Integral points on markoff TYPE CUBIC SURFACES AND DYNAMICS

Peter Sarnak

LUMINY, DEC 2016

JOINT WORK WITH
A. GHOST
and
J. BOURGAIN | A. GAMBURD.
$D \in \mathbb{Z}\left[x_{1}, \ldots, X_{n}\right]$ OF DEGREE n. [SO THAT FOR $|X| \leq T$ GENERIC NUMBERS IN $\mathbb{Z}\left(S I Z E T^{n}\right)$ ARE ASSUMED $O(1)$ TIMES
$V_{k}: D(x)=k$, AFFINE HYPERSURFACE

- INTERESTED IN $V_{k}(\mathbb{Z})$
$V_{k}(\mathbb{Z}) \neq \phi \quad$ LASE PRINCIPLE
$V_{R}(Z)$ INFINITE OR EVEN ZARISKI DENSE
$V_{R}(Z)$ SATISFIES STRONG APPROXIMATION.
$n=2$: BINARY QUADRATIC FORMS:
- over Q : well behaved in terms OF LOCAL TO GLOBAL PRINCIPLES.
- over \mathbb{Z} : GAUSS' Theory CLASS ~ NUMBERS INTERVENE!
$n>2:$
- IF V_{k} is HOMOGENEOUS FOR AN AFFINE LINEAR GROUP ACTION ONE CAN SAY QUITE A LOT.
EXAMPLES:
(1) TORUS: $D(x)=\prod_{j=1}^{n} L_{j}(x)$
$L_{j}(x)$ LINEAR FORMS, IE. D IS A NORM FORM. DIRICHLET'S UNIT THEOREM AND THE THEORY OF NORMS OF ELEMENTS IN ORDERS ALLOW FOR A STUDY (AGAIN CLASS NUMBERS INTERVENE)
(2) DISCRIMINANTS OF CUBICS:

$$
\begin{aligned}
& \text { (2) DISCRIMINANTS OF } \\
& D\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=18 x_{1} x_{2} x_{3} x_{4}+x_{1}^{2} x_{3}^{2}-4 x_{1} x_{3}^{3}-4 x_{2}^{3} x_{4}-27 x_{1}^{2} x_{4}^{2}
\end{aligned}
$$

THE DEGREE 4 IN 4 VARIABLES DISCR. OF BINARY CUBICS.
$G L_{2}(\mathbb{Z})$ ACTS LINEARLY ON $X_{k}(\mathbb{Z})$ WITH FINITELY MANY $h(k)$ ORBITS $(h(k)$ is HARD TO STUDY)

121
$h(k)$ IS TYPICALLY SMALL

$$
\sum_{k \leq K}^{*} h(k) \sim \frac{\pi^{2}}{108} K \quad(\text { DAVENPORT })
$$

And it is expected that a positive PROPORTION OF k 's HAVE $h(k) \neq 0$ (IE $\left.V_{k}(\not Z) \neq \phi\right)$, COHEN-LENSTA HEURISTICS.

For a General D little is known ABOUT $X_{k}(\mathbb{Z})$ OR ANY OF THESE PROBLEMS. WE DISCUSS SOME AFFINE VARIETIES THAT ARE DEFINED OVER \mathbb{Z} AND FOR WHICH THE 15 A NON-LINEAR DESCENT GROUP OF MORHISMS ACTING ON V.
THESE, ARISE AS CHARACTER VARIETIES FOR REPRSENTATIONS OF

$$
\pi_{1}\left(\sum_{g, n}\right) \rightarrow S L_{2}
$$

WE RESTRICT TO THE CASE OF CUBIC SURFACES.

INTEGRAL POINTS ON AFFINE CUBIC SURFACES:

TORI: ARE WELL UNDERSTOOD THANKS TO DIRICHLET'S UNIT THEOREM.

