PATTERNS OF PRIMES IN ARITHMETIC PROGRESSIONS

JÁNOS PINTZ
Rényi Institute of the
Hungarian Academy of Sciences

CIRM, Dec. 13, 2016

1. Patterns of primes

Notation: p_{n} the $n^{\text {th }}$ prime, $\mathcal{P}=\left\{p_{i}\right\}_{i=1}^{\infty}, d_{n}=p_{n+1}-p_{n}$.
Abbreviation: i.o. $=$ infinitely often, $\mathbb{Z}^{+}=\{1,2, \ldots\}$
Twin Prime Conjecture $\{n, n+2\} \in \mathcal{P}^{2}$ i.o. $\Longleftrightarrow d_{\nu}=2$ i.o.

Polignac Conjecture (1849) $2 \mid h \longrightarrow d_{n}=h$ i.o.

Definition

$\mathcal{H}=\mathcal{H}_{k}=\left\{h_{i}\right\}_{i=1}^{k}, \quad 0 \leq h_{1}<h_{2}<h_{k}$ is admissible if the number of residue classes covered by $\mathcal{H} \bmod p, \nu_{p}(\mathcal{H})<p$ for every prime p.

Dickson Conjecture (1904). \mathcal{H}_{k} admissible $\Longrightarrow\left\{n+h_{i}\right\}_{i=1}^{k} \in \mathcal{P}^{k}$ i.o.

Hardy-Littlewood Conjecture (1923). $\mathcal{H}=\mathcal{H}_{k}$ admissible

$$
\begin{gathered}
\sum_{\substack{n \leq x \\
\left\{n+h_{i}\right\} \in \mathcal{P}^{k}}} 1 \sim \frac{x}{\log ^{k} x} \sigma(\mathcal{H}), \\
\sigma(\mathcal{H})=\prod_{p}\left(1-\frac{\nu_{p}(\mathcal{H})}{p}\right)\left(1-\frac{1}{p}\right)^{-k}
\end{gathered}
$$

Remark 1. HL conjecture implies:
Strong HL conjecture: $\mathcal{H}=\mathcal{H}_{k}$ admissible \Longrightarrow

$$
\sum_{\substack{n \leq x \\ n+m, \mathcal{P}^{k}}} 1 \sim \frac{x}{(\log x)^{k}} \sigma(\mathcal{H})
$$

Proof. By Selberg's upper bound sieve

$$
\sum_{\substack{n \leq x \\\left\{n+h i j \in \mathcal{P}^{k} \\ n+h \in \mathcal{P}\right.}} 1 \ll \frac{x}{(\log x)^{k+1}} .
$$

Remark 2. Dickson Conjecture \nRightarrow Strong Dickson Conjecture.
2. Primes in Arithmetic Progressions (AP)

Conjecture (Lagrange, Waring, Erdős-Turán (1936)). The primes contain k-term AP's for every k.

Conjecture (Erdős-Turán (1936)). If $A \subset \mathbb{Z}^{+}$has positive upper density then A contains k-term AP's for every k.

Roth (1953): This is true for $k=3$.
Szemerédi (1975) This is true for every k.

3. History before 2000 (2004)

Erdős (1940) $\quad d_{n}<\left(1-c_{0}\right) \log n$ i.o. $c_{0}>0$ fix.
Bombieri-Davenport (1966) $\quad d_{n}<(\log n) / 2$ i.o.
H. Maier (1988) $\quad d_{n}<(\log n) / 4$ i.o.

Van der Corput (1939) \mathcal{P} contains infinitely many 3-term AP's.
Heath-Brown (1984) There are infinitely many pairs n, d such that $n, n+d, n+2 d \in \mathcal{P}, n+3 d \in \mathcal{P}_{2}$.

Definition
$n=P_{k}$-number if it has at most k prime factors (ALMOST PRIMES).

