### Dynamical properties of weak model sets

Christoph Richard, FAU Erlangen-Nürnberg CIRM Luminy, 13.12.2016 joint work with Gerhard Keller, Erlangen

# weak model sets

# squarefree integers S as a cut-and-project set (cf. Meyer 73, Baake–Moody–Pleasants 99, Sing 05, ...)

- $n \in \mathbb{Z}$  squarefree  $\iff n \mod p^2 \neq 0$  for all primes p
- consider the compact product group  $H := \prod_{p} (\mathbb{Z}/p^2\mathbb{Z})$
- dense embedding of  $\mathbb{Z}$  into H by CRT:

$$n \mapsto \iota(n) = (n \mod p^2)_p,$$

- write  $G := \mathbb{Z}$  and note  $\mathcal{L} := \{(n, \iota(n)) : n \in \mathbb{Z}\}$  is lattice in  $G \times H$
- lattice  $\mathcal{L}$  has compact torus  $\hat{X} := (G \times H)/\mathcal{L} \sim H$
- $S \subseteq G$  given by some "cut-and-project construction"  $S = \pi^{G}(\mathcal{L} \cap (G \times W)), \qquad W = \prod_{p} (\mathbb{Z}/p^{2}\mathbb{Z}) \setminus \{0_{p}\}$
- analyse squarefree flow  $\{gS : g \in G\}$  by first studying associated dynamics on  $G \times H$  and then projecting to G

| weak         | model | sets |  |
|--------------|-------|------|--|
| L motivation |       |      |  |

### cut-and-project schemes and weak model sets



- G physical, H internal space, LCSCA groups,  $\mathcal{L} \subseteq G \times H$  lattice
- infinite strip parallel to G defined by compact (!) window  $W \subset H$
- weak model set by projecting lattice points inside strip to G
- assume wlog that projection of L is dense in H
- assume that distinct lattice points have distinct G-projection

weak model sets - motivation

### some history

- introduced by Meyer, Schreiber in the 70's in the context of commutative harmonic analysis
- re-discovered in about 1984 for describing physical quasicrystals (Kramer, Levine–Steinhardt, Katz–Duneau, ...)
- dynamical properties were studied since about 1995 (Radin, Robinson, Moody, Baake, Lenz, Kellendonk, Arnoux, ...)
- mainly for "simple" windows (int(W)  $\neq \emptyset$ ,  $m_H(\partial W) = 0$ ), uniquely ergodic dynamical systems of topological entropy 0
- squarefree integers and visible lattice points: W = ∂W, positive topological entropy (Baake–Moody–Pleasants 1999)
- recent interest due to B-free systems and connections to Sarnak's program

| weak            | model   | sets |
|-----------------|---------|------|
| L <sub>th</sub> | e setti | ng   |

### torus parametrisation of weak model sets



green: FD of torus  $\hat{X}$ , red:  $(x + \mathcal{L}) \cap (G \times W) = \mathsf{supp}(\nu_w(\hat{x}))$ 

| weak            | model    | sets |
|-----------------|----------|------|
| L <sub>th</sub> | e settir | ng   |

### torus parametrisation of weak model sets



green: FD of torus  $\hat{X}$ , red:  $\pi^{G}((x + \mathcal{L}) \cap (G \times W)) = \operatorname{supp}(\nu_{W}^{G}(\hat{x}))$ 

# weak model sets

## configurations and associated dynamical systems

### configurations

- configuration  $\nu_w(\hat{x}) \in \mathcal{M}$ (locally finite measures on  $G \times H$ , vague topology)
- parametrised by torus points  $\hat{x} = x + \mathcal{L} \in \hat{X} = (\mathcal{G} \times \mathcal{H})/\mathcal{L}$
- projected measure ν<sup>G</sup><sub>W</sub>(x̂) = π<sup>G</sup><sub>\*</sub> ∘ ν<sub>W</sub>(x̂) ∈ M<sup>G</sup> (locally finite measures on G, vague topology)

relevant topological dynamical systems (with induced G-action S)

Consider the map  $\nu_w : \hat{X} \to \mathcal{M}_w$ . It gives rise to even larger dynamical systems via its graph closure.