SPIT CASE: $\quad X_{k}: \quad x_{1} x_{2} x_{3}=k$

$$
h(k)=d_{3}(k), \# \text { OF DIVISORS }
$$

ANISOTROPIC CASE: $\quad X_{k}: \quad N\left(x_{1}, x_{2}, x_{3}\right)=k$
N - NORM FORM OF CUBIC ORDER / \mathbb{Z} CONTROLLED BY THE UNIT GROUP $N(O C)=1$.
NOTE: $X_{k}(\mathbb{Z})$ NEVER SATISFIES STRONG APPROXIMATIOn.

$$
x_{k}: \overline{x_{1}^{3}+x_{2}^{3}+x_{3}^{3}}=k
$$

VERY LITTLE 15 KNOWN AbOUT $X_{k}(\mathbb{Z})$. - LOCAL CONGRUENCE OBSTRUCTION $k \neq 4,5$ (9). TASSE PRINCIPLE: IF $k \neq 4,5(9)$ is $X_{k}(\mathbb{Z}) \neq \phi$? is $\left|X_{k}(Z)\right|=\infty$?

- THE STRONGEST FORM OF STRONG APPROXIMATION FALLS (SASE LS, HEATH-BROWN, COLLIOTE-THELENE/ WITTENBERG)

MARKOFF LIKE SURFACES
MAIN EXAMPLE:

$$
X_{k}: \quad x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{1} x_{2} x_{3}=k
$$

A key feature is that X_{k} has a large group of morphisims coming from

Vieta Transformations:
Fix x_{2}, x_{3} then x_{1}, x_{1}^{\prime} the two solutions to the quadratic equation R_{1} switches the roots

$$
\begin{aligned}
& \text { witches the } \\
& R_{1}\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(x_{2} x_{3}-x_{1}, x_{2}, x_{3}\right) \\
& R_{2}^{2}=I .
\end{aligned}
$$

similarly with $R_{2}, R_{3} . \quad R_{j}^{2}=I$.
Γ is the group of polynomial morphisus of A^{3} generated by R_{1}, R_{2}, R_{3}, permutations of the coords and switching the signs of two coordinates.
$\cdot \Gamma$ preserves $X_{k}(\mathbb{Z})$.
This allows for a descent procedure to examine $X_{k}(\mathbb{Z})$.

SUCH SURFACES AND AUTOMORHISMS ARISE IN VARIOUS CONTEXTS:

- X_{k} is the character variety of REPRESENTATIONS OF $\pi_{1}\left(\sum_{1,1}\right)$ INTO $S L_{2}$. HERE $\sum_{g, n}$ is A n-punctured curve OF GENUS g. Γ IS THE MAPPING CLASS GROUP WITH ITS ACTION ON X_{k}.
- $\left\lceil\right.$ And X_{r} Arise in the study of the nonlinear monodromy group of the painleve vi equation.
DYNAMICS OF Γ ON $\quad X_{k}(\mathbb{R})$ (W, GOLDMAN).
- FDR $k<0, \Gamma$ ACTS PROPERLY ON $X_{k}(\mathbb{R})$
- FOR $0 \leqslant k<4, \Gamma$ acts ergodically on the COMPACT COMPONENTS AND PROPERLY ON THE OTHERS
- $k=4$, CAYLEY CUBIC ACTION is LINEAR in SUITABLE COORDS.
- $4<k \leqslant 20, \Gamma$ ACTS ERGODICALLY ON $X_{k}(R)$.
- $k>20$ there is an open wandering DOMAIN IN $X_{k}(\mathbb{R})$.

In all cases we have the group $\Gamma=\Gamma_{S}$ of affine polynomial morphisms generated by the Vieta transformations, acting on S and $S(\mathbb{Z})$, (p large).
S_{0} Markoff's cubic surface S_{4} Cayley's cubic surface
$S_{k}(\mathbb{R})$ for different k :

$k=0$ and $k=4$

$$
k=2 \text { and } k=8
$$

DIOPHANTINE ANALYSIS OF $X_{k}(\mathbb{Z}):$
PART I (JOINT WITH A, GHOSH)

- $k=0$, MARKOFF'S EQUATION $X_{1}(\mathbb{I})$ CONSISTS OF TWO
Γ ORBITS: $(0,0,0)=\Gamma \cdot(0,0,0), \quad \Gamma \cdot(3,3,3)$
- $k=4$ (CAYLEY CUBIC) IS ESSENTIALLY LINEARIZABLE AND is VERY DIFFERENT TO ANY OTHE R, WE OMIT IT.