4. Results after 2000

Green-Tao Theorem (2004-2008): \mathcal{P} contains k-term AP's for every k.
Goldston-Pintz-Yıldırım (2005-2009): $\liminf _{n \rightarrow \infty} d_{n} / \log n=0$.
GPY (2006-2010): $\liminf _{n \rightarrow \infty} d_{n} /(\log n)^{c}=0$ if $c>\frac{1}{2}$.
Zhang (2013-2014): \mathcal{H}_{k} admissible, $k>3.5 \cdot 10^{6} \Longrightarrow n+\mathcal{H}_{k}$ contains at least 2 primes i.o.

Maynard (2013-2015): This is true for $k \geq 105$.
Polymath (2014): This is true for $k \geq 50$.
Maynard (2013-2015), Tao unpublished: \mathcal{H}_{k} admissible
$\Longrightarrow n+\mathcal{H}_{k}$ contains at least $\left(\frac{1}{4}+o(1)\right) \log k$ primes i.o.

5. Patterns of primes in arithmetic progressions

A common generalization of the Green-Tao and Maynard-Tao theorem is

Theorem 1 (J. P. 2017)

Let $m>0$ and $\mathcal{A}=\left\{a_{1}, \ldots, a_{r}\right\}$ be a set of r distinct integers with r sufficiently large depending on m. Let $N(\mathcal{A})$ denote the number of integer m-tuples $\left\{h_{1}, \ldots, h_{m}\right\} \subseteq \mathcal{A}$ such that there exist for every ℓ infinitely many ℓ-term arithmetic progressions of integers $\left\{n_{i}\right\}_{i=1}^{\ell}$ where $n_{i}+h_{j}$ is the $j^{\text {th }}$ prime following n_{i} prime for each pair i, j. Then
(5.1) $\quad N(\mathcal{A}) \gg_{m} \#\left\{\left(h_{1}, \ldots, h_{m}\right) \in \mathcal{A}\right\}>_{m}|A|^{m}=r^{m}$.

Theorem 1 will follow by the application of Maynard's method from the weaker
Theorem 2 (J. P. 2017)
Let m be a positive integer, $\mathcal{H}=\left\{h_{1}, \ldots, h_{k}\right\}$ be an admissible set of k distinct non-negative integers $h_{i} \leqslant H$, $k=\left\lceil\mathrm{Cm}^{2} e^{4 m}\right\rceil$ with a sufficiently large absolute constant C.
Then there exists an m-element subset
(5.2)

$$
\left\{h_{1}^{\prime}, h_{2}^{\prime}, \ldots, h_{m}^{\prime}\right\} \subseteq \mathcal{H}
$$

such that for every positive integer ℓ we have infinitely many ℓ-element non-trivial arithmetic progressions of integers n_{i} such that $n_{i}+h_{j}^{\prime} \in \mathcal{P}$ for $1 \leqslant i \leqslant \ell, 1 \leqslant j \leqslant m$, further $n_{i}+h_{j}^{\prime}$ is always the $j^{\text {th }}$ prime following n_{i}.

In fact we prove a stronger result, namely
Theorem 3 (J. P. 2017)
There is some C, such that for all k_{0} and all $k>C k_{0}^{2} e^{4 k_{0}}$ there is some $c>0$, such that for all admissible tuples $\left\{h_{1}, \ldots, h_{k}\right\}$ the number $N(x)$ of integers $n \leq x$, such that $n+h_{i}$ is n^{c}-pseudo prime, and among these k integers there are at least k_{0} primes, satisfies $N(x) \gg \frac{x}{\log ^{k} x}$. These $N(x)$ integers $n \leq x$ contain an m-term AP if $x>C_{0}(m)$.
6. Structure of the proof of the Maynard-Tao theorem
(i) Key parameters: $\mathcal{H}=\left\{h_{1}, \ldots, h_{k}\right\}$ given
$\left(0 \leq h_{1}<h_{2}<\ldots<h_{k}\right)$
N large, we look for primes of the form $n+h_{i}$ with $n \in[N, 2 N)$ $R=N^{\theta / 2-\varepsilon}$, where θ is a level of distribution of primes:

$$
\begin{equation*}
\sum_{q \leqslant x^{\theta}} \max _{(a, q)=1}\left|\pi(x, q, a)-\frac{\pi(x)}{\varphi(q)}\right| \ll{ }_{A} \frac{x}{(\log x)^{A}} \tag{6.1}
\end{equation*}
$$