weak model sets -the setting

### graph dynamical systems

consider the topological dynamical system

$$\overline{\mathrm{graph}(\nu_w)} = \overline{\{(\hat{x}, \nu_w(\hat{x})) : \hat{x} \in \hat{X}\}} \subseteq \hat{X} \times \mathcal{M}_w$$

### with induced *G*-action $\hat{T} \times S$

•  $u_w : \hat{X} \to \mathcal{M}_w$  upper semicontinuous as W compact

 $\hat{x}_n o \hat{x} \implies \nu \leqslant 
u_w(\hat{x})$  for any vague limit point u of  $(
u_w(\hat{x}_n))_n$ 

• continuity points  $C_w \subseteq \hat{X}$  of  $\nu_w$  are dense  $G_\delta$  in  $\hat{X}$ :

$$(g, h) + \mathcal{L} \in C_w \iff h + \ell_H \notin \partial W \text{ for every } \ell \in \mathcal{L}$$
$$\iff h \in \bigcap_{\ell \in \mathcal{L}} \left( (\partial W)^c - \ell_H \right)$$

•  $C_w \subseteq \hat{X}$  is  $\hat{T}$ -invariant

weak model sets -the setting

### graph dynamical systems

consider the topological dynamical system

$$\overline{\mathrm{graph}(\nu_w)} = \overline{\{(\hat{x}, \nu_w(\hat{x})) : \hat{x} \in \hat{X}\}} \subseteq \hat{X} \times \mathcal{M}_w$$

with induced *G*-action  $\hat{T} \times S$ 

•  $\nu_{W}: \hat{X} \to \mathcal{M}_{W}$  upper semicontinuous as W compact

 $\hat{x}_n \to \hat{x} \implies \nu \leqslant \nu_w(\hat{x})$  for any vague limit point  $\nu$  of  $(\nu_w(\hat{x}_n))_n$ 

• continuity points  $C_w \subseteq \hat{X}$  of  $\nu_w$  are dense  $G_\delta$  in  $\hat{X}$ :

$$(g, h) + \mathcal{L} \in C_{w} \iff h + \ell_{H} \notin \partial W \text{ for every } \ell \in \mathcal{L}$$
$$\iff h \in \bigcap_{\ell \in \mathcal{L}} \left( (\partial W)^{c} - \ell_{H} \right)$$

•  $C_w \subseteq \hat{X}$  is  $\hat{T}$ -invariant

# topological results for configurations on $G \times H$

#### Theorem

a)  $\overline{\operatorname{graph}(\nu_w|_{\mathcal{C}_W})}$  is the only minimal subset of  $\overline{\operatorname{graph}(\nu_w)}$ .

b) 
$$\overline{\nu_w(C_w)}$$
 is the only minimal subset of  $\mathcal{M}_w = \overline{\nu_w(\hat{X})}$ .

#### Proof.

a)  $\emptyset \neq A \subseteq \overline{\operatorname{graph}(\nu_w)}$  closed invariant  $\Rightarrow \emptyset \neq \pi^{\hat{X}}(A) \subseteq \hat{X}$  closed invariant  $\Rightarrow \pi^{\hat{X}}(A) = \hat{X} \supseteq \underline{C}_w$ , since  $(\hat{X}, \hat{T})$  minimal  $\Rightarrow$  $A \supseteq \operatorname{graph}(\nu_w|_{C_w}) \Rightarrow A \supseteq \overline{\operatorname{graph}(\nu_w|_{C_w})} =: A_{min}$ b)  $\emptyset \neq B \subseteq \mathcal{M}_w$  closed invariant  $\Rightarrow \emptyset \neq (\pi_*^{G \times H})^{-1}(B) \subseteq \overline{\operatorname{graph}(\nu_w)}$ closed invariant  $\Rightarrow (\pi_*^{G \times H})^{-1}(B) \supseteq A_{min} \Rightarrow B \supseteq \pi_*^{G \times H}(A_{min}) = \nu_w(C_w)$ 

# topological results for configurations on $G \times H$

#### Theorem

a)  $\overline{\operatorname{graph}(\nu_w|_{\mathcal{C}_W})}$  is the only minimal subset of  $\overline{\operatorname{graph}(\nu_w)}$ .

b) 
$$\overline{\nu_w(C_w)}$$
 is the only minimal subset of  $\mathcal{M}_w = \overline{\nu_w(\hat{X})}$ .