USING Γ ONE CAN USE DESCENT
TO SHOW THAT $h(k)$ THE NUMBER OF ORBITS OF Γ ON $X_{k}(\mathbb{Z})$ IS FINITE (MARKOFF, HURWITZ, MORDELL).

OUR FIRST INTEREST is $h(k)=0$ THAT is $X_{k}(\mathbb{Z})=\phi$.
GENERIC k's:
THE CONGRUENCE OBSTRUCTIONS ARE $\bmod 4,9$ $k \equiv 3(4)$ AND $k \equiv 3,6$ (9) ARE IMPOOSIBLE.

WE AVOID THESE k 's AS WELL AS THOSE FOR WHICH THERE IS AN $x \in X_{k}(\mathbb{Z})$ WITH $x_{j} \in\{0, \pm 1, \pm 2\}$. THESE K 'S ARE EXPLICIT AND CAN BE STUDIED AND ARE OF ZERO density. THE REMAININE $k^{\prime} s$ HAVE DENSITY \# $\{k \leq K: k$ GENERIC $\} \sim \frac{7}{12} K$.
FOR THESE GENERIC k 's THERE ARE NO LOCAL OBSTUCTIONS AND $h(k)=0$ IS a failure of the hasse principle.

- bhargava cubes and markoff

THREE SLICING S GIVE

$$
\left.\begin{array}{l}
\text { THREE SLICING S GIE } \\
M_{1}=\left[\begin{array}{ll}
1 & x_{2} \\
x_{3} & x_{1}
\end{array}\right], N_{1}=\left[\begin{array}{ll}
x_{1} & x_{3} \\
x_{2} & 1
\end{array}\right], M_{2}=\left[\begin{array}{ll}
1 & x_{3} \\
x_{1} & x_{2}
\end{array}\right], N_{2}=\left[\begin{array}{ll}
x_{2} & x_{1} \\
x_{3} & 1
\end{array}\right], M_{3}=\left[\begin{array}{l}
1 x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] N_{3}=\left[\begin{array}{l}
x_{3} \\
x_{1} \\
x_{1}
\end{array}\right]
\end{array}\right]
$$

181
these give three reciprocal quadratic forms

$$
\begin{aligned}
& Q_{1}=\left(x_{2} x_{3}-x_{1}\right) u^{2}+\left(1+x_{1}^{2}-x_{2}^{2}-x_{3}^{2}\right) u v+\left(x_{2} x_{3}-x_{1}\right) v^{2} \\
& Q_{2}=\left(x_{1} x_{3}-x_{2}\right) u^{2}+\left(1+x_{2}^{2}-x_{1}^{2}-x_{3}^{2}\right) u v+\left(x_{1} x_{3}-x_{2}\right) v^{2} \\
& Q_{3}=\left(x_{1} x_{2}-x_{3}\right) u^{2}+\left(1+x_{3}^{2}-x_{1}^{2}-x_{2}^{2}\right) u v+\left(x_{1} x_{2}-x_{3}\right) v^{2}
\end{aligned}
$$

THEY HAVE COMMON DISCRIMINANT

$$
\Delta\left(x_{1}, x_{2}, x_{3}\right)=\left(1+x_{1}+x_{2}+x_{3}\right)\left(1+y_{2}-x_{1}-x_{3}\right)\left(1+x_{3}-x_{1}-x_{2}\right)\left(1+x_{1}-x_{2}-x_{3}\right)
$$