holds for any $A>0$ where the \ll symbol of Vinogradov means that $f(x)=O(g(x))$ is abbreviated by $f(x) \ll g(x)$.
Remark. $\theta=1 / 2$ admissible: Bombieri-Vinogradov theorem (1965). $\theta>0$ Rényi (1947)
(6.2) $\quad W=\prod_{p \leq D_{0}} p \quad D_{0}=C^{*}(k)$ suitably large
(6.3) $n \equiv \nu_{0}(\bmod W)\left(\nu_{0}+h_{i}, W\right)=1$ for $i=1, \ldots, k$.
(ii) We weight the numbers $n \equiv \nu_{0}(\bmod W), n \in[N, 2 N)$ by w_{n}, so that $w_{n} \geq 0$ and on average w_{n} would be large if we have many primes among $\left\{n+h_{i}\right\}_{i=1}^{k}$,
(6.4)

$$
w_{n}=\left(\sum_{d_{i} \mid n+h_{i} \forall i} \lambda_{d_{1}, \ldots, d_{k}}\right)^{2}
$$

(6.5) $\quad \lambda_{d_{1}, \ldots, d_{k}}=\left(\prod_{i=1}^{k} \mu\left(d_{i}\right) d_{i}\right) \sum_{\substack{r_{1}, \ldots, r_{k} \\ d_{i} \mid r_{i} \forall i \\\left(r_{i}, W\right)=1}} \frac{\mu\left(\prod_{i=1}^{k} r_{i}\right)^{2}}{\prod_{i=1}^{k} \varphi\left(r_{i}\right)} y_{r_{1}, \ldots, r_{k}}$
whenever $\left(\prod_{i=1}^{k} d_{i}, W\right)=1$ and $\lambda_{d_{1}, \ldots, d_{r}}=0$ otherwise.
(6.6)

$$
y_{r_{1}, \ldots, r_{k}}=F\left(\frac{\log r_{1}}{\log R}, \ldots, \frac{\log r_{k}}{\log R}\right)
$$

where F is piecewise differentiable, real, F and F^{\prime} bounded, supported on

$$
\begin{equation*}
R_{k}=\left\{\left(x_{1}, \ldots, x_{k}\right) \in[0,1]^{k}: \sum_{i=1}^{k} x_{i} \leqslant 1\right\} \tag{6.7}
\end{equation*}
$$

(iii) Let $\chi_{\mathcal{P}}(n)$ denote the characteristic function of \mathcal{P}, (6.8)

$$
S_{1}:=\sum_{\substack{n \\ N \leqslant n<2 N \\ n \equiv \nu_{0}(\bmod W)}} w_{n}, \quad S_{2}:=\sum_{\substack{n \\ n \equiv \nu_{0}(\bmod W)}}\left(w_{n} \sum_{i=1}^{k} \chi_{\mathcal{P}}\left(n+h_{i}\right)\right),
$$

If we succeed to choose F, thereby $\lambda_{\mathbf{d}}$ and w_{n} in such a way that $\left(r_{k} \in \mathbb{Z}^{+}\right)$
(6.9) $\quad S_{2}>S_{1}$, or $S_{2}>\left(r_{k}-1\right) S_{1}$ resp.
we obtain at lest two, or k_{0} primes, resp. among $n+h_{1}, \ldots, n+h_{k} \Longrightarrow$ bounded gaps between primes or even k_{0} primes in bounded intervals i.o.
(iv) First step towards this: evaluation of S_{1} and S_{2}.

