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Mixing

Let T : n 7→ T n be a Zd -action by measure-preserving transformations of a
probability space (X , S, µ). The action T is mixing if

lim
n→∞

µ(B1 ∩ T−nB2) = µ(B1)µ(B2)

for all B1,B2 ∈ S. Mixing obviously implies ergodicity.

More generally, the action T is r -mixing with r ≥ 2 if, for all
B1, . . . ,Br ∈ S,

µ
(⋂r

i=1
T−ni Bi

)
−→

∏r
i=1

µ(Bi ) as |ni − nj | → ∞ for 1 ≤ i < j ≤ r .

Astrology is based on a breakdown of r -mixing for some appropriate r ≥ 3.
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Examples

The irrational rotation Rα on (T = R/Z,BT, λT) is ergodic, but not
mixing.

The matrix A = ( 1 1
1 0 ) acts as a linear automorphism TA of the

2-torus T2 = R2/Z2. It preserves the Lebesgue measure λT2 and is
mixing; in fact, TA is mixing of every order.

For d = 1 it is not known if mixing implies 3-mixing. One of the key
difficulties in attacking this problem is that mixing is a spectral problem,
but higher order mixing is not.

In 1978, Ledrappier gave a simple example of a mixing Z2-action which
fails to be r -mixing for every r ≥ 3.
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Ledrappier’s Example
Let σ be the shift-action (σmx)n = xm+n of Z2 on (Z/2Z)Z2 , and let
XL ⊂ (Z/2Z)Z2 be the closed, shift-invariant subset (in fact, subgroup)

XL = {x ∈ (Z/2Z)Z2 : x + σ(1,0)x + σ(0,1)x = 0}.

For every x ∈ XL, (n1, n2) ∈ Z2 and k ≥ 0,
x(n1,n2) + x(n1+2k ,n2) + x(n1,n2+2k) = 0.

If B = {x ∈ XL : x0 = 0}, then

B ∩ σ(−2k ,0)(B) ∩ σ(0,−2k)(B) = B ∩ σ(−2k ,0)(B).

One can easily show that this action is mixing — so it cannot be 3-mixing!
In fact, there exists a nonmixing set of size 3 in Z2: if F = {(0, 0), (1, 0),
(0, 1)}, then there exist sets Bn (= B) ∈ S = BXL , n ∈ F , such that

λX
(⋂

n∈F
σ−2kn(Bn)

)
−→ λX (B)2 6= λX (B)3 =

∏
n∈F

λX (Bn) as k →∞.

If a Zd -action T has a nonmixing set of size r then it is obviously not
r -mixing. What about the converse?
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Higher order mixing for algebraic Zd -actions
Somewhat surprisingly, the converse is true for ‘algebraic’ Zd -actions, i.e.,
for Zd -actions by automorphisms of compact abelian groups.

Let d ≥ 2, and let α be a Zd -action by automorphisms of a compact
abelian group X .

α is mixing if and only if αn is ergodic for every nonzero n ∈ Zd .
If X is connected and α is mixing, then it is mixing of every order
(S-Ward, 1993).
If X not connected, α is mixing of every order if and only if it has
completely positive entropy or, equivalently, the Bernoulli property
(Lind-S-Ward, 1990, S-Ward, 1993, and Rudolph-S, 1995).
If α is r -mixing, but not (r+1)-mixing for some r ≥ 2, then there
exists a nonmixing set F ⊂ Zd of size r + 1 (Masser, 2004).
If α is expansive, then both the order of mixing and the collection of
minimal nonmixing sets can be determined effectively
(Derksen-Masser, 2012-2016).
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Back to Ledrappier’s Example
Let d ≥ 2, and let R(p)

d = Fp[u±1
1 , . . . , u±1

d ] be the ring of Laurent
polynomials in d variables with coefficients in the prime field
Fp = Z/pZ = {0, . . . , p − 1}. Then R(p)

d
∼=
∑̂

Zd Fp:
for f =

∑
n∈Zd fnun ∈ R(p)

d and x = (xn) ∈ FZd
p ,

〈f , x〉 = e2πi
(∑

n∈Zd fnxn
)/

p.