WHICH TURNS OUT TO BE AN "EXACT" GAUGE FUNCTION FOR DESCENT: UNDER R_{1}, R_{2}, R_{3}

$$
\begin{aligned}
& \text { DESCENT: } \\
& \Delta_{1}(x)-\Delta(x)=x_{2} x_{3}\left(x_{2} x_{3}-2 x_{1}\right)\left[2(k-5)+\left(x_{2}^{2}-4\right)\left(x_{3}^{2}-4\right)\right] \\
& \Delta_{2}(x)-\Delta(x)=x_{1} x_{3}\left(x_{1} x_{3}-2 x_{2}\right)\left[2(k-5)+\left(x_{1}^{2}-4\right)\left(x_{3}^{2}-4\right)\right] \\
& \Delta_{3}(x)-\Delta(x)=x_{1} x_{2}\left(x_{1} x_{2}-2 x_{3}\right)\left[2(k-5)+\left(x_{1}^{2}-4\right)\left(x_{2}^{2}-4\right)\right] .
\end{aligned}
$$

THIS LEADS TO "GHOSH REDUCED FORM"
FOR $k \geqslant 5$ AND GENERIC.

$$
\begin{aligned}
& \text { FOR } k \geq 5 \text { AND GENERIC. } \\
& \mathcal{F}_{k}=\left\{u \in \mathbb{R}^{3}: \quad 3 \leq u_{1} \leq u_{2} \leq u_{3} ; u_{1}^{2}+u_{2}^{2}+u_{3}^{2}+u_{1} u_{2} u_{3}=k\right\}
\end{aligned}
$$

THEN EVERY POINT OF $f_{k}(\mathbb{Z})=y_{k} \cap \mathbb{Z}^{3}$ CORRESPONDS TO A UNIQUE Γ-ORBIT OF $X_{k}(\mathbb{Z})$ WITH $\left(x_{1}, x_{2}, x_{3}\right)=\left(-u_{1}, u_{2}, u_{3}\right)$. THIS ALLOWS FOR A NUMERICAL AND ANALYTIC

LAST PICTURE is FOR $k=3658, h(k)=6$

Figure 3. Percentages of Hasse failures.

$$
\begin{aligned}
& \text { NUMERICS SUGGEST THAT } \\
& \text { THE NUMBER OF HASSE FAILURES } \\
& \text { WITH } \left.K \leq K \text { IS O(K } K^{\theta}\right) \text { WITH } \\
& \theta=0.88 \ldots
\end{aligned}
$$

THEOREM 1:

$$
\sum_{5 \leq k \leq K} h(k) \sim \frac{K(\log k)^{2}}{36} \text { as } K \rightarrow \infty
$$

THEOREM 2:
THERE ARE INFINITELY MANY GENERIC k 's (AT LEAST $K^{1 / 2}$ WITH $K \leq K$) FOR WHICH $h(k)=0$, that is base failures.
"theorem" 3 IS A POSITIVE PROPORTION OF (GENERIC) k^{\prime} 'S FOR WHICH $h(k) \neq 0$; THAT IS HANSE IS TRUE.
COMMENTS ON PROOFS:
(o) WITH THE EXPLICIT GHOSH REDUCTION, THENEM 1 IS PROVEN BY THE USUAL INTEGER POINTS IN A tentacled region argument.
(.) THEOREM 2 USES GLOBAL QUADRATIC RECIPROCITY TO DEANE A "BRAUER-MANIN" TYPE OBSTRUCTION COMING FROM $X_{K} \bmod p$ WITH $k \equiv 4$ (p) AND PROPERTIES OF THE CAYLEY CUBIC TOOL, IT IS CLOSELY RELATED TO AN ARGUMENT OF MORDELL. 6) THEDREM 3 IS BASED ON SOME TECHNIQUES OF BOURGAN AND FUCHS IN THE STUDY OF

examples of tasse failures

$$
k=4+2 \nu^{2} \quad \text { WITH }
$$

\checkmark HAUNG ALL its PRIME FACTORS $\pm 1(\bmod 8)$ AND $\quad \gamma \in\{0, \pm 3, \pm 4\}(\bmod 9)$.

