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weak model sets

— motivation

squarefree integers S as a cut-and-project set
(cf. Meyer 73, Baake~Moody—Pleasants 99, Sing 05, ...)

n € Z squarefree < n mod p® # 0 for all primes p
consider the compact product group H := HP(Z/pzz)
dense embedding of Z into H by CRT:
n—u(n) = (n mod p?),,
write G :=Z and note L := {(n,¢(n)) : n€ Z} is lattice in G x H
lattice £ has compact torus X := (G x H)/L ~ H

S < G given by some “cut-and-project construction”
S=r%(Ln(GxW)), W=]][Z/PD)\{0,}
P

analyse squarefree flow {gS : g € G} by first studying associated
dynamics on G x H and then projecting to G
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weak model sets

— motivation

cut-and-project schemes and weak model sets

G physical, H internal space, LCSCA groups, £L < G x H lattice
infinite strip parallel to G defined by compact (!) window W < H
weak model set by projecting lattice points inside strip to G
assume wlog that projection of L is dense in H

assume that distinct lattice points have distinct G-projection
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weak model sets

— motivation

some history

m introduced by Meyer, Schreiber in the 70's in the context of
commutative harmonic analysis

m re-discovered in about 1984 for describing physical quasicrystals
(Kramer, Levine=Steinhardt, Katz—Duneau, ...)

m dynamical properties were studied since about 1995 (Radin,
Robinson, Moody, Baake, Lenz, Kellendonk, Arnoux, ...)

= mainly for “simple” windows (int(W) # @, my(éW) = 0), uniquely
ergodic dynamical systems of topological entropy 0

m squarefree integers and visible lattice points: W = oW, positive
topological entropy (Baake-Moody—Pleasants 1999)

= recent interest due to I3-free systems and connections to Sarnak’s
program
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weak model sets

—the setting

torus parametrisation of weak model sets

green: FD of torus X, red: (x +£) n (G x W) = supp(vw(X))
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weak model sets

Lthe setting

torus parametrisation of weak model sets

green: FD of torus X, red: 76((x + £) n (G x W)) = supp(v/§,(X))
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weak model sets

Lthe setting

configurations and associated dynamical systems

configurations
m configuration v, (%) € M
(locally finite measures on G x H, vague topology)
= parametrised by torus points ¥ = x + L € X = (G x H)/L
= projected measure v§ (%) = 75 o v, (%) € MC

(locally finite measures on G, vague topology)

relevant topological dynamical systems (with induced G-action S)

= M, =1, (X) S M configurations on G x H
" MS = v (X)
m hull M§, (%) € MS,: orbit closure of configuration ¢ (%)

C M°€ configurations on G

Consider the map vy, : X - M,. It gives rise to even larger dynamical

systems via its graph closure.
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weak model sets

Lthe setting

graph dynamical systems

consider the topological dynamical system

graph(v,) = {(%, 1w (%)) : X e X} € X x M,,

with induced G-action T x S
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weak model sets

—the setting

graph dynamical systems

consider the topological dynamical system

graph(v,) = {(X,vw (%)) : € X} =€ X x M,,
with induced G-action T x S
v X > M, upper semicontinuous as W compact
%, —> % = v <wy(X) for any vague limit point v of (v (Xn))n

m continuity points C,, < X of v, are dense Gs in X:
(g,h)+LeCy<= h+Lly¢ W forevery Le L

= he () (W) — )
el

A

m CyC X is T-invariant
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weak model sets

—topological results

topological results for configurations on G x H

a) graph(vy|c, ) is the only minimal subset of graph(vy, ).

b) vw(Cy) is the only minimal subset of M,, = v, (X).
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weak model sets

‘—topological results

topological results for configurations on G x H

a) graph(vy|c, ) is the only minimal subset of graph(vy, ).

b) vw(Cy) is the only minimal subset of M,, = v, (X).

Proof.

a) @ # A < graph(i,) closed invariant = @ # 7% (A) = X closed
invariant = 7%(A) = X 2 C,, since (X, T) minimal =

A2 gra’ph(VW|CW) = A2 graph(VW|CW> =: Amin

b) @ # B < M,, closed invariant = @ # (7$*")~}(B) < graph(vy,)
closed invariant = (7¢*")71(B) 2 Amin = B 2 7" (Amin) = vw(Cy)

[
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weak model sets

—topological results

injectivity properties of ¢ : M,, — M,

m complicated as W interfers with 7"(£), which is dense in H
m for A< H one says

m A aperiodic if h+ A= A implies h =0
m A topologically regular if A =int(A)

Lemma

If W is topologically regular and aperiodic, then 7§ : M,, — MS, is a
homeomorphism.