#### Proof.

a)  $\emptyset \neq A \subseteq \overline{\operatorname{graph}(\nu_W)}$  closed invariant  $\Rightarrow \emptyset \neq \pi^{\hat{x}}(A) \subseteq \hat{X}$  closed invariant  $\Rightarrow \pi^{\hat{x}}(A) = \hat{X} \supseteq \underline{C}_W$ , since  $(\hat{X}, \hat{T})$  minimal  $\Rightarrow$  $A \supseteq \operatorname{graph}(\nu_W|_{C_W}) \Rightarrow A \supseteq \overline{\operatorname{graph}(\nu_W|_{C_W})} =: A_{min}$ b)  $\emptyset \neq B \subseteq \mathcal{M}_W$  closed invariant  $\Rightarrow \emptyset \neq (\pi_*^{G \times H})^{-1}(B) \subseteq \overline{\operatorname{graph}(\nu_W)}$ closed invariant  $\Rightarrow (\pi_*^{G \times H})^{-1}(B) \supseteq A_{min} \Rightarrow B \supseteq \pi_*^{G \times H}(A_{min}) = \overline{\nu_W(C_W)}$ 

# injectivity properties of $\pi^{\scriptscriptstyle G}_*: \mathcal{M}_{\scriptscriptstyle W} \to \mathcal{M}^{\scriptscriptstyle G}_{\scriptscriptstyle W}$

- complicated as W interfers with  $\pi^{H}(\mathcal{L})$ , which is dense in H
- for  $A \subseteq H$  one says
  - A aperiodic if h + A = A implies h = 0
  - A topologically regular if  $A = \overline{int(A)}$

#### Lemma

If W is topologically regular and aperiodic, then  $\pi_*^{\mathsf{G}} : \mathcal{M}_w \to \mathcal{M}_w^{\mathsf{G}}$  is a homeomorphism.

- above results transfer to *G*, if *W* is aperiodic and top regular
- previous dynamical results often assumed an aperiodic and topologically regular window
- we are interested in results beyond this case

# injectivity of $\pi_*^{\scriptscriptstyle G}$ and configuration windows

consider the map  $\mathcal{S}_{H}: \mathcal{M}_{W} \to \mathcal{K}(W)$  (cpct subsets of W) given by

$$\mathcal{S}_{^{_{\!\!H\!}}}(\nu)=\overline{\pi^{^{_{\!H\!}}}(\mathrm{supp}(\nu))}=\mathrm{supp}(\pi^{^{_{\!H\!}}}_*\nu)$$

How "small" can  $S_{H}(\nu)$  be?

- this implies  $\overline{\operatorname{int}(W)} \subseteq S_{\scriptscriptstyle H}(\nu) \subseteq W$  for any  $\nu \in \mathcal{M}_{\scriptscriptstyle W}$ (as  $\overline{\nu_{\scriptscriptstyle W}(C_{\scriptscriptstyle W})} \subseteq \overline{\{S_g\nu : g \in G\}}$  and  $S_{\scriptscriptstyle H}$  is lower semicontinuous)

aperiodicity of int(W) implies that  $\pi^{\mathfrak{c}}_*: \mathcal{M}_w \to \mathcal{M}^{\mathfrak{c}}_w$  is 1-1:

- assume  $u, \nu' \in \mathcal{M}_w$  are such that  $\pi^{\mathsf{G}}_*(\nu) = \pi^{\mathsf{G}}_*(\nu')$
- then  $\nu'$  and  $\nu$  can only differ by some overall shift  $d \in H$
- hence also  $d + S_{H}(\nu) = S_{H}(\nu')$  and thus d + int(W) = int(W)

# injectivity of $\pi_*^{\scriptscriptstyle G}$ and configuration windows

consider the map  $\mathcal{S}_{H}: \mathcal{M}_{W} \to \mathcal{K}(W)$  (cpct subsets of W) given by

$$\mathcal{S}_{^{_{\!\!H\!}}}(\nu)=\overline{\pi^{^{_{\!H\!}}}(\mathrm{supp}(\nu))}=\mathrm{supp}(\pi^{^{_{\!H\!}}}_*\nu)$$

How "small" can  $\mathcal{S}_{H}(\nu)$  be?