DIOPHANTINE ANALYSIS OF $X_{k}(\mathbb{Z})$:
Part II (Joint with Bourgain and gaimburd) STRONG APPROXIMATION:

Once we have $\hat{x} \in X_{k}(\mathbb{Z})$ we get $\theta=\Gamma \hat{x} \subset X_{k}(\mathbb{Z})$ which (except for try special k that are easily determined) is already Zariski dense in X_{k}, and one can ask for strong approximation. That is whether for $q \geqslant 1$.

$$
X_{k}(\mathbb{Z}) \xrightarrow{\bmod q} X_{k}(\mathbb{Z} / q \mathbb{Z}) \text { is otto? }
$$

Rechucing the Γ action modq gives a homomorphism

$$
\Gamma \longrightarrow \text { Permutations }\left(X_{k}(\mathbb{Z} / q \mathbb{Z})\right)
$$

and the question is how big is The image?

- If the permutation group is transitive on $X_{k}(\mathbb{Z} / q \mathbb{Z})$ (note $\left.\left|X_{k}(\mathbb{Z} / q \mathbb{Z})\right| \approx q^{2}\right)$ Then we have strong approximation!
- What we can show (at least if $q=p$ a prime) is that the orbits are as large as possible and $X_{k}(\mathbb{Z})$ obeys a suitable form of strong approximation.

This is perhaps quite surprising Since $X_{k}(\mathbb{Z})$ itself is a very sparse set; According to results of D. Zagier $(k=0)$ and M. Mirzakhani in general (and move general character varieties)

$$
\left|\left\{x \in X_{k}(\mathbb{Z}):|x| \leq T\right\}\right| \approx(\log T)^{2}
$$

$$
(k \neq 4) \text {. }
$$

FINITE ORBITS OF \square ON $A^{3}(\bar{Q})$:
In ORDER TO FORMULATE THE TRANSITIVITY PROPERTIES OF Γ WE NEED FIRST TO CLASSIFY THE FINITE ORBITS IN CHARACTERISTIC ZERO AS THESE OCCUR IN $\mathbb{T} / P \mathbb{Z}$ FOR CERTAIN P^{\prime} S.

THEOREM 4: THERE ARE FINITELY MANY FINITE Γ-ORBITS ON $X_{k}(\bar{Q})$ and these may be determined effectively.

REMARKABLY THIS DETERMINATION HAS ALSO BEEN CARRIED OUT BY DEBROVIN/MAZZOCCO (AND LISONYYI TYKHYY FOR THE 4-HOLED SPHERE) IN THEIR CLASSIFICATION OF THE PAINLEUE VI's WHICH ARE ALGEBRAIC FUNCTIONS OF E.

$$
\begin{aligned}
\frac{d^{2} y}{d z^{2}}=\frac{1}{2}\left(\frac{1}{y}\right. & \left.+\frac{1}{y-1}+\frac{1}{y-z}\right)\left(\frac{d y}{d z}\right)^{2}-\left(\frac{1}{z}+\frac{1}{z-1}+\frac{1}{y-z}\right) \frac{d y}{d z} \\
& +\frac{y(y-1)(y-z)}{z^{2}(1-z)^{2}}\left[\alpha+\frac{\beta z}{y^{2}}+\frac{\gamma(z-1)}{(y-1)^{2}}+\frac{\delta z(z-1)}{(y-z)^{2}}\right]
\end{aligned}
$$

SUITABLE COORDINATES FOR THE SOLUTIONS YIELD THE MARIROFF SURFACES AND THE (NONLINEAR) MONODROMY GROUP CORRESPONDS TO Γ; MOREOVER FINITE ORBITS CORRESPOND TO ALGEBRAIC SOLUTIONS.

MAIN CONJECTURE
X_{k}, Γ as above. For p large THE Γ-ORBITS in $X_{k}(\mathbb{Z} / P \mathbb{Z})$ CONSIST OF THE (APRIORI DETERMINED) FINITELY MANY $X_{k}(\overline{\mathbb{R}})$ ORBITS THAT OCCUR IN $X_{k}(\mathbb{Z} / P \mathbb{Z})$ and the complement of these $X_{k}^{*}(\mathbb{Z} / p Z)$ WHICH IS A SINGLE (BIG) Γ-ORBIT $(k \neq 4)$.
EG: $k=0$, MARKOFF EQUATION, THE ONLY FINITE \bar{Q} ORBIT is $\{(0,0,0)\}$, SO THAT Γ acts TRASITIVELY ON $X_{k}^{*}(\mathbb{Z} / p \mathbb{Z})$.