Proposition 1. We have as $N \rightarrow \infty$
(6.10) $\quad S_{1}=\frac{\left(1+O\left(\frac{1}{D_{0}}\right)\right) \varphi(W)^{k} N(\log R)^{k}}{W^{k+1}} I_{k}(F)$,
(6.11) $S_{2}=\frac{\left(1+O\left(\frac{1}{D_{0}}\right)\right) \varphi(W)^{k} N(\log R)^{k+1}}{W^{k+1}} \sum_{j=1}^{k} J_{k}^{(j)}(F)$,
(6.12)

$$
I_{k}(F)=\int_{0}^{1} \ldots \int_{0}^{1} F\left(t_{1}, \ldots, t_{k}\right)^{2} d t_{1} \ldots d t_{k}
$$

(6.13)
$J_{k}^{(j)}(F)=\int_{0}^{1} \ldots \int_{0}^{1}\left(\int_{0}^{1} F\left(t_{1}, \ldots, t_{k}\right) d t_{j}\right)^{2} d t_{1} \ldots d t_{j-1} d t_{j+1} \ldots d t_{k}$.

After this we immediately obtain
Corollary. If the sup is taken with F_{k} as before and
(6.14)

$$
M_{k}=\sup \frac{\sum_{j=1}^{k} J_{k}^{(j)}(F)}{l_{k}(F)}, \quad r_{k}=\left\lceil\frac{\theta M_{k}}{2}\right\rceil
$$

and let \mathcal{H} be a fixed admissible sequence $\mathcal{H}=\left\{h_{1}, \ldots, h_{k}\right\}$ of size k. Then there are infinitely many integers n such that at least r_{k} of the $n+h_{i}(1 \leqslant i \leqslant k)$ are simultaneously primes.

Proposition 2. $M_{105}>4$ and $M_{k}>\log k-2 \log \log k-2$ for $k>k_{0}$.

7. A stronger version of the Maynard-Tao theorem

Theorem 3 gives a stronger form in 3 aspects:
(i) all numbers $n+h_{i}$ are almost primes, having all prime factors greater than $n^{c(k)}$;
(ii) the number of such n 's is at least $\frac{c^{\prime}(k) N}{\log ^{k} N}$, the true order of magnitude of $n \in[N, 2 N)$ with all $n+h_{i}$ being n^{c}-almost primes;
(iii) for every ℓ we have (infinitely) many ℓ-term AP's with the same prime pattern.

Remark: properties (i) and (ii) are interesting in themselves, but crucial in many applications, in particular in showing (iii).

Let $P^{-}(n)$ denote the smallest prime factor of n.
The following Lemma shows that the contribution of n 's to S_{1} with at least one prime $p \mid \Pi\left(n+h_{i}\right), p<n^{c_{1}(k)}$ is negligible if $c_{1}(k)$ is suitably small $\left(R=N^{\theta / 2-\varepsilon}\right)$.
Lemma 1. We have

Corollary. We get immediately property (i). Further
(7.2) $\quad w_{n} \ll \lambda_{\text {max }}^{2} \ll y_{\text {max }}^{2}(\log R)^{2 k} \ll(\log R)^{2 k}$
since $\prod\left(n+h_{i}\right)$ has in this case just a bounded number of prime factors, so the sum over the divisors can be substituted by the largest term (apart from a factor depending on k). So we get
(7.3) $\quad S_{1}^{*}:=$

$$
1 \geq \frac{S_{1}\left(1+O\left(c_{1}(k)\right)\right.}{(\log R)^{2 k}}
$$

by which we obtained property (ii).
8. Green-Tao theorem: structure of proof

Original Szemerédi theorem. If $\mathcal{A} \subseteq \mathbb{Z}_{N}$ has a positive density then \mathcal{A} contains m-term AP for every m, if $N>C(m)$.

Relative Szemerédi theorem (Green-Tao). If $\mathcal{A} \subseteq \mathbb{Z}_{N}$ is a pseudorandom set, $\mathcal{B} \subseteq \mathcal{A}$ has a positive relative density within \mathcal{A}, i.e. with a measure $\nu(n)$ obeying the linear forms condition
(8.1)

$$
\lim _{N \rightarrow \infty} \frac{\sum_{n \leq N, n \in \mathcal{B}} \nu(n)}{\sum_{n \leq N, n \in \mathcal{A}} \nu(n)}=\delta>0
$$

then \mathcal{B} contains m-term AP for every m, if $N>C(\delta, m)$.