The shifts σn, n ∈ Zd , are automorphisms of the compact abelian group
FZd

p dual to multiplication by un = un1
1 · · · u

nd
d on R(p)

d .

Recall that Ledrappier’s example is defined by
XL =

{
x = (xn) ∈ FZ2

2 : x(n1,n2) + x(n1+1,n2) + x(n1,n2+1) = 0 for all n1, n2
}
.

The annihilator X⊥L of the closed, shift-invariant subgroup XL ⊂ FZ2
2 is the

subgroup of R(2)
2 consisting of all f =

∑
n∈Z2 fnun ∈ R(2)

2 with

〈f , x〉 = 1 ⇐⇒
∑

n∈Z2 fnxn = 0 for every x = (xn) ∈ XL.
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The dual of Ledrappier’s Example
Since XL is shift-invariant, X⊥L is invariant under multiplication by
un, n ∈ Z2, hence an ideal, and g = 1 + u1 + u2 ∈ X⊥L by definition of XL.
It follows that X⊥L is the principal ideal p = (g) = g ·R(2)

2 ⊂ R(2)
2 , and that

X̂L = R̂(2)
2 /X⊥L = R(2)

2 /p.

For every l ≥ 1, g2l = 1 + u2l
1 + u2l

2 ∈ p = X⊥L .

If k = Frac(R(2)
2 /p) ⊃ R(2)

2 /p is the field of fractions of the domain
R(2)

2 /p, then g = g2l = 0 in k for every l ≥ 1, so that we get an infinite
sequence of equations in k of the form∑

n∈F
ukin · an = 0, i ≥ 1,

where F = {(0, 0), (1, 0), (0, 1)} and a(0,0) = a(1,0) = a(0,1) = 1.
Every f =

∑
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Additive relations in dual modules
Ledrappier’s example illustrates a general fact: if α is a Zd -action by
automorphisms of a compact abelian group X , then the dual group M = X̂
is a module over the ring Rd = Z[u±1

1 , . . . , u±1
d ] with module operation

h · a =
∑

n∈Zd hnα̂n(a)

for every a ∈ X̂ and h =
∑

n∈Zd hnun ∈ Rd , where un = un1
1 · · · u

nd
d for all

n = (n1, . . . , nd ) ∈ Zd .

For obvious reasons M = X̂ is called the dual module of the Zd -action α;
conversely, every module M over Rd defines a dual Zd -action α = αM by
automorphisms of a compact abelian group X = M̂.
By using Fourier expansion one sees that αM is not r -mixing if and only if
there exist elements a1, . . . , ar in M, not all equal to zero, with

un
(1)
k · a1 + · · ·+ un

(r)
k · ar = 0 (1)

for some sequence ((n(1)
k , . . . ,n(r)

k ), k ≥ 1) in (Zd )r with n(i)
k − n(j)

k →∞
for i 6= j .
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Additive relations in fields

In exactly the same way one sees that αM has a nonmixing set F ⊂ Zd if
and only if if there exist elements an, n ∈ F , in M, not all equal to zero,
with ∑

n∈F
ukn · an = 0 for infinitely many k ≥ 1. (2)

By using prime filtrations we can replace the module M in (1) or (2) by
the module N = Rd/p for some prime ideal p ⊂ Rd associated with M and
consider such equations in the field of fractions Frak(Rd/p) of Rd/p.
If the group X carrying the action α is connected, the characteristic of
Frak(Rd/p) will be zero for every associated prime ideal p of M. If not,
char(Frak(Rd/p)) will be positive for some associated prime p of M.
In the latter case there exist a rational prime p ≥ 2 and a prime ideal
q ⊂ R(p)

d such that N = Rd/p ∼= R(p)
d /q.