- this implies  $\overline{\operatorname{int}(W)} \subseteq S_{\scriptscriptstyle H}(\nu) \subseteq W$  for any  $\nu \in M_{\scriptscriptstyle W}$ (as  $\overline{\nu_{\scriptscriptstyle W}(C_{\scriptscriptstyle W})} \subseteq \overline{\{S_g \nu : g \in G\}}$  and  $S_{\scriptscriptstyle H}$  is lower semicontinuous)

aperiodicity of int(W) implies that  $\pi^{\mathfrak{c}}_*: \mathcal{M}_w \to \mathcal{M}^{\mathfrak{c}}_w$  is 1-1:

- assume  $u, \nu' \in \mathcal{M}_w$  are such that  $\pi^{\scriptscriptstyle G}_*(\nu) = \pi^{\scriptscriptstyle G}_*(\nu')$
- then  $\nu'$  and  $\nu$  can only differ by some overall shift  $d \in H$
- hence also  $d + S_H(\nu) = S_H(\nu')$  and thus d + int(W) = int(W)

# injectivity of $\pi_*^{\scriptscriptstyle G}$ and configuration windows

consider the map  $\mathcal{S}_{H}: \mathcal{M}_{W} \to \mathcal{K}(W)$  (cpct subsets of W) given by

$$\mathcal{S}_{^{_{\!\!H\!}}}(\nu)=\overline{\pi^{^{_{\!H\!}}}(\mathrm{supp}(\nu))}=\mathrm{supp}(\pi^{^{_{\!H\!}}}_*\nu)$$

How "small" can  $\mathcal{S}_{H}(\nu)$  be?

- this implies  $\overline{\operatorname{int}(W)} \subseteq S_{\scriptscriptstyle H}(\nu) \subseteq W$  for any  $\nu \in M_{\scriptscriptstyle W}$ (as  $\overline{\nu_{\scriptscriptstyle W}(C_{\scriptscriptstyle W})} \subseteq \overline{\{S_g \nu : g \in G\}}$  and  $S_{\scriptscriptstyle H}$  is lower semicontinuous)

aperiodicity of int(W) implies that  $\pi^{\mathsf{G}}_* : \mathcal{M}_{\mathsf{W}} \to \mathcal{M}^{\mathsf{G}}_{\mathsf{W}}$  is 1-1:

- assume  $\nu, \nu' \in \mathcal{M}_w$  are such that  $\pi^{\mathsf{G}}_*(\nu) = \pi^{\mathsf{G}}_*(\nu')$
- then  $\nu'$  and  $\nu$  can only differ by some overall shift  $d \in H$
- hence also  $d + S_{H}(\nu) = S_{H}(\nu')$  and thus d + int(W) = int(W)

# topological results for configurations on G

#### Theorem

Assume that int(W) is aperiodic (so in particular non-empty).

- a)  $(\mathcal{M}_w, S)$  and  $(\mathcal{M}_w^c, S)$  are isomorphic, and both are almost 1-1 extensions of their maximal equicontinuous factor  $(\hat{X}, \hat{T})$ .
- b) Denote by  $\Gamma : \mathcal{M}_{w}^{G} \to \hat{X}$  the above factor map. If M is a non-empty, closed S-invariant subset of  $\mathcal{M}_{w}^{G}$ , then (M, S) is an almost 1 1 extension of its maximal equicontinuous factor  $(\hat{X}, \hat{T})$  with factor map  $\Gamma|_{M}$ .

remark:

■  $int(W) \neq \emptyset$  aperiodic if *H* only has trivial compact subgroups

a)  $\pi^{\hat{x}} : (\overline{\operatorname{graph}(\nu_w)}, S) \to (\hat{X}, \hat{T})$  is a 1-1 extension of the equicontinuous factor  $(\hat{X}, \hat{T})$ , as  $C_w$  is dense  $G_{\delta}$ . By a factorisation argument, this also holds for the maximal equicontinuous factor, which must then coincide with  $(\hat{X}, \hat{T})$ .