= above results transfer to G, if W is aperiodic and top regular

m previous dynamical results often assumed an aperiodic and
topologically regular window

= we are interested in results beyond this case
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weak model sets

—topological results

injectivity of 7¢ and configuration windows

consider the map S, : M, — K(W) (cpct subsets of W) given by

Su(v) = n#(supp(v)) = supp(miv)
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weak model sets

—topological results

injectivity of 7¢ and configuration windows

consider the map S, : M, — K(W) (cpct subsets of W) given by

Su(v) = n#(supp(v)) = supp(miv)

How “small” can S,(v) be?

B Su(vw(R)) = 7 (x + L) nint(W) = int(W) for X € Cy

u this implies int(W) < S, (v) < W for any v e M,,
(as vw(Cw) € {Sgv : g € G} and S, is lower semicontinuous)
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weak model sets

—topological results

injectivity of 7¢ and configuration windows

consider the map S, : M, — K(W) (cpct subsets of W) given by

Su(v) = n#(supp(v)) = supp(miv)

How “small” can S,(v) be?

B Su(vw(R)) = 7 (x + L) nint(W) = int(W) for X € Cy

u this implies int(W) < S, (v) < W for any v e M,,
(as vw(Cw) € {Sgv : g € G} and S, is lower semicontinuous)

aperiodicity of int(W) implies that 7§ : M,, > M, is 1 —1:
m assume v, v’ € M,, are such that n{(v) = w5 (V)
= then v/ and v can only differ by some overall shift d € H
m hence also d + Sy(v) = Su(v') and thus d + int(W) = int(W)
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weak model sets

‘—topological results

topological results for configurations on G

Assume that int(W) is aperiodic (so in particular non-empty).

a) (M, S) and (M, S) are isomorphic, and both are almost 1 — 1
extensions of their maximal equicontinuous factor (X, T).

b) Denote by T : MS, — X the above factor map. If M is a
non-empty, closed S-invariant subset of MS,, then (M, S) is an
almost 1 — 1 extension of its maximal equicontinuous factor (X, T)
with factor map T|p.

remark:

m int(W) # @ aperiodic if H only has trivial compact subgroups
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weak model sets

‘—topological results

a) 7 : (graph(vy ), S) — (f(,j') is a 1 — 1 extension of the
equicontinuous factor (X, T), as C,, is dense Gs;. By a factorisation
argument, this also holds for the maximal equicontinuous factor,
which must then coincide with (X, T).

me " graph(vy) — M, is 1 — 1 on non-zero configurations, as the

torus coordinate can then be uniquely reconstructed. The condition
int(W) # @ excludes zero configurations.

g My — M, is 1 —1if int(W) is aperiodic (see above)
b) follows with a)
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weak model sets

‘—topological results

topological results for configurations on G

m In general, the MECF is some proper factor group of X.
m For A € H, consider its period group
Ha:={heH:h+ A=A}, Ha={0} x Hy= G x H

Assume that int(W) # @. Let X' = X /7% (Hing(w)) with induced
G-action T'. Let M be any non-empty, closed S-invariant subset of Ms,.

a) ()/(\’ , 7'\’) is the maximal equicontinuous factor of the topological
dynamical system (M, S).

b) If Hneowy = Hw, then (M, S) is an almost 1 — 1 extension of
(X', 7).
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weak model sets

—topological results

topological results

m The minimal subsystem may be trivial.
w int(W) = @ iff 1, (Cy) = {0} iff (M, S) has a trivial maximal
equicontinuous factor:
int(W)=0 < W =27oW
& Gy = T ((7) T[] (W = )

Lel
& Cy=m(xeGxH: (x+L)n (G x W)=0)
< vw(Cw) = {0}

= above we considered the case int(W) # &

m if int(W) = &, analogous results hold for the maximal
equicontinuous generic factor (Keller 2016)
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weak model sets

— measure-theoretic results

Mirsky measure for configurations on G x H

Mirsky measure Q, := myg o (1) ! is lift of Haar measure my on X
m was studied in the squarefree case first by Mirsky

m only invariant probability measure on (M,,, S) if
my(OW) =0 < mg(Cy) =1

Proposition
Assume that my(W) > 0. Then (M., Qu,S) is measure-theoretically
isomorphic to (X, mg, T). O
reason:

g X > My, provides measure-theoretic factor map

= “shift vector map” & : M, \{0} — X gives (continuous)
measure-theoretic factor map, as my(W) > 0 implies Q,,({0}) =0