For simplicity we will call actions of the form αR(p)
d /q

actions of Ledrappier
type.
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A theorem by Mahler and its consequences

Theorem (Mahler, 1935). Let k be a field of characteristic 0, r ≥ 2, and
let c1, . . . , cr be nonzero elements of k. If we can find nonzero elements
x1, . . . , xr in k such that the equation∑r

i=1
cixk

i = 0

holds for infinitely many k ≥ 0, then there exist integers s ≥ 1 and i , j
with 1 ≤ i < j ≤ r such that x s

i = x s
j .

Corollary (S, 1989). Let α be a mixing algebraic Zd -action on a compact
connected abelian group X . Then every nonempty finite subset S ⊂ Zd is
mixing.
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An S-unit theorem and its consequences

Theorem (Schlickewei, 1990; van der Poorten-Schlickewei, 1991;
Evertse-Schlickewei-Schmidt, 2002). Let k be a field of characteristic 0
and G a finitely generated multiplicative subgroup of k× = k r {0}. If
r ≥ 2 and (c1, . . . , cr ) ∈ (k×)r , then the equation∑r

i=1
cixi = 1 (3)

has only finitely many solutions (x1, . . . , xr ) ∈ G r such that no sub-sum of
this equation vanishes.

Corollary (S-Ward, 1993). Let α be a mixing algebraic Zd -action on a
compact connected abelian group X . Then α is mixing of every order.
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Nonmixing sets in positive characteristic

Mahler’s theorem has the following analogue in positive characteristic.

Theorem (Masser, 1985; Kitchens-S, 1993). Let k be a field of
characteristic p ≥ 2, r ≥ 2, and let (x1, . . . , xr ) ∈ (k×)r . The following
conditions are equivalent:

There exists a nonzero element (c1, . . . , cr ) ∈ kr such that∑r
i=1

cixk
i = 0

for infinitely many k ≥ 0;
There exists a rational number s > 0 such that the subset
{x s

1 , . . . , x s
r } of the algebraic closure k of k is linearly dependent over

the algebraic closure Fp ⊂ k of Fp.

The following example illustrates the consequences of this result for
Ledrappier-like systems.
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An example

Let g =
∑

n∈Zd gnun ∈ R(2)
2 . Then the R2-module M = R(2)

2 /(g) is dual to
the closed, shift-invariant subgroup

XM =
{

(xn)n∈Z2 :
∑

n∈Zd gnxm+n = 0 for every m ∈ Z2
}
⊂ FZ2

2 .

Clearly, F = supp(g) is a nonmixing set, so that αM is not mixing of order
|F |. However, Masser’s result may yield smaller nonmixing sets – and
hence a lower order of mixing: if

g = 1 + u3
1 + u4

1 + u3
1u2 + u4

2 ,

then
F = supp(g) =

•
◦ ◦
◦ ◦ ◦
◦ ◦ ◦ •
• ◦ ◦ • •

is nonmixing, but so is F ′ = •
• • .

In fact, there are 54 irreducible polynomials g of degree 4 in R(2)
2 for which

F ′ = •
• • is a minimal nonmixing set (S, 1995).
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The order of mixing
If a Ledrappier-like system has a nonmixing set of size r , then it can
obviously not be r -mixing. The reverse implication was explored in
examples (e.g., Einsiedler-Ward, 2003), but the complete solution of this
problem was again due to David Masser.
Theorem (Masser, 2004): Let α be an algebraic Zd -action on a compact
abelian group X . If every subset S ⊂ Zd of cardinality r ≥ 2 is mixing,
then α is r -mixing.

The proof of this result requires an analogue for positive characteristic of
the S-unit theorem mentioned earlier. In positive characteristic, the
condition of ‘nonvanishing sub-sums’ in the S-unit theorem guaranteeing
finiteness of the set of solutions (x1, . . . , xr ) of an equation of the form

c1x1 + · · ·+ cr x1 = 1
is clearly insufficient: the equation

x1 + x2 = 1, xi ∈ Fp(t),
has the solution x1 = t, x2 = 1− t but also, by Frobenius, x1 = tpn ,
x2 = (1− t)pn for every n ≥ 1.
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A diophantine reformulation of Masser’s Theorem

Definition: Let k be a field of positive characteristic, G ⊂ k× a finitely
generated group, and r ≥ 2. An infinite subset Σ ⊂ G r is broad if, for each
g ∈ G and 1 ≤ i < j ≤ r , there are only finitely many (x1, . . . , xr ) ∈ Σ
with xi/xj = g .

