acts as a linear automorphism T_{A} of the 2-torus $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$. It preserves the Lebesgue measure $\lambda_{\mathbb{T}^{2}}$ and is mixing; in fact, T_{A} is mixing of every order.

For $d=1$ it is not known if mixing implies 3 -mixing. One of the key difficulties in attacking this problem is that mixing is a spectral problem, but higher order mixing is not.

Examples

- The irrational rotation R_{α} on $\left(\mathbb{T}=\mathbb{R} / \mathbb{Z}, \mathcal{B}_{\mathbb{T}}, \lambda_{\mathbb{T}}\right)$ is ergodic, but not mixing.
- The matrix $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ acts as a linear automorphism T_{A} of the 2-torus $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$. It preserves the Lebesgue measure $\lambda_{\mathbb{T}^{2}}$ and is mixing; in fact, T_{A} is mixing of every order.

For $d=1$ it is not known if mixing implies 3 -mixing. One of the key difficulties in attacking this problem is that mixing is a spectral problem, but higher order mixing is not.

In 1978, Ledrappier gave a simple example of a mixing \mathbb{Z}^{2}-action which fails to be r-mixing for every $r \geq 3$.

Ledrappier's Example

Let σ be the shift-action $\left(\sigma^{\mathbf{m}} x\right)_{\mathbf{n}}=x_{\mathbf{m}+\mathbf{n}}$ of \mathbb{Z}^{2} on $(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}^{2}}$, and let $X_{L} \subset(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}^{2}}$ be the closed, shift-invariant subset (in fact, subgroup)

$$
X_{L}=\left\{x \in(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}^{2}}: x+\sigma^{(1,0)} x+\sigma^{(0,1)} x=0\right\}
$$

Ledrappier's Example

Let σ be the shift-action $\left(\sigma^{\mathbf{m}} x\right)_{\mathbf{n}}=x_{\mathbf{m}+\mathbf{n}}$ of \mathbb{Z}^{2} on $(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}^{2}}$, and let $X_{L} \subset(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}^{2}}$ be the closed, shift-invariant subset (in fact, subgroup)

$$
X_{L}=\left\{x \in(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}^{2}}: x+\sigma^{(1,0)} x+\sigma^{(0,1)} x=0\right\}
$$

For every $x \in X_{L},\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}$ and $k \geq 0$,

$$
x_{\left(n_{1}, n_{2}\right)}+x_{\left(n_{1}+2^{k}, n_{2}\right)}+x_{\left(n_{1}, n_{2}+2^{k}\right)}=0 .
$$

Ledrappier's Example

Let σ be the shift-action $\left(\sigma^{\mathbf{m}} x\right)_{\mathbf{n}}=x_{\mathbf{m}+\mathbf{n}}$ of \mathbb{Z}^{2} on $(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}^{2}}$, and let $X_{L} \subset(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}^{2}}$ be the closed, shift-invariant subset (in fact, subgroup)

$$
X_{L}=\left\{x \in(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}^{2}}: x+\sigma^{(1,0)} x+\sigma^{(0,1)} x=0\right\}
$$

For every $x \in X_{L},\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}$ and $k \geq 0$,

$$
x_{\left(n_{1}, n_{2}\right)}+x_{\left(n_{1}+2^{k}, n_{2}\right)}+x_{\left(n_{1}, n_{2}+2^{k}\right)}=0 .
$$

If $B=\left\{x \in X_{L}: x_{0}=0\right\}$, then

$$
B \cap \sigma^{\left(-2^{k}, 0\right)}(B) \cap \sigma^{\left(0,-2^{k}\right)}(B)=B \cap \sigma^{\left(-2^{k}, 0\right)}(B) .
$$

Ledrappier's Example

Let σ be the shift-action $\left(\sigma^{\mathbf{m}} x\right)_{\mathbf{n}}=x_{\mathbf{m}+\mathbf{n}}$ of \mathbb{Z}^{2} on $(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}^{2}}$, and let $X_{L} \subset(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}^{2}}$ be the closed, shift-invariant subset (in fact, subgroup)

$$
X_{L}=\left\{x \in(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}^{2}}: x+\sigma^{(1,0)} x+\sigma^{(0,1)} x=0\right\}
$$

For every $x \in X_{L},\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}$ and $k \geq 0$,

$$
x_{\left(n_{1}, n_{2}\right)}+x_{\left(n_{1}+2^{k}, n_{2}\right)}+x_{\left(n_{1}, n_{2}+2^{k}\right)}=0 .
$$

If $B=\left\{x \in X_{L}: x_{\mathbf{0}}=0\right\}$, then

$$
B \cap \sigma^{\left(-2^{k}, 0\right)}(B) \cap \sigma^{\left(0,-2^{k}\right)}(B)=B \cap \sigma^{\left(-2^{k}, 0\right)}(B) .
$$

One can easily show that this action is mixing - so it cannot be 3-mixing!

Ledrappier's Example

Let σ be the shift-action $\left(\sigma^{\mathbf{m}} x\right)_{\mathbf{n}}=x_{\mathbf{m}+\mathbf{n}}$ of \mathbb{Z}^{2} on $(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}^{2}}$, and let $X_{L} \subset(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}^{2}}$ be the closed, shift-invariant subset (in fact, subgroup)

$$
X_{L}=\left\{x \in(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}^{2}}: x+\sigma^{(1,0)} x+\sigma^{(0,1)} x=0\right\}
$$

For every $x \in X_{L},\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}$ and $k \geq 0$,

$$
x_{\left(n_{1}, n_{2}\right)}+x_{\left(n_{1}+2^{k}, n_{2}\right)}+x_{\left(n_{1}, n_{2}+2^{k}\right)}=0 .
$$

If $B=\left\{x \in X_{L}: x_{0}=0\right\}$, then

$$
B \cap \sigma^{\left(-2^{k}, 0\right)}(B) \cap \sigma^{\left(0,-2^{k}\right)}(B)=B \cap \sigma^{\left(-2^{k}, 0\right)}(B) .
$$

One can easily show that this action is mixing - so it cannot be 3-mixing! In fact, there exists a nonmixing set of size 3 in \mathbb{Z}^{2} : if $F=\{(0,0),(1,0)$, $(0,1)\}$, then there exist sets $B_{\mathbf{n}}(=B) \in \mathcal{S}=\mathcal{B}_{X_{L}}, \mathbf{n} \in F$, such that $\lambda_{X}\left(\bigcap_{\mathbf{n} \in F} \sigma^{-2^{k} \mathbf{n}}\left(B_{\mathbf{n}}\right)\right) \longrightarrow \lambda_{X}(B)^{2} \neq \lambda_{X}(B)^{3}=\prod_{\mathbf{n} \in F} \lambda_{X}\left(B_{\mathbf{n}}\right)$ as $k \rightarrow \infty$.