THEOREM 5: (GIANT ORBIT):
FOR $\varepsilon>0$ AND P LARGE THERE IS A Γ ORBIT $\theta(p) \subset x^{*}(\mathbb{Z} / p \mathbb{Z})$ FOR WHICH

$$
\left|x^{*}(\mathbb{Z} / p z) \backslash \theta(p)\right| \ll p^{\varepsilon}
$$

(note that $\left.\left|x^{x}(\mathbb{\pi} / p z)\right| \sim p^{2}\right)$, AND EVERY Γ-ORT IN $x^{*}(\mathbb{Z} / P \mathbb{Z})$ HAS SIze at Least $(\log p)^{1 / 3}$.

We can prove the main conjecture as long AS $p^{2}-1$ IS NOT VERY SMOOTH (THAT IS IT DOES NOT HAVE A VERY LARGE NUMBER OF SMALL FACTOR EG $P-1=m$! is PROBLEMATIC.

HIGHLY
VERY FEW PRIMES HAVE THIS A SMOOTH PROPERTY AND HENCE WE PROVE THE MAIN CONJECTURE EXCRPTAFOR A SMALL SET OF PRIMES.

THEOREM 6: THE SET OF PRIMES E FOR WHICH THE MAIN CONJECTURE FAILS SATISFIES

$$
|\{p \in E: p \leqslant T\}| \lll T^{\varepsilon}, \text { FOR } \varepsilon>0
$$

THEREM 7: (C.MEIRI AND D.PUDER)
FOR $k=0$ (MARKOFF'S SURFACE) AND $P \equiv 1(4)$ AND FOR WHICH Γ ACTS TRANSITIVELY ON $X_{0}^{*}(\mathbb{Z} / P \mathbb{Z})$, THE IMAGE OF $\Gamma \mathbb{N}$ THE PERMUTATIONS OF $X_{0}^{*}(\mathbb{Z} / P \mathbb{Z})$ is AS LARGE AS IT CAN BE (ALTERNATING OR SYMMETRIC GROUP).

MARKOFF NUMBERS: $(k=0)$

$$
\begin{equation*}
X: \quad x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-3 x_{1} x_{2} x_{3}=0 \tag{*}
\end{equation*}
$$

- markoff triples are solutions

GIVES ALL)
TO (x) WITH $x_{j} \geqslant 1$ ($\Gamma \cdot(1,1,1)$ GIVES A

- MARKOFF NUMBERS M ARE NUMBERS WHICH ARE CD-ORDINATES OF MARKOFF TRIPLES.
our results give (at least for those P's FOR WHICH TRANSITVITY IS PROVED) THAT THE ONLY CONGRUENCES ON MARKOFF NUMBERS ARE THE 'OBVIOUS' ONES (FROBENIUS). COUNTING ${ }^{(x)}$: (ZAGIER, MIRZAKHANI)

$$
\sum_{m \leq T}^{m \in M} 1 \sim c(\log T)^{2}, c \neq 0
$$

THEOREM 8: ALMOST ALL MARKOFF NUMBERS ARE COMPOSITE;

$$
\sum_{\substack{p \leq T \\ P \\ p \in M}} 1=0\left(\sum_{\substack{m \leq T \\ m \in M}} 1\right) \text {, As } T \rightarrow \infty .
$$

COMMENTS ON PROOFS:
THE 'DEAN TWISTS' D_{1}, D_{2}, D_{3} IN Γ

$$
D_{1}:\left(x_{1}, x_{2}, x_{3}\right) \longrightarrow\left(x_{1}, x_{1} x_{2}-x_{3}, x_{2}\right)
$$