As mentioned earlier, it suffices to prove Masser’s Theorem for
Ledrappier-like systems. Assume therefore that α = αRd/p is
Ledrappier-like and let k = Frak(Rd/p). Then Masser’s Theorem becomes
equivalent to the following statement.

Theorem (Masser, 2004): Suppose that there exist c1, . . . , cr in k such
that the equation c1x1 + · · ·+ cr xr = 1 has a broad set of solutions
(x1, . . . , xr ) in G r . Then there are a1, . . . , ar in k and g1, . . . , gr in G with
the following properties.

gi/gj 6= 1 for 1 ≤ i < j ≤ r ,
a1gk

1 + · · ·+ ar gk
r = 1 for infinitely many k ≥ 1.
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Minimal nonmixing sets

Masser’s Theorem implies that the order of mixing of an algebraic
Zd -action α is completely determined by its smallest nonmixing sets
(where ‘smallest’ refers to cardinality).

Two nonmixing sets S,S ′ ⊂ Zd for an algebraic Zd -action α will be called
equivalent if qS ′ = S − n for some positive rational q and some n ∈ Zd .
The resulting equivalence class of each nonmixing set contains a unique
‘smallest’ representative S ′ ⊂ Zd

+.

Theorem (Derksen-Masser, 2016): Let α = αRd/p be a mixing
Ledrappier-type Zd -action. Then

r(α) = min{|S| : S ⊂ Zd is α-nonmixing}
can be effectively determined, and there exist only finitely many distinct
equivalence classes of nonmixing sets of size r which can again be
determined effectively.
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Example (Derksen-Masser, 2016)

Let p = (2, f ) with f = 1 + u1 + u3
1 + u5

1 + u6
1 + u2 ∈ R2. Then

g = f (mod 2) is irreducible in R(2)
2 , and S = supp(g) is nonmixing of size

6. However, g is divisible by h = 1 + u1 + u2
1 + u1/3

2 in F2[u1, u1/3
2 ]. By

thinking of g as an element of F2[u1/3
1 , u1/3

2 ] and scaling things up we see
that S ′ = {(0, 0), (3, 0), (6, 0), (0, 1)} is nonmixing of size 4 (S, 1995).
However, there are 4 other equivalence classes of nonmixing sets of size 4:

{(0, 0), (9, 0), (6, 1), (0, 2)}, {(0, 0), (9, 0), (0, 1), (3, 1)},
{(3, 0), (12, 0), (0, 1), (0, 2)}, {(0, 0), (18, 0), (3, 2), (0, 3)}.

Since there are no nonmixing sets of size 3, αR2/p is 3-mixing.
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Example (Derksen-Masser, 2016)
Let p = (2, 1 + u1 + u2

1 + u2, 1 + u1 + u3
1 + u3) ⊂ R2. Clearly, α = αR3/p is

not 4-mixing, since there are nonmixing sets of size 4, but this time there
are exactly 134 distinct classes of minimal nonmixing sets of size 4. Two of
them come from the generators of the ideal p:

{(0, 0, 0), (1, 0, 0), (2, 0, 0), (0, 1, 0)},
{(0, 0, 0), (1, 0, 0), (3, 0, 0), (0, 0, 1)}

Here are two more:
{(2, 0, 0), (3, 0, 0), (0, 1, 0), (0, 0, 1)},
{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0)}.

Finally, two quite complicated ones:
{(21, 0, 3), (20, 1, 0), (0, 12, 0), (0, 0, 4)},
{(25, 0, 0), (20, 1, 1), (0, 12, 0), (0, 0, 4)}.

I’ll spare you the other 128.
This example is again 3-mixing.
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