Ledrappier's Example

Let σ be the shift-action $\left(\sigma^{\mathbf{m}} x\right)_{\mathbf{n}}=x_{\mathbf{m}+\mathbf{n}}$ of \mathbb{Z}^{2} on $(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}^{2}}$, and let $X_{L} \subset(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}^{2}}$ be the closed, shift-invariant subset (in fact, subgroup)

$$
X_{L}=\left\{x \in(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}^{2}}: x+\sigma^{(1,0)} x+\sigma^{(0,1)} x=0\right\}
$$

For every $x \in X_{L},\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}$ and $k \geq 0$,

$$
x_{\left(n_{1}, n_{2}\right)}+x_{\left(n_{1}+2^{k}, n_{2}\right)}+x_{\left(n_{1}, n_{2}+2^{k}\right)}=0 .
$$

If $B=\left\{x \in X_{L}: x_{\mathbf{0}}=0\right\}$, then

$$
B \cap \sigma^{\left(-2^{k}, 0\right)}(B) \cap \sigma^{\left(0,-2^{k}\right)}(B)=B \cap \sigma^{\left(-2^{k}, 0\right)}(B) .
$$

One can easily show that this action is mixing - so it cannot be 3-mixing! In fact, there exists a nonmixing set of size 3 in \mathbb{Z}^{2} : if $F=\{(0,0),(1,0)$, $(0,1)\}$, then there exist sets $B_{\mathbf{n}}(=B) \in \mathcal{S}=\mathcal{B}_{X_{L}}, \mathbf{n} \in F$, such that $\lambda_{X}\left(\bigcap_{\mathbf{n} \in F} \sigma^{-2^{k} \mathbf{n}}\left(B_{\mathbf{n}}\right)\right) \longrightarrow \lambda_{X}(B)^{2} \neq \lambda_{X}(B)^{3}=\prod_{\mathbf{n} \in F} \lambda_{X}\left(B_{\mathbf{n}}\right)$ as $k \rightarrow \infty$. If a \mathbb{Z}^{d}-action T has a nonmixing set of size r then it is obviously not r-mixing. What about the converse?

Higher order mixing for algebraic \mathbb{Z}^{d}-actions

Somewhat surprisingly, the converse is true for 'algebraic' \mathbb{Z}^{d}-actions, i.e., for \mathbb{Z}^{d}-actions by automorphisms of compact abelian groups.

Higher order mixing for algebraic \mathbb{Z}^{d}-actions

Somewhat surprisingly, the converse is true for 'algebraic' \mathbb{Z}^{d}-actions, i.e., for \mathbb{Z}^{d}-actions by automorphisms of compact abelian groups.
Let $d \geq 2$, and let α be a \mathbb{Z}^{d}-action by automorphisms of a compact abelian group X.

Higher order mixing for algebraic \mathbb{Z}^{d}-actions

Somewhat surprisingly, the converse is true for 'algebraic' \mathbb{Z}^{d}-actions, i.e., for \mathbb{Z}^{d}-actions by automorphisms of compact abelian groups.
Let $d \geq 2$, and let α be a \mathbb{Z}^{d}-action by automorphisms of a compact abelian group X.

- α is mixing if and only if $\alpha^{\mathbf{n}}$ is ergodic for every nonzero $\mathbf{n} \in \mathbb{Z}^{d}$.

Higher order mixing for algebraic \mathbb{Z}^{d}-actions

Somewhat surprisingly, the converse is true for 'algebraic' \mathbb{Z}^{d}-actions, i.e., for \mathbb{Z}^{d}-actions by automorphisms of compact abelian groups.
Let $d \geq 2$, and let α be a \mathbb{Z}^{d}-action by automorphisms of a compact abelian group X.

- α is mixing if and only if $\alpha^{\mathbf{n}}$ is ergodic for every nonzero $\mathbf{n} \in \mathbb{Z}^{d}$.
- If X is connected and α is mixing, then it is mixing of every order (S-Ward, 1993).

Higher order mixing for algebraic \mathbb{Z}^{d}-actions

Somewhat surprisingly, the converse is true for 'algebraic' \mathbb{Z}^{d}-actions, i.e., for \mathbb{Z}^{d}-actions by automorphisms of compact abelian groups.
Let $d \geq 2$, and let α be a \mathbb{Z}^{d}-action by automorphisms of a compact abelian group X.

- α is mixing if and only if $\alpha^{\mathbf{n}}$ is ergodic for every nonzero $\mathbf{n} \in \mathbb{Z}^{d}$.
- If X is connected and α is mixing, then it is mixing of every order (S-Ward, 1993).
- If X not connected, α is mixing of every order if and only if it has completely positive entropy or, equivalently, the Bernoulli property (Lind-S-Ward, 1990, S-Ward, 1993, and Rudolph-S, 1995).

Higher order mixing for algebraic \mathbb{Z}^{d}-actions

Somewhat surprisingly, the converse is true for 'algebraic' \mathbb{Z}^{d}-actions, i.e., for \mathbb{Z}^{d}-actions by automorphisms of compact abelian groups.
Let $d \geq 2$, and let α be a \mathbb{Z}^{d}-action by automorphisms of a compact abelian group X.

- α is mixing if and only if $\alpha^{\mathbf{n}}$ is ergodic for every nonzero $\mathbf{n} \in \mathbb{Z}^{d}$.
- If X is connected and α is mixing, then it is mixing of every order (S-Ward, 1993).
- If X not connected, α is mixing of every order if and only if it has completely positive entropy or, equivalently, the Bernoulli property (Lind-S-Ward, 1990, S-Ward, 1993, and Rudolph-S, 1995).
- If α is r-mixing, but not $(r+1)$-mixing for some $r \geq 2$, then there exists a nonmixing set $F \subset \mathbb{Z}^{d}$ of size $r+1$ (Masser, 2004).

Higher order mixing for algebraic \mathbb{Z}^{d}-actions

Somewhat surprisingly, the converse is true for 'algebraic' \mathbb{Z}^{d}-actions, i.e., for \mathbb{Z}^{d}-actions by automorphisms of compact abelian groups.
Let $d \geq 2$, and let α be a \mathbb{Z}^{d}-action by automorphisms of a compact abelian group X.

- α is mixing if and only if $\alpha^{\mathbf{n}}$ is ergodic for every nonzero $\mathbf{n} \in \mathbb{Z}^{d}$.
- If X is connected and α is mixing, then it is mixing of every order (S-Ward, 1993).
- If X not connected, α is mixing of every order if and only if it has completely positive entropy or, equivalently, the Bernoulli property (Lind-S-Ward, 1990, S-Ward, 1993, and Rudolph-S, 1995).
- If α is r-mixing, but not $(r+1)$-mixing for some $r \geq 2$, then there exists a nonmixing set $F \subset \mathbb{Z}^{d}$ of size $r+1$ (Masser, 2004).
- If α is expansive, then both the order of mixing and the collection of minimal nonmixing sets can be determined effectively
(Derksen-Masser, 2012-2016).