 $\pi_*^{G \times H}$ :  $\overline{\operatorname{graph}(\nu_W)} \to \mathcal{M}_W$  is 1-1 on non-zero configurations, as the torus coordinate can then be uniquely reconstructed. The condition  $\operatorname{int}(W) \neq \emptyset$  excludes zero configurations.

 $\pi^{\scriptscriptstyle G}_*: \mathcal{M}_{\scriptscriptstyle W} \to \mathcal{M}^{\scriptscriptstyle G}_{\scriptscriptstyle W} \text{ is } 1-1 \text{ if } \operatorname{int}(W) \text{ is aperiodic (see above)}$ 

b) follows with a)

## topological results for configurations on G

- In general, the MECF is some proper factor group of  $\hat{X}$ .
- For  $A \subseteq H$ , consider its period group

 $H_A := \left\{ h \in H : h + A = A \right\}, \qquad \mathcal{H}_A = \left\{ 0 \right\} \times H_A \subseteq G \times H$ 

#### Theorem

Assume that  $int(W) \neq \emptyset$ . Let  $\widehat{X'} = \widehat{X}/\pi^{\hat{x}}(\mathcal{H}_{int(W)})$  with induced *G*-action  $\widehat{T'}$ . Let *M* be any non-empty, closed *S*-invariant subset of  $\mathcal{M}_{W}^{\mathsf{G}}$ .

- a)  $(\widehat{X'}, \widehat{T'})$  is the maximal equicontinuous factor of the topological dynamical system (M, S).
- b) If  $H_{int(W)} = H_W$ , then (M, S) is an almost 1 1 extension of  $(\widehat{X'}, \widehat{T'})$ .

# topological results

- The minimal subsystem may be trivial.
- $int(W) = \emptyset$  iff  $\overline{\nu_w(C_w)} = \{\underline{0}\}$  iff  $(\mathcal{M}_w, S)$  has a trivial maximal equicontinuous factor:

$$\begin{split} \mathsf{int}(W) &= \varnothing \Leftrightarrow W = \partial W \\ \Leftrightarrow C_W &= \pi^{\hat{x}} ((\pi^H)^{-1} (\bigcap_{\ell \in \mathcal{L}} (W^c - \ell_H))) \\ \Leftrightarrow C_W &= \pi^{\hat{x}} (x \in G \times H : (x + \mathcal{L}) \cap (G \times W) = \varnothing) \\ \Leftrightarrow \nu_W(C_W) &= \{\underline{0}\} \end{split}$$

- above we considered the case  $int(W) \neq \emptyset$
- if int(W) = Ø, analogous results hold for the maximal equicontinuous generic factor (Keller 2016)

#### weak model sets — measure-theoretic results

### Mirsky measure for configurations on $G \times H$

Mirsky measure  $Q_{\scriptscriptstyle W} := m_{\hat{X}} \circ (
u_{\scriptscriptstyle W})^{-1}$  is lift of Haar measure  $m_{\hat{X}}$  on  $\hat{X}$ 

- was studied in the squarefree case first by Mirsky
- only invariant probability measure on  $(\mathcal{M}_w, S)$  if  $m_H(\partial W) = 0 \Leftrightarrow m_{\hat{X}}(C_w) = 1$

#### Proposition

Assume that  $m_H(W) > 0$ . Then  $(\mathcal{M}_w, Q_w, S)$  is measure-theoretically isomorphic to  $(\hat{X}, m_{\hat{X}}, \hat{T})$ .

reason:

- $\nu_w : \hat{X} \to \mathcal{M}_w$  provides measure-theoretic factor map
- "shift vector map"  $\hat{\pi} : \mathcal{M}_W \setminus \{\underline{0}\} \to \hat{X}$  gives (continuous) measure-theoretic factor map, as  $m_H(W) > 0$  implies  $Q_W(\{\underline{0}\}) = 0$
- note  $\widehat{\pi} \circ \nu_{\scriptscriptstyle W} = \textit{id}$  whenever composition is well defined