AND similarly for D_{2}, D_{3}
preserve the conic sections of X_{k}.

$$
x_{k} \cap \operatorname{PCANE} \quad x_{1}=\widehat{x_{1}}
$$

AND $D_{1}^{j} \xi, j=1,2, \ldots$
SWEEPS OUT A SUBSET OF THE CONIC SECTION.
IF the order of the rotation D_{1} acting in THIS pLANE is optimally in the \mathbb{F}_{p} SETTING (AND INFINITE in the $\overline{\mathbb{Q}}$ SETTING) THEN THE Γ ORBIT OF ξ CONTANS THIS ENTIRE CONIC SECTION. SO THE BASIC IDEA TO SHOW THAT ONE CAN INCREASE THE ORDERS OF THESE DEHN TWISTS BY MOVING TO POINTS IN ITS ORBIT. DOING SO REPZATILDLY eventually leads to connecting every. $\xi \in X_{k}^{*}(\mathbb{Z} / \mathbb{Z})$ TO THE GIANT ORBIT.

A Key problem that intervenes IS TO GIVE AN UPPER BOUND. TO THE NUMBER OF SOLUTIONS TO

$$
\overline{3}+\frac{t}{3}=y+\frac{1}{\eta}, b \neq 1
$$

$\xi \in H_{1}, \eta \in H_{2}, \quad\left|H_{2}\right| \leq\left|H_{1}\right| \leq p^{1-\varepsilon}$ WITH H_{1}, H_{2} SUBGROUPS OF \mathbb{F}_{P}^{*} (OR $\mathbb{F}_{p^{2}}^{*}$). THE TRIVIAL UPPER BOUND is $2\left|\mathrm{H}_{2}\right|$ AND WE SEEK A BOUND.

$$
\ll\left|H_{1}\right|^{\tau} \quad \text { witH } \quad \tau<1
$$

IF $\left|H_{1}\right| \geqslant P^{1 / 2}$ ONE CAN PROCEED USING WEIL'S RIEMANN HYPOTHESIS FOR CURVES OVER FINITE FIELDS.
IF HI IS SMALLER THIS IS OF NO USE AND WE OBTAIN THE REQUISITE BOUND BY ONE OF TWO METHODS
(A) STEPANOV'S AUXILIARY POLYNOMIAL METHOD
(B) BOURGAINS PROJECTIVE SZEMEREDI-TROTTER THEOREM OVER \mathbb{F}_{P}.

FOR THE FINITE \bar{Q} ERBITS OF \cap We use tile same den Twists whose ORDERS MUST BE FINITE. THIS LEADS TO THE EQUATION

$$
\begin{gathered}
\left(\lambda_{1}+\lambda_{1}^{-1}\right)^{2}+\left(\lambda_{2}+\lambda_{2}^{-1}\right)^{2}+\left(\lambda_{3}+\lambda_{3}^{-1}\right)^{2}-\left(\lambda_{1}+\lambda_{1}^{-1}\right)\left(\lambda_{2}+\lambda_{2}^{-1}\right)\left(\lambda_{3}+\lambda_{3}^{-1}\right) \\
=k
\end{gathered}
$$

TO BE SOLVED WITH $\lambda_{1}, \lambda_{2}, \lambda_{3}$ IN ROOTS OF UNITY.
LANG'S G_{M} CONJECTURE AND ITS EFFECTIVE SOLUTIONS ALLOW ONE TO FIND THE (TYPICALLY) FINITELY MANY SOLUTIONS. THE FINITE M-ORBITS are then restricted to Lie in these FINITE SETS.

AS WE NOTED THE MARROFF SURFACES ARE JUST THE FIRST OF THE AFFINE CHARACTER VARIETIES FOR WITCH THE MAPPING CLASS GROUP IS A POWERFULL TOOL FOR DESCENT AND DIOPHANTINE ANALYSIS. FOR $\pi_{1}\left(\sum_{g, n}\right)$ AND
PETER WHANG HAS MADE A SIGNIFICANT START
IN THIS STUDY.