Back to Ledrappier's Example

Let $d \geq 2$, and let $R_{d}^{(p)}=\mathbb{F}_{p}\left[u_{1}^{ \pm 1}, \ldots, u_{d}^{ \pm 1}\right]$ be the ring of Laurent polynomials in d variables with coefficients in the prime field $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}=\{0, \ldots, p-1\}$. Then $R_{d}^{(p)} \cong \widehat{\sum_{\mathbb{Z}^{d}} \mathbb{F}_{p}}$: for $f=\sum_{\mathbf{n} \in \mathbb{Z}^{d}} f_{\mathbf{n}} u^{\mathbf{n}} \in R_{d}^{(p)}$ and $x=\left(x_{\mathbf{n}}\right) \in \mathbb{F}_{p}^{\mathbb{Z}^{d}}$,

$$
\langle f, x\rangle=e^{2 \pi i\left(\sum_{\mathbf{n} \in \mathbb{Z}^{d}} f_{\mathbf{n}} x_{\mathrm{n}}\right) / p} .
$$

Back to Ledrappier's Example

Let $d \geq 2$, and let $R_{d}^{(p)}=\mathbb{F}_{p}\left[u_{1}^{ \pm 1}, \ldots, u_{d}^{ \pm 1}\right]$ be the ring of Laurent polynomials in d variables with coefficients in the prime field $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}=\{0, \ldots, p-1\}$. Then $R_{d}^{(p)} \cong \widehat{\sum_{\mathbb{Z}^{d}} \mathbb{F}_{p}}$: for $f=\sum_{\mathbf{n} \in \mathbb{Z}^{d}} f_{\mathbf{n}} u^{\mathbf{n}} \in R_{d}^{(p)}$ and $x=\left(x_{\mathbf{n}}\right) \in \mathbb{F}_{p}^{\mathbb{Z}^{d}}$,

$$
\langle f, x\rangle=e^{2 \pi i\left(\sum_{\mathbf{n} \in \mathbb{Z}^{d}} f_{\mathbf{n}} x_{\mathrm{n}}\right) / p} .
$$

The shifts $\sigma^{\mathbf{n}}, \mathbf{n} \in \mathbb{Z}^{d}$, are automorphisms of the compact abelian group $\mathbb{F}_{p}^{\mathbb{Z}^{d}}$ dual to multiplication by $u^{\mathbf{n}}=u_{1}^{n_{1}} \cdots u_{d}^{n_{d}}$ on $R_{d}^{(p)}$.

Back to Ledrappier's Example

Let $d \geq 2$, and let $R_{d}^{(p)}=\mathbb{F}_{p}\left[u_{1}^{ \pm 1}, \ldots, u_{d}^{ \pm 1}\right]$ be the ring of Laurent polynomials in d variables with coefficients in the prime field $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}=\{0, \ldots, p-1\}$. Then $R_{d}^{(p)} \cong \widehat{\sum_{\mathbb{Z}^{d}} \mathbb{F}_{p}}$: for $f=\sum_{\mathbf{n} \in \mathbb{Z}^{d}} f_{\mathbf{n}} u^{\mathbf{n}} \in R_{d}^{(p)}$ and $x=\left(x_{\mathbf{n}}\right) \in \mathbb{F}_{p}^{\mathbb{Z}^{d}}$,

$$
\langle f, x\rangle=e^{2 \pi i\left(\sum_{\mathbf{n} \in \mathbb{Z}^{d}} f_{\mathbf{n}} x_{\mathrm{n}}\right) / p} .
$$

The shifts $\sigma^{\mathbf{n}}, \mathbf{n} \in \mathbb{Z}^{d}$, are automorphisms of the compact abelian group $\mathbb{F}_{p}^{\mathbb{Z}^{d}}$ dual to multiplication by $u^{\mathbf{n}}=u_{1}^{n_{1}} \cdots u_{d}^{n_{d}}$ on $R_{d}^{(p)}$.

Recall that Ledrappier's example is defined by
$X_{L}=\left\{x=\left(x_{\mathbf{n}}\right) \in \mathbb{F}_{2}^{\mathbb{Z}^{2}}: x_{\left(n_{1}, n_{2}\right)}+x_{\left(n_{1}+1, n_{2}\right)}+x_{\left(n_{1}, n_{2}+1\right)}=0\right.$ for all $\left.n_{1}, n_{2}\right\}$.

Back to Ledrappier's Example

Let $d \geq 2$, and let $R_{d}^{(p)}=\mathbb{F}_{p}\left[u_{1}^{ \pm 1}, \ldots, u_{d}^{ \pm 1}\right]$ be the ring of Laurent polynomials in d variables with coefficients in the prime field $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}=\{0, \ldots, p-1\}$. Then $R_{d}^{(p)} \cong \widehat{\sum_{\mathbb{Z}^{d}} \mathbb{F}_{p}}$: for $f=\sum_{\mathbf{n} \in \mathbb{Z}^{d}} f_{\mathbf{n}} u^{\mathbf{n}} \in R_{d}^{(p)}$ and $x=\left(x_{\mathbf{n}}\right) \in \mathbb{F}_{p}^{\mathbb{Z}^{d}}$,

$$
\langle f, x\rangle=e^{2 \pi i\left(\sum_{\mathbf{n} \in \mathbb{Z}^{d}} f_{\mathbf{n}} x_{\mathrm{n}}\right) / p} .
$$

The shifts $\sigma^{\mathbf{n}}, \mathbf{n} \in \mathbb{Z}^{d}$, are automorphisms of the compact abelian group $\mathbb{F}_{p}^{\mathbb{Z}^{d}}$ dual to multiplication by $u^{\mathbf{n}}=u_{1}^{n_{1}} \cdots u_{d}^{n_{d}}$ on $R_{d}^{(p)}$.

Recall that Ledrappier's example is defined by

$$
X_{L}=\left\{x=\left(x_{\mathbf{n}}\right) \in \mathbb{F}_{2}^{\mathbb{Z}^{2}}: x_{\left(n_{1}, n_{2}\right)}+x_{\left(n_{1}+1, n_{2}\right)}+x_{\left(n_{1}, n_{2}+1\right)}=0 \text { for all } n_{1}, n_{2}\right\} .
$$

The annihilator X_{L}^{\perp} of the closed, shift-invariant subgroup $X_{L} \subset \mathbb{F}_{2}^{\mathbb{Z}^{2}}$ is the subgroup of $R_{2}^{(2)}$ consisting of all $f=\sum_{\mathbf{n} \in \mathbb{Z}^{2}} f_{\mathbf{n}} u^{\mathbf{n}} \in R_{2}^{(2)}$ with

$$
\langle f, x\rangle=1 \Longleftrightarrow \sum_{\mathbf{n} \in \mathbb{Z}^{2}} f_{\mathbf{n}} x_{\mathbf{n}}=0 \text { for every } x=\left(x_{\mathbf{n}}\right) \in X_{L} .
$$

The dual of Ledrappier's Example

Since X_{L} is shift-invariant, X_{L}^{\perp} is invariant under multiplication by $u^{\mathbf{n}}, \mathbf{n} \in \mathbb{Z}^{2}$, hence an ideal, and $g=1+u_{1}+u_{2} \in X_{L}^{\perp}$ by definition of X_{L}. It follows that X_{L}^{\perp} is the principal ideal $\mathfrak{p}=(g)=g \cdot R_{2}^{(2)} \subset R_{2}^{(2)}$, and that

$$
\widehat{X_{L}}=\widehat{R_{2}^{(2)}} / X_{L}^{\perp}=R_{2}^{(2)} / \mathfrak{p}
$$