# injectivity properties of $\pi^{\mathsf{G}}_*: \mathcal{M}_{\mathsf{W}} \to \mathcal{M}^{\mathsf{G}}_{\mathsf{W}}$

- int(W) aperiodic useless in measurable context, if  $int(W) = \emptyset$
- let P be an ergodic S-invariant propability measure on  $\mathcal{M}_w$
- there is  $W_P \subseteq W$  such that for *P*-aa  $\nu \in \mathcal{M}_w$

$$\mathcal{S}_{H}(\nu) = W_{P}$$

- hence  $\pi_*^{\mathsf{G}}$  is 1-1 on  $(\mathcal{S}_{\mathsf{H}})^{-1}\{W_{\mathsf{P}}\} \subseteq \mathcal{M}_{\mathsf{W}}$  if  $W_{\mathsf{P}}$  aperiodic
- in fact  $W_P$  is *Haar regular*, i.e., for any open  $U \subseteq H$

$$(U \cap W_P) \neq \varnothing \Longrightarrow m_H(U \cap W_P) > 0$$

### Mirsky measure for configurations on G

Mirsky measure  $Q_w^{\scriptscriptstyle G} := m_{\hat{X}} \circ (\nu_w^{\scriptscriptstyle G})^{-1}$  is lift of Haar measure  $m_{\hat{X}}$  on  $\hat{X}$ 

- above results can be transferred if projection  $\pi_*^{\mathsf{G}} : \mathcal{M}_w \to \mathcal{M}_w^{\mathsf{G}}$  is 1 - 1 on a subset of  $Q_w$ -measure 1
- condition  $W_{Q_W}$  aperiodic is equivalent to Haar aperiodicity of W

$$m_H((h+W)\Delta W) = 0 \Longrightarrow h = 0$$

• W Haar aperiodic implies  $m_H(W) > 0$ .

#### Theorem

Suppose that W is Haar aperiodic. Then  $(\mathcal{M}_{w}^{c}, Q_{w}^{c}, S)$  is measure-theoretically isomorphic to  $(\hat{X}, m_{\hat{X}}, \hat{T})$ .

### Mirsky measure for configurations on G

- In general, there is an isomorphism to a factor group of  $\hat{X}$ .
- consider the group  $H_{W}^{m}$  of Haar periods of W, i.e.

$$H_w^m = \{h \in H : m_H((h+W)\Delta W) = 0\}, \qquad \mathcal{H}_w^m = \{0\} \times H_w^m \subseteq G \times H$$

#### Theorem

Suppose  $m_H(W) > 0$ . Let  $\widehat{X'} = \widehat{X}/\pi^{\hat{x}}(\mathcal{H}^m_w)$  with induced G-action  $\widehat{T'}$  and Haar measure  $m_{\widehat{X'}}$ . Then  $(\mathcal{M}^{\scriptscriptstyle G}_w, Q^{\scriptscriptstyle G}_w, S)$  is measure-theoretically isomorphic to  $(\widehat{X'}, m_{\widehat{X'}}, \widehat{T'})$ .

#### weak model sets — measure-theoretic results

# Mirsky measure $Q_w = m_{\hat{X}} \circ ( u_w)^{-1}$ and maximal density

- Fix tempered van Hove sequence (e.g. centred *n*-balls in  $G = \mathbb{R}^d$ )
- We say that v has maximal density if

$$\lim_{n\to\infty}\frac{\nu(A_n\times H)}{m_G(A_n)}=\operatorname{dens}(\mathcal{L})\cdot m_H(W)$$

(upper density  $\leq$  always true)