= note T o v, = id whenever composition is well defined
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weak model sets

— measure-theoretic results

injectivity properties of ¢ : M,, — M,

m int(W) aperiodic useless in measurable context, if int(W) = &
m let P be an ergodic S-invariant propability measure on M,,

u there is Wp € W such that for P-aa v e M,,

SH(I/) = WP

u hence & is 1 — 1 on (S,)"H{Wp} = M,, if Wp aperiodic

m in fact Wp is Haar regular, i.e., for any open U € H

(Un Wp) # &= my(Un Wp) >0
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weak model sets

— measure-theoretic results

Mirsky measure for configurations on G

: G e 6\—1 :c | . ¥
Mirsky measure Qy, := myg o (vy,)~ " is lift of Haar measure mg on X

m above results can be transferred if projection 7§ : M,, — M, is
1 —1 on a subset of Q,-measure 1

= condition Wy, aperiodic is equivalent to Haar aperiodicity of W

mu((h+ W)AW) =0 = h =0

m W Haar aperiodic implies my (W) > 0.

Suppose that W is Haar aperiodic. Then (Mg, Q5,,S) is
measure-theoretically isomorphic to (X, mg, 7). O
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weak model sets

— measure-theoretic results

Mirsky measure for configurations on G

m In general, there is an isomorphism to a factor group of X.

m consider the group H,] of Haar periods of W, i.e.

HYy ={he H: my((h+W)AW) = 0}, HI = {0}xH] < GxH

Theorem
Suppose my(W) > 0. Let Xi = X/m*(H) with induced G-action T
and Haar measure mg;. Then (M, Q5,,S) is measure-theoretically

isomorphic to ()?’ , Mg, ?') -
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weak model sets

— measure-theoretic results

Mirsky measure Q, = my o (1,,)~! and maximal density

= Fix tempered van Hove sequence (e.g. centred n-balls in G = R9)

We say that v has maximal density if

. V(A x H)
lim ———= =d L) - w
i Ay~ dens(E) - mu(W)

(upper density < always true)
= consider the set M/, € M,, of maximal density configurations

Qw(M,,) =1, i.e,, maximal density is Q,-generic (Moody 2002)

melmy, - My, — M, is one-to-one, if Wq,, is aperiodic

m true as for v € M, we always have
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weak model sets

— measure-theoretic results

Mirsky measure on configuration hulls in G

For % € X, consider the orbit closure M$, (%) = M¢, of the configuration
v (X) under the action of S.

if v5(X) has maximal density, then supp(QS) = MS, (%) = M5,
if in addition v§(X) € supp(Qf), then MS (%) = M,

these two conditions are generic for the Mirsky measure

in that case, the above results apply to M¢,(X) replacing M,

in many examples Q¢ has full support M
w w
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weak model sets

— measure-theoretic results

measures for configurations on G x H

setting
= (M, P,S) with P an ergodic S-invariant probability measure

= argue as in the Mirsky measure case

Proposition

If my(W) > 0 and if P is any S-invariant probability measure on M,,,
then (M, P, S) is a measure-theoretic extension of (X, Mg, 7. O
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weak model sets

— measure-theoretic results

measures for configurations on G

transfer above result to measures on M,

m for given ergodic S-invariant P¢ on M, there exists ergodic
S-invariant P on M,, such that P¢ = Po (7)™}

m argue then as in Mirsky measure case

Theorem

Let P, P be ergodic S-invariant probability measures on MS,, M, such
that P¢ = P o (w$)~ !, and suppose that Wp is aperiodic.

Then (M, P,S) and (M§,, P¢,S) are measure-theoretically isomorphic
via 7§, and (MS,, P¢,S) is a measure-theoretic extension of

(X,mg, T). O
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weak model sets

— measure-theoretic results

measures for configurations on G

= in general isomorphism to some proper factor group of X

m consider the period group Hy, of Wp

Theorem

Assume that my(W) > 0. Let P¢ be an ergodic S-invariant probability
measure on MS\{0}. Take any ergodic S-invariant probability measure
P on M,, satisfying PS = P o (x8)~1. Let X’ = X/n*(Hw,) with

induced G-action T' and Haar measure il

Then (M5, P¢,S) is a measure theoretic extension of (X', mg;, T').
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