The dual of Ledrappier's Example

Since X_{L} is shift-invariant, X_{L}^{\perp} is invariant under multiplication by $u^{\mathbf{n}}, \mathbf{n} \in \mathbb{Z}^{2}$, hence an ideal, and $g=1+u_{1}+u_{2} \in X_{L}^{\perp}$ by definition of X_{L}. It follows that X_{L}^{\perp} is the principal ideal $\mathfrak{p}=(g)=g \cdot R_{2}^{(2)} \subset R_{2}^{(2)}$, and that

$$
\widehat{X_{L}}=\widehat{R_{2}^{(2)}} / X_{L}^{\perp}=R_{2}^{(2)} / \mathfrak{p} .
$$

For every $I \geq 1, g^{2^{\prime}}=1+u_{1}^{2^{\prime}}+u_{2}^{2^{\prime}} \in \mathfrak{p}=X_{L}^{\perp}$.
If $\mathfrak{k}=\operatorname{Frac}\left(R_{2}^{(2)} / \mathfrak{p}\right) \supset R_{2}^{(2)} / \mathfrak{p}$ is the field of fractions of the domain $R_{2}^{(2)} / \mathfrak{p}$, then $g=g^{2^{\prime}}=0$ in \mathbb{k} for every $I \geq 1$, so that we get an infinite sequence of equations in \mathbb{k} of the form

$$
\sum_{\mathbf{n} \in F} h^{k_{i} \mathbf{n}} \cdot a_{\mathbf{n}}=0, \quad i \geq 1,
$$

where $F=\{(0,0),(1,0),(0,1)\}$ and $a_{(0,0)}=a_{(1,0)}=a_{(0,1)}=1$.

The dual of Ledrappier's Example

Since X_{L} is shift-invariant, X_{L}^{\perp} is invariant under multiplication by $u^{\mathbf{n}}, \mathbf{n} \in \mathbb{Z}^{2}$, hence an ideal, and $g=1+u_{1}+u_{2} \in X_{L}^{\perp}$ by definition of X_{L}. It follows that X_{L}^{\perp} is the principal ideal $\mathfrak{p}=(g)=g \cdot R_{2}^{(2)} \subset R_{2}^{(2)}$, and that

$$
\widehat{X_{L}}=\widehat{R_{2}^{(2)}} / X_{L}^{\perp}=R_{2}^{(2)} / \mathfrak{p}
$$

If $\mathbb{k}=\operatorname{Frac}\left(R_{2}^{(2)} / \mathfrak{p}\right) \supset R_{2}^{(2)} / \mathfrak{p}$ is the field of fractions of the domain $R_{2}^{(2)} / \mathfrak{p}$, then $g=g^{2^{\prime}}=0$ in \mathbb{k} for every $I \geq 1$, so that we get an infinite sequence of equations in \mathbb{k} of the form

$$
\sum_{\mathbf{n} \in F} u^{k_{i} \mathbf{n}} \cdot a_{\mathbf{n}}=0, \quad i \geq 1
$$

where $F=\{(0,0),(1,0),(0,1)\}$ and $a_{(0,0)}=a_{(1,0)}=a_{(0,1)}=1$.
Every $f=\sum_{\mathbf{n} \in \mathbb{Z}^{2}} f_{\mathbf{n}} u^{\mathbf{n}} \in \mathfrak{p}$ leads to a similar sequence of equations in \mathbb{k}, where $F^{\prime}=\operatorname{supp}(f)=\left\{\mathbf{n} \in \mathbb{Z}^{2}: f_{\mathbf{n}} \neq 0\right\}$. Hence the support of every $f \in \mathfrak{p}$ is a nonmixing set for Ledrappier's example.

Additive relations in dual modules

Ledrappier's example illustrates a general fact: if α is a \mathbb{Z}^{d}-action by automorphisms of a compact abelian group X, then the dual group $M=\widehat{X}$ is a module over the ring $R_{d}=\mathbb{Z}\left[u_{1}^{ \pm 1}, \ldots, u_{d}^{ \pm 1}\right]$ with module operation

$$
h \cdot a=\sum_{\mathbf{n} \in \mathbb{Z}^{d}} h_{\mathbf{n}} \hat{\alpha}^{\mathbf{n}}(a)
$$

for every $a \in \hat{X}$ and $h=\sum_{\mathbf{n} \in \mathbb{Z}^{d}} h_{\mathbf{n}} u^{\mathbf{n}} \in R_{d}$, where $u^{\mathbf{n}}=u_{1}^{n_{1}} \cdots u_{d}^{n_{d}}$ for all $\mathbf{n}=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}$.

Additive relations in dual modules

Ledrappier's example illustrates a general fact: if α is a \mathbb{Z}^{d}-action by automorphisms of a compact abelian group X, then the dual group $M=\widehat{X}$ is a module over the ring $R_{d}=\mathbb{Z}\left[u_{1}^{ \pm 1}, \ldots, u_{d}^{ \pm 1}\right]$ with module operation

$$
h \cdot a=\sum_{\mathbf{n} \in \mathbb{Z}^{d}} h_{\mathbf{n}} \hat{\alpha}^{\mathbf{n}}(a)
$$

for every $a \in \hat{X}$ and $h=\sum_{\mathbf{n} \in \mathbb{Z}^{d}} h_{\mathbf{n}} u^{\mathbf{n}} \in R_{d}$, where $u^{\mathbf{n}}=u_{1}^{n_{1}} \cdots u_{d}^{n_{d}}$ for all $\mathbf{n}=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}$.
For obvious reasons $M=\widehat{X}$ is called the dual module of the \mathbb{Z}^{d}-action α; conversely, every module M over R_{d} defines a dual \mathbb{Z}^{d}-action $\alpha=\alpha_{M}$ by automorphisms of a compact abelian group $X=\widehat{M}$.

Additive relations in dual modules

Ledrappier's example illustrates a general fact: if α is a \mathbb{Z}^{d}-action by automorphisms of a compact abelian group X, then the dual group $M=\widehat{X}$ is a module over the ring $R_{d}=\mathbb{Z}\left[u_{1}^{ \pm 1}, \ldots, u_{d}^{ \pm 1}\right]$ with module operation

$$
h \cdot a=\sum_{\mathbf{n} \in \mathbb{Z}^{d}} h_{\mathbf{n}} \hat{\alpha}^{\mathbf{n}}(a)
$$

for every $a \in \hat{X}$ and $h=\sum_{\mathbf{n} \in \mathbb{Z}^{d}} h_{\mathbf{n}} u^{\mathbf{n}} \in R_{d}$, where $u^{\mathbf{n}}=u_{1}^{n_{1}} \cdots u_{d}^{n_{d}}$ for all $\mathbf{n}=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}$.
For obvious reasons $M=\widehat{X}$ is called the dual module of the \mathbb{Z}^{d}-action α; conversely, every module M over R_{d} defines a dual \mathbb{Z}^{d}-action $\alpha=\alpha_{M}$ by automorphisms of a compact abelian group $X=\widehat{M}$.
By using Fourier expansion one sees that α_{M} is not r-mixing if and only if there exist elements a_{1}, \ldots, a_{r} in M, not all equal to zero, with

$$
\begin{equation*}
u^{\mathbf{n}_{k}^{(1)}} \cdot a_{1}+\cdots+u^{\mathbf{n}_{k}^{(r)}} \cdot a_{r}=0 \tag{1}
\end{equation*}
$$

for some sequence $\left(\left(\mathbf{n}_{k}^{(1)}, \ldots, \mathbf{n}_{k}^{(r)}\right), k \geq 1\right)$ in $\left(\mathbb{Z}^{d}\right)^{r}$ with $\mathbf{n}_{k}^{(i)}-\mathbf{n}_{k}^{(j)} \rightarrow \infty$ for $i \neq j$.