- consider the set  $\mathcal{M}'_w \subseteq \mathcal{M}_w$  of maximal density configurations
- $Q_w(\mathcal{M}'_w) = 1$ , i.e., maximal density is  $Q_w$ -generic (Moody 2002)
- $\pi^{G}_{*}|_{\mathcal{M}'_{W}}: \mathcal{M}'_{W} \to \mathcal{M}^{G}_{W}$  is one-to-one, if  $W_{Q_{W}}$  is aperiodic
- true as for  $\nu \in \mathcal{M}'_{W}$  we always have

$$W_{Q_W} \subseteq \mathcal{S}_{H}(\nu) \subseteq W$$

### Mirsky measure on configuration hulls in G

For  $\hat{x} \in \hat{X}$ , consider the orbit closure  $\mathcal{M}_{w}^{G}(\hat{x}) \subseteq \mathcal{M}_{w}^{G}$  of the configuration  $\nu_{w}^{G}(\hat{x})$  under the action of S.

- if  $\nu_w^{_G}(\hat{x})$  has maximal density, then  $\operatorname{supp}(\mathcal{Q}_w^{_G}) \subseteq \mathcal{M}_w^{_G}(\hat{x}) \subseteq \mathcal{M}_w^{_G}$
- if in addition  $\nu_w^{\scriptscriptstyle G}(\hat{x}) \in \operatorname{supp}(Q_w^{\scriptscriptstyle G})$ , then  $\mathcal{M}_w^{\scriptscriptstyle G}(\hat{x}) = \mathcal{M}_w^{\scriptscriptstyle G}$
- these two conditions are generic for the Mirsky measure
- in that case, the above results apply to  $\mathcal{M}_{W}^{G}(\hat{x})$  replacing  $\mathcal{M}_{W}^{G}$
- in many examples  $Q_w^{G}$  has full support  $\mathcal{M}_w^{G}$

### measures for configurations on $G \times H$

setting

- $(\mathcal{M}_w, P, S)$  with P an ergodic S-invariant probability measure
- argue as in the Mirsky measure case

### Proposition

If  $m_H(W) > 0$  and if P is any S-invariant probability measure on  $\mathcal{M}_w$ , then  $(\mathcal{M}_w, P, S)$  is a measure-theoretic extension of  $(\hat{X}, m_{\hat{X}}, \hat{T})$ .

### measures for configurations on G

transfer above result to measures on  $\mathcal{M}_{W}^{G}$ 

- for given ergodic S-invariant  $P^{G}$  on  $\mathcal{M}_{W}^{G}$ , there exists ergodic S-invariant P on  $\mathcal{M}_{W}$  such that  $P^{G} = P \circ (\pi_{*}^{G})^{-1}$
- argue then as in Mirsky measure case

#### Theorem

Let  $P^{G}$ , P be ergodic S-invariant probability measures on  $\mathcal{M}_{W}^{G}$ ,  $\mathcal{M}_{W}$  such that  $P^{G} = P \circ (\pi_{*}^{G})^{-1}$ , and suppose that  $W_{P}$  is aperiodic. Then  $(\mathcal{M}_{W}, P, S)$  and  $(\mathcal{M}_{W}^{G}, P^{G}, S)$  are measure-theoretically isomorphic via  $\pi_{*}^{G}$ , and  $(\mathcal{M}_{W}^{G}, P^{G}, S)$  is a measure-theoretic extension of  $(\hat{X}, m_{\hat{X}}, \hat{T})$ .

### measures for configurations on G

- in general isomorphism to some proper factor group of  $\hat{X}$
- consider the period group  $H_{W_P}$  of  $W_P$

#### Theorem

Assume that  $m_H(W) > 0$ . Let  $P^{G}$  be an ergodic S-invariant probability measure on  $\mathcal{M}_{W}^{G} \setminus \{\underline{0}\}$ . Take any ergodic S-invariant probability measure P on  $\mathcal{M}_{W}$  satisfying  $P^{G} = P \circ (\pi_{*}^{G})^{-1}$ . Let  $\widehat{X'} = \hat{X}/\pi^{\hat{X}}(\mathcal{H}_{W_{P}})$  with induced G-action  $\widehat{T'}$  and Haar measure  $m_{\widehat{X'}}$ . Then  $(\mathcal{M}_{W}^{G}, P^{G}, S)$  is a measure theoretic extension of  $(\widehat{X'}, m_{\widehat{X'}}, \widehat{T'})$ .