Additive relations in fields

In exactly the same way one sees that α_{M} has a nonmixing set $F \subset \mathbb{Z}^{d}$ if and only if if there exist elements $a_{\mathbf{n}}, \mathbf{n} \in F$, in M, not all equal to zero, with

$$
\begin{equation*}
\sum_{\mathbf{n} \in F} u^{k n} \cdot a_{\mathbf{n}}=0 \text { for infinitely many } k \geq 1 . \tag{2}
\end{equation*}
$$

Additive relations in fields

In exactly the same way one sees that α_{M} has a nonmixing set $F \subset \mathbb{Z}^{d}$ if and only if if there exist elements $a_{\mathbf{n}}, \mathbf{n} \in F$, in M, not all equal to zero, with

$$
\begin{equation*}
\sum_{\mathbf{n} \in F} u^{k n} \cdot a_{\mathbf{n}}=0 \text { for infinitely many } k \geq 1 . \tag{2}
\end{equation*}
$$

By using prime filtrations we can replace the module M in (1) or (2) by the module $N=R_{d} / \mathfrak{p}$ for some prime ideal $\mathfrak{p} \subset R_{d}$ associated with M and consider such equations in the field of fractions $\operatorname{Frak}\left(R_{d} / \mathfrak{p}\right)$ of R_{d} / \mathfrak{p}.

Additive relations in fields

In exactly the same way one sees that α_{M} has a nonmixing set $F \subset \mathbb{Z}^{d}$ if and only if if there exist elements $a_{\mathbf{n}}, \mathbf{n} \in F$, in M, not all equal to zero, with

$$
\begin{equation*}
\sum_{\mathbf{n} \in F} u^{k n} \cdot a_{\mathbf{n}}=0 \text { for infinitely many } k \geq 1 \tag{2}
\end{equation*}
$$

By using prime filtrations we can replace the module M in (1) or (2) by the module $N=R_{d} / \mathfrak{p}$ for some prime ideal $\mathfrak{p} \subset R_{d}$ associated with M and consider such equations in the field of fractions $\operatorname{Frak}\left(R_{d} / \mathfrak{p}\right)$ of R_{d} / \mathfrak{p}.
If the group X carrying the action α is connected, the characteristic of Frak $\left(R_{d} / \mathfrak{p}\right)$ will be zero for every associated prime ideal \mathfrak{p} of M. If not, $\operatorname{char}\left(\operatorname{Frak}\left(R_{d} / \mathfrak{p}\right)\right)$ will be positive for some associated prime \mathfrak{p} of M.

Additive relations in fields

In exactly the same way one sees that α_{M} has a nonmixing set $F \subset \mathbb{Z}^{d}$ if and only if if there exist elements $a_{\mathbf{n}}, \mathbf{n} \in F$, in M, not all equal to zero, with

$$
\begin{equation*}
\sum_{\mathbf{n} \in F} u^{k n} \cdot a_{\mathbf{n}}=0 \text { for infinitely many } k \geq 1 . \tag{2}
\end{equation*}
$$

By using prime filtrations we can replace the module M in (1) or (2) by the module $N=R_{d} / \mathfrak{p}$ for some prime ideal $\mathfrak{p} \subset R_{d}$ associated with M and consider such equations in the field of fractions $\operatorname{Frak}\left(R_{d} / \mathfrak{p}\right)$ of R_{d} / \mathfrak{p}.
If the group X carrying the action α is connected, the characteristic of Frak $\left(R_{d} / \mathfrak{p}\right)$ will be zero for every associated prime ideal \mathfrak{p} of M. If not, $\operatorname{char}\left(\operatorname{Frak}\left(R_{d} / \mathfrak{p}\right)\right)$ will be positive for some associated prime \mathfrak{p} of M.
In the latter case there exist a rational prime $p \geq 2$ and a prime ideal $\mathfrak{q} \subset R_{d}^{(p)}$ such that $N=R_{d} / \mathfrak{p} \cong R_{d}^{(p)} / \mathfrak{q}$.

Additive relations in fields

In exactly the same way one sees that α_{M} has a nonmixing set $F \subset \mathbb{Z}^{d}$ if and only if if there exist elements $a_{\mathbf{n}}, \mathbf{n} \in F$, in M, not all equal to zero, with

$$
\begin{equation*}
\sum_{\mathbf{n} \in F} u^{k n} \cdot a_{\mathbf{n}}=0 \text { for infinitely many } k \geq 1 . \tag{2}
\end{equation*}
$$

By using prime filtrations we can replace the module M in (1) or (2) by the module $N=R_{d} / \mathfrak{p}$ for some prime ideal $\mathfrak{p} \subset R_{d}$ associated with M and consider such equations in the field of fractions $\operatorname{Frak}\left(R_{d} / \mathfrak{p}\right)$ of R_{d} / \mathfrak{p}.
If the group X carrying the action α is connected, the characteristic of Frak $\left(R_{d} / \mathfrak{p}\right)$ will be zero for every associated prime ideal \mathfrak{p} of M. If not, char $\left(\operatorname{Frak}\left(R_{d} / \mathfrak{p}\right)\right)$ will be positive for some associated prime \mathfrak{p} of M.
In the latter case there exist a rational prime $p \geq 2$ and a prime ideal $\mathfrak{q} \subset R_{d}^{(p)}$ such that $N=R_{d} / \mathfrak{p} \cong R_{d}^{(p)} / \mathfrak{q}$.
For simplicity we will call actions of the form $\alpha_{R_{d}^{(p)} / q}$ actions of Ledrappier type.

A theorem by Mahler and its consequences

Theorem (Mahler, 1935). Let \mathbb{k} be a field of characteristic $0, r \geq 2$, and let c_{1}, \ldots, c_{r} be nonzero elements of \mathbb{k}. If we can find nonzero elements x_{1}, \ldots, x_{r} in \mathbb{k} such that the equation

$$
\sum_{i=1}^{r} c_{i} x_{i}^{k}=0
$$

holds for infinitely many $k \geq 0$, then there exist integers $s \geq 1$ and i, j with $1 \leq i<j \leq r$ such that $x_{i}^{s}=x_{j}^{s}$.

A theorem by Mahler and its consequences

Theorem (Mahler, 1935). Let \mathbb{k} be a field of characteristic $0, r \geq 2$, and let c_{1}, \ldots, c_{r} be nonzero elements of \mathbb{k}. If we can find nonzero elements x_{1}, \ldots, x_{r} in \mathbb{k} such that the equation

$$
\sum_{i=1}^{r} c_{i} x_{i}^{k}=0
$$

holds for infinitely many $k \geq 0$, then there exist integers $s \geq 1$ and i, j with $1 \leq i<j \leq r$ such that $x_{i}^{s}=x_{j}^{s}$.

Corollary (S, 1989). Let α be a mixing algebraic \mathbb{Z}^{d}-action on a compact connected abelian group X. Then every nonempty finite subset $S \subset \mathbb{Z}^{d}$ is mixing.

An S-unit theorem and its consequences

Theorem (Schlickewei, 1990; van der Poorten-Schlickewei, 1991; Evertse-Schlickewei-Schmidt, 2002). Let \mathbb{k} be a field of characteristic 0 and G a finitely generated multiplicative subgroup of $\mathbb{k}^{\times}=\mathbb{k} \backslash\{0\}$. If $r \geq 2$ and $\left(c_{1}, \ldots, c_{r}\right) \in\left(\mathbb{k}^{\times}\right)^{r}$, then the equation

$$
\begin{equation*}
\sum_{i=1}^{r} c_{i} x_{i}=1 \tag{3}
\end{equation*}
$$

has only finitely many solutions $\left(x_{1}, \ldots, x_{r}\right) \in G^{r}$ such that no sub-sum of this equation vanishes.

An S-unit theorem and its consequences

Theorem (Schlickewei, 1990; van der Poorten-Schlickewei, 1991;
Evertse-Schlickewei-Schmidt, 2002). Let \mathbb{k} be a field of characteristic 0 and G a finitely generated multiplicative subgroup of $\mathbb{k}^{\times}=\mathbb{k} \backslash\{0\}$. If $r \geq 2$ and $\left(c_{1}, \ldots, c_{r}\right) \in\left(\mathbb{k}^{\times}\right)^{r}$, then the equation

$$
\begin{equation*}
\sum_{i=1}^{r} c_{i} x_{i}=1 \tag{3}
\end{equation*}
$$

has only finitely many solutions $\left(x_{1}, \ldots, x_{r}\right) \in G^{r}$ such that no sub-sum of this equation vanishes.

Corollary (S-Ward, 1993). Let α be a mixing algebraic \mathbb{Z}^{d}-action on a compact connected abelian group X. Then α is mixing of every order.

Nonmixing sets in positive characteristic

Mahler's theorem has the following analogue in positive characteristic.
Theorem (Masser, 1985; Kitchens-S, 1993). Let \mathbb{k} be a field of characteristic $p \geq 2, r \geq 2$, and let $\left(x_{1}, \ldots, x_{r}\right) \in\left(\mathbb{k}^{\times}\right)^{r}$. The following conditions are equivalent:

Nonmixing sets in positive characteristic

Mahler's theorem has the following analogue in positive characteristic.
Theorem (Masser, 1985; Kitchens-S, 1993). Let \mathbb{k} be a field of characteristic $p \geq 2, r \geq 2$, and let $\left(x_{1}, \ldots, x_{r}\right) \in\left(\mathbb{k}^{\times}\right)^{r}$. The following conditions are equivalent:

- There exists a nonzero element $\left(c_{1}, \ldots, c_{r}\right) \in \mathbb{k}^{r}$ such that

$$
\sum_{i=1}^{r} c_{i} x_{i}^{k}=0
$$

for infinitely many $k \geq 0$;

Nonmixing sets in positive characteristic

Mahler's theorem has the following analogue in positive characteristic.
Theorem (Masser, 1985; Kitchens-S, 1993). Let \mathbb{k} be a field of characteristic $p \geq 2, r \geq 2$, and let $\left(x_{1}, \ldots, x_{r}\right) \in\left(\mathbb{k}^{\times}\right)^{r}$. The following conditions are equivalent:

- There exists a nonzero element $\left(c_{1}, \ldots, c_{r}\right) \in \mathbb{k}^{r}$ such that

$$
\sum_{i=1}^{r} c_{i} x_{i}^{k}=0
$$

for infinitely many $k \geq 0$;

- There exists a rational number $s>0$ such that the subset $\left\{x_{1}^{s}, \ldots, x_{r}^{s}\right\}$ of the algebraic closure $\overline{\mathbb{k}}$ of \mathbb{k} is linearly dependent over the algebraic closure $\overline{\mathbb{F}}_{p} \subset \overline{\mathbb{K}}$ of \mathbb{F}_{p}.

Nonmixing sets in positive characteristic

Mahler's theorem has the following analogue in positive characteristic.
Theorem (Masser, 1985; Kitchens-S, 1993). Let \mathbb{k} be a field of characteristic $p \geq 2, r \geq 2$, and let $\left(x_{1}, \ldots, x_{r}\right) \in\left(\mathbb{k}^{\times}\right)^{r}$. The following conditions are equivalent:

- There exists a nonzero element $\left(c_{1}, \ldots, c_{r}\right) \in \mathbb{k}^{r}$ such that

$$
\sum_{i=1}^{r} c_{i} x_{i}^{k}=0
$$

for infinitely many $k \geq 0$;

- There exists a rational number $s>0$ such that the subset $\left\{x_{1}^{s}, \ldots, x_{r}^{s}\right\}$ of the algebraic closure $\overline{\mathbb{k}}$ of \mathbb{k} is linearly dependent over the algebraic closure $\overline{\mathbb{F}}_{p} \subset \overline{\mathbb{K}}$ of \mathbb{F}_{p}.
The following example illustrates the consequences of this result for Ledrappier-like systems.

An example

Let $g=\sum_{\mathbf{n} \in \mathbb{Z}^{d}} g_{\mathbf{n}} u^{\mathbf{n}} \in R_{2}^{(2)}$. Then the R_{2}-module $M=R_{2}^{(2)} /(g)$ is dual to the closed, shift-invariant subgroup

$$
X_{M}=\left\{\left(x_{\mathbf{n}}\right)_{\mathbf{n} \in \mathbb{Z}^{2}}: \sum_{\mathbf{n} \in \mathbb{Z}^{d}} g_{\mathbf{n}} x_{\mathbf{m}+\mathbf{n}}=0 \text { for every } \mathbf{m} \in \mathbb{Z}^{2}\right\} \subset \mathbb{F}_{2}^{\mathbb{Z}^{2}}
$$

An example

Let $g=\sum_{\mathbf{n} \in \mathbb{Z}^{d}} g_{\mathbf{n}} u^{\mathbf{n}} \in R_{2}^{(2)}$. Then the R_{2}-module $M=R_{2}^{(2)} /(g)$ is dual to the closed, shift-invariant subgroup

$$
X_{M}=\left\{\left(x_{\mathbf{n}}\right)_{\mathbf{n} \in \mathbb{Z}^{2}}: \sum_{\mathbf{n} \in \mathbb{Z}^{d}} g_{\mathbf{n}} x_{\mathbf{m}+\mathbf{n}}=0 \text { for every } \mathbf{m} \in \mathbb{Z}^{2}\right\} \subset \mathbb{F}_{2}^{\mathbb{Z}^{2}} .
$$

Clearly, $F=\operatorname{supp}(g)$ is a nonmixing set, so that α_{M} is not mixing of order $|F|$. However, Masser's result may yield smaller nonmixing sets - and hence a lower order of mixing: if

$$
g=1+u_{1}^{3}+u_{1}^{4}+u_{1}^{3} u_{2}+u_{2}^{4},
$$

then

$$
F=\operatorname{supp}(g)=\begin{aligned}
& \therefore \circ \\
& \therefore \circ \\
& \therefore \circ
\end{aligned}
$$

is nonmixing, but so is $F^{\prime}=:$.

An example

Let $g=\sum_{\mathbf{n} \in \mathbb{Z}^{d}} g_{\mathbf{n}} u^{\mathbf{n}} \in R_{2}^{(2)}$. Then the R_{2}-module $M=R_{2}^{(2)} /(g)$ is dual to the closed, shift-invariant subgroup

$$
X_{M}=\left\{\left(x_{\mathbf{n}}\right)_{\mathbf{n} \in \mathbb{Z}^{2}}: \sum_{\mathbf{n} \in \mathbb{Z}^{d}} g_{\mathbf{n}} x_{\mathbf{m}+\boldsymbol{n}}=0 \text { for every } \mathbf{m} \in \mathbb{Z}^{2}\right\} \subset \mathbb{F}_{2}^{\mathbb{Z}^{2}} .
$$

Clearly, $F=\operatorname{supp}(g)$ is a nonmixing set, so that α_{M} is not mixing of order $|F|$. However, Masser's result may yield smaller nonmixing sets - and hence a lower order of mixing: if

$$
g=1+u_{1}^{3}+u_{1}^{4}+u_{1}^{3} u_{2}+u_{2}^{4}
$$

then

$$
F=\operatorname{supp}(g)=\begin{aligned}
& \bullet \circ \\
& \left.\begin{array}{l}
\circ \\
\circ \\
\circ \\
\circ \\
\circ \\
0 \\
\circ
\end{array}\right) \\
& \bullet \circ
\end{aligned}
$$

is nonmixing, but so is $F^{\prime}=:$. .
In fact, there are 54 irreducible polynomials g of degree 4 in $R_{2}^{(2)}$ for which $F^{\prime}=\boldsymbol{\bullet}$. is a minimal nonmixing set $(S, 1995)$.

The order of mixing

If a Ledrappier-like system has a nonmixing set of size r, then it can obviously not be r-mixing. The reverse implication was explored in examples (e.g., Einsiedler-Ward, 2003), but the complete solution of this problem was again due to David Masser.
Theorem (Masser, 2004): Let α be an algebraic \mathbb{Z}^{d}-action on a compact abelian group X. If every subset $S \subset \mathbb{Z}^{d}$ of cardinality $r \geq 2$ is mixing, then α is r-mixing.

The order of mixing

If a Ledrappier-like system has a nonmixing set of size r, then it can obviously not be r-mixing. The reverse implication was explored in examples (e.g., Einsiedler-Ward, 2003), but the complete solution of this problem was again due to David Masser.
Theorem (Masser, 2004): Let α be an algebraic \mathbb{Z}^{d}-action on a compact abelian group X. If every subset $S \subset \mathbb{Z}^{d}$ of cardinality $r \geq 2$ is mixing, then α is r-mixing.
The proof of this result requires an analogue for positive characteristic of the S-unit theorem mentioned earlier. In positive characteristic, the condition of 'nonvanishing sub-sums' in the S-unit theorem guaranteeing finiteness of the set of solutions $\left(x_{1}, \ldots, x_{r}\right)$ of an equation of the form

$$
c_{1} x_{1}+\cdots+c_{r} x_{1}=1
$$

is clearly insufficient: the equation

$$
x_{1}+x_{2}=1, \quad x_{i} \in \mathbb{F}_{p}(t),
$$

has the solution $x_{1}=t, x_{2}=1-t$ but also, by Frobenius, $x_{1}=t^{p^{n}}$, $x_{2}=(1-t)^{p^{n}}$ for every $n \geq 1$.

A diophantine reformulation of Masser's Theorem

Definition: Let \mathbb{k} be a field of positive characteristic, $G \subset \mathbb{k}^{\times}$a finitely generated group, and $r \geq 2$. An infinite subset $\Sigma \subset G^{r}$ is broad if, for each $g \in G$ and $1 \leq i<j \leq r$, there are only finitely many $\left(x_{1}, \ldots, x_{r}\right) \in \Sigma$ with $x_{i} / x_{j}=g$.

A diophantine reformulation of Masser's Theorem

Definition: Let \mathbb{k} be a field of positive characteristic, $G \subset \mathbb{k}^{\times}$a finitely generated group, and $r \geq 2$. An infinite subset $\Sigma \subset G^{r}$ is broad if, for each $g \in G$ and $1 \leq i<j \leq r$, there are only finitely many $\left(x_{1}, \ldots, x_{r}\right) \in \Sigma$ with $x_{i} / x_{j}=g$.
As mentioned earlier, it suffices to prove Masser's Theorem for Ledrappier-like systems. Assume therefore that $\alpha=\alpha_{R_{d} / \mathfrak{p}}$ is Ledrappier-like and let $\mathfrak{k}=\operatorname{Frak}\left(R_{d} / \mathfrak{p}\right)$. Then Masser's Theorem becomes equivalent to the following statement.

A diophantine reformulation of Masser's Theorem

Definition: Let \mathbb{k} be a field of positive characteristic, $G \subset \mathbb{k}^{\times}$a finitely generated group, and $r \geq 2$. An infinite subset $\Sigma \subset G^{r}$ is broad if, for each $g \in G$ and $1 \leq i<j \leq r$, there are only finitely many $\left(x_{1}, \ldots, x_{r}\right) \in \Sigma$ with $x_{i} / x_{j}=g$.

As mentioned earlier, it suffices to prove Masser's Theorem for Ledrappier-like systems. Assume therefore that $\alpha=\alpha_{R_{d} / \mathfrak{p}}$ is Ledrappier-like and let $\mathbb{k}=\operatorname{Frak}\left(R_{d} / \mathfrak{p}\right)$. Then Masser's Theorem becomes equivalent to the following statement.

Theorem (Masser, 2004): Suppose that there exist c_{1}, \ldots, c_{r} in \mathbb{k} such that the equation $c_{1} x_{1}+\cdots+c_{r} x_{r}=1$ has a broad set of solutions $\left(x_{1}, \ldots, x_{r}\right)$ in G^{r}. Then there are a_{1}, \ldots, a_{r} in \mathbb{k} and g_{1}, \ldots, g_{r} in G with the following properties.

- $g_{i} / g_{j} \neq 1$ for $1 \leq i<j \leq r$,
- $a_{1} g_{1}^{k}+\cdots+a_{r} g_{r}^{k}=1$ for infinitely many $k \geq 1$.

Minimal nonmixing sets

Masser's Theorem implies that the order of mixing of an algebraic \mathbb{Z}^{d}-action α is completely determined by its smallest nonmixing sets (where 'smallest' refers to cardinality).

Minimal nonmixing sets

Masser's Theorem implies that the order of mixing of an algebraic \mathbb{Z}^{d}-action α is completely determined by its smallest nonmixing sets (where 'smallest' refers to cardinality).

Two nonmixing sets $S, S^{\prime} \subset \mathbb{Z}^{d}$ for an algebraic \mathbb{Z}^{d}-action α will be called equivalent if $q S^{\prime}=S-\mathbf{n}$ for some positive rational q and some $\mathbf{n} \in \mathbb{Z}^{d}$. The resulting equivalence class of each nonmixing set contains a unique 'smallest' representative $S^{\prime} \subset \mathbb{Z}_{+}^{d}$.

Minimal nonmixing sets

Masser's Theorem implies that the order of mixing of an algebraic \mathbb{Z}^{d}-action α is completely determined by its smallest nonmixing sets (where 'smallest' refers to cardinality).

Two nonmixing sets $S, S^{\prime} \subset \mathbb{Z}^{d}$ for an algebraic \mathbb{Z}^{d}-action α will be called equivalent if $q S^{\prime}=S-\mathbf{n}$ for some positive rational q and some $\mathbf{n} \in \mathbb{Z}^{d}$. The resulting equivalence class of each nonmixing set contains a unique 'smallest' representative $S^{\prime} \subset \mathbb{Z}_{+}^{d}$.

Theorem (Derksen-Masser, 2016): Let $\alpha=\alpha_{R_{d} / \mathfrak{p}}$ be a mixing Ledrappier-type \mathbb{Z}^{d}-action. Then

$$
r(\alpha)=\min \left\{|S|: S \subset \mathbb{Z}^{d} \text { is } \alpha \text {-nonmixing }\right\}
$$

can be effectively determined, and there exist only finitely many distinct equivalence classes of nonmixing sets of size r which can again be determined effectively.

Example (Derksen-Masser, 2016)

Let $\mathfrak{p}=(2, f)$ with $f=1+u_{1}+u_{1}^{3}+u_{1}^{5}+u_{1}^{6}+u_{2} \in R_{2}$. Then $g=f(\bmod 2)$ is irreducible in $R_{2}^{(2)}$, and $S=\operatorname{supp}(g)$ is nonmixing of size 6. However, g is divisible by $h=1+u_{1}+u_{1}^{2}+u_{2}^{1 / 3}$ in $\mathbb{F}_{2}\left[u_{1}, u_{2}^{1 / 3}\right]$. By thinking of g as an element of $\mathbb{F}_{2}\left[u_{1}^{1 / 3}, u_{2}^{1 / 3}\right]$ and scaling things up we see that $S^{\prime}=\{(0,0),(3,0),(6,0),(0,1)\}$ is nonmixing of size $4(S, 1995)$. However, there are 4 other equivalence classes of nonmixing sets of size 4:

$$
\begin{array}{cl}
\{(0,0),(9,0),(6,1),(0,2)\}, & \{(0,0),(9,0),(0,1),(3,1)\} \\
\{(3,0),(12,0),(0,1),(0,2)\}, & \{(0,0),(18,0),(3,2),(0,3)\}
\end{array}
$$

Since there are no nonmixing sets of size $3, \alpha_{R_{2} / \mathfrak{p}}$ is 3 -mixing.

Example (Derksen-Masser, 2016)

Let $\mathfrak{p}=\left(2,1+u_{1}+u_{1}^{2}+u_{2}, 1+u_{1}+u_{1}^{3}+u_{3}\right) \subset R_{2}$. Clearly, $\alpha=\alpha_{R_{3} / \mathfrak{p}}$ is not 4-mixing, since there are nonmixing sets of size 4, but this time there are exactly 134 distinct classes of minimal nonmixing sets of size 4 . Two of them come from the generators of the ideal \mathfrak{p} :

$$
\begin{aligned}
& \{(0,0,0),(1,0,0),(2,0,0),(0,1,0)\} \\
& \{(0,0,0),(1,0,0),(3,0,0),(0,0,1)\}
\end{aligned}
$$

Example (Derksen-Masser, 2016)

Let $\mathfrak{p}=\left(2,1+u_{1}+u_{1}^{2}+u_{2}, 1+u_{1}+u_{1}^{3}+u_{3}\right) \subset R_{2}$. Clearly, $\alpha=\alpha_{R_{3} / \mathfrak{p}}$ is not 4 -mixing, since there are nonmixing sets of size 4 , but this time there are exactly 134 distinct classes of minimal nonmixing sets of size 4 . Two of them come from the generators of the ideal \mathfrak{p} :

$$
\begin{aligned}
& \{(0,0,0),(1,0,0),(2,0,0),(0,1,0)\} \\
& \{(0,0,0),(1,0,0),(3,0,0),(0,0,1)\}
\end{aligned}
$$

Here are two more:

$$
\begin{aligned}
& \{(2,0,0),(3,0,0),(0,1,0),(0,0,1)\} \\
& \{(1,0,0),(0,1,0),(0,0,1),(1,1,0)\}
\end{aligned}
$$

Example (Derksen-Masser, 2016)

Let $\mathfrak{p}=\left(2,1+u_{1}+u_{1}^{2}+u_{2}, 1+u_{1}+u_{1}^{3}+u_{3}\right) \subset R_{2}$. Clearly, $\alpha=\alpha_{R_{3} / \mathfrak{p}}$ is not 4-mixing, since there are nonmixing sets of size 4, but this time there are exactly 134 distinct classes of minimal nonmixing sets of size 4 . Two of them come from the generators of the ideal \mathfrak{p} :

$$
\begin{aligned}
& \{(0,0,0),(1,0,0),(2,0,0),(0,1,0)\} \\
& \{(0,0,0),(1,0,0),(3,0,0),(0,0,1)\}
\end{aligned}
$$

Here are two more:

$$
\begin{aligned}
& \{(2,0,0),(3,0,0),(0,1,0),(0,0,1)\} \\
& \{(1,0,0),(0,1,0),(0,0,1),(1,1,0)\}
\end{aligned}
$$

Finally, two quite complicated ones:

$$
\begin{aligned}
& \{(21,0,3),(20,1,0),(0,12,0),(0,0,4)\} \\
& \{(25,0,0),(20,1,1),(0,12,0),(0,0,4)\}
\end{aligned}
$$

I'll spare you the other 128.

Example (Derksen-Masser, 2016)

Let $\mathfrak{p}=\left(2,1+u_{1}+u_{1}^{2}+u_{2}, 1+u_{1}+u_{1}^{3}+u_{3}\right) \subset R_{2}$. Clearly, $\alpha=\alpha_{R_{3} / \mathfrak{p}}$ is not 4-mixing, since there are nonmixing sets of size 4, but this time there are exactly 134 distinct classes of minimal nonmixing sets of size 4 . Two of them come from the generators of the ideal \mathfrak{p} :

$$
\begin{aligned}
& \{(0,0,0),(1,0,0),(2,0,0),(0,1,0)\} \\
& \{(0,0,0),(1,0,0),(3,0,0),(0,0,1)\}
\end{aligned}
$$

Here are two more:

$$
\begin{aligned}
& \{(2,0,0),(3,0,0),(0,1,0),(0,0,1)\} \\
& \{(1,0,0),(0,1,0),(0,0,1),(1,1,0)\}
\end{aligned}
$$

Finally, two quite complicated ones:

$$
\begin{aligned}
& \{(21,0,3),(20,1,0),(0,12,0),(0,0,4)\} \\
& \{(25,0,0),(20,1,1),(0,12,0),(0,0,4)\}
\end{aligned}
$$

I'll spare you the other 128 .
This example is again 3-mixing.