Definition. A set $\mathcal{A} \subseteq \mathbb{Z}_{N}$ is a pseudorandom set if there is a measure $\nu: \mathbb{Z}_{N} \rightarrow R^{+}$which satisfies the linear forms condition if the following holds.
Let $\left(L_{i j}\right), 1 \leq i \leq \ell, 1 \leq j \leq t$ rational numbers with all numerators and denominators at most $L_{0}, b_{i} \in \mathbb{Z}_{N}, \ell \leq \ell_{0}$, $m \leq m_{0}$. Let $\psi_{i}(\mathbf{x})=\sum_{j=1}^{t} L_{i, j} x_{j}+b_{i}$, where the t-tuples $\left(L_{i j}\right)_{1 \leq j \leq t} \in \mathbb{Q}^{t}$ are non-zero and no t-tuple is a rational multiple of another. Then
(8.2) $\mathbb{E}\left(\nu\left(\psi_{1}(\mathbf{x})\right) \ldots \nu\left(\psi_{m}(\mathbf{x})\right) \mid \mathbf{x} \in \mathbb{Z}_{N}^{t}\right)=1+o_{L_{0}, \ell_{0}, m_{0}}(1)$.

Remark 1. The primes up to N form a set of density $1 / \log N \rightarrow 0$ as $N \rightarrow \infty$. Therefore we cannot use the Szemerédi theorem.

Step 1. To formulate and show a generalization of the Szemerédi theorem where the set $\mathbb{Z}_{N}=[1,2, \ldots, N]$ can be substituted by some sparse set satisfying some regularity condition like (8.2). This result is called Relative Szemerédi Theorem.

Remark 2. Another condition, the correlation condition in the original work of Green and Tao could be avoided by a different proof of Conlon-Fox-Zhao (2015).
Step 2. To find a suitable pseudo-random set \mathcal{A} where the set \mathcal{P} of the primes can be embedded as a subset of positive density. This was proved in an unpublished manuscript of Goldston and Yildırım (2003). This set \mathcal{A} is the set of almost primes; the measure (μ is the Möbius function, $c>0$ small)
(8.3) $\quad \nu(n)=\left(\sum_{d \mid n, d \leq R} \mu(d)\left(1-\frac{\log d}{\log R}\right)\right)^{2} \quad R=N^{c}$.

9. Combination of the methods of Green-Tao and Maynard-Tao

Difficulty: the original Maynard-Tao method produces directly (without using any further ideas) only at least
(9.1)

$$
N^{c / \log \log N}
$$

integers $n \in[N, 2 N)$ with at least $k_{0}=\frac{1}{4}(1+o(1)) \log k$ primes among $\left\{n+h_{i}\right\}_{i=s}^{k}$. The expected number of n 's with this property is
(9.2)
$c_{2}\left(k_{0}\right) \frac{N}{(\log N)^{k_{0}}}$,
which is much more.

Hope: By Theorem 1 (cf. 7 (i)-(ii)) we obtain
(9.3)

$$
\frac{c_{3}(k) N}{\log ^{k} N}
$$

such numbers, which is still less than (9.2).
Further idea: if we require additionally that all $n+h_{i}$'s should be almost primes, i.e. $P^{-}\left(n+h_{i}\right)>n^{c_{1}(k)}$, then we obtain also $c(k) N / \log ^{k} N$ numbers $n \in[N, 2 N)$ which is already the true order of magnitude of such n 's.

Solution: instead of embedding primes into the set of almost primes we embed the set of $n ' s, n \in[N, 2 N)$ with at least k_{0} primes among $\left\{n+h_{i}\right\}_{i=1}^{k}$ and

$$
\begin{equation*}
P^{-}\left(\prod_{i=1}^{k}\left(n+h_{i}\right)\right)>n^{c_{1}(k)} \tag{9.4}
\end{equation*}
$$

into the set of n 's, $n \in[N, 2 N$) with (9.4).
Remark: in some sense we embed the set of almost prime k-tuples with at least k_{0} primes into the set of all almost prime k-tuples.

Lemma 2. Let k be an arbitrary positive integer and $\mathcal{H}=\left\{h_{1}, \ldots, h_{k}\right\}$ be an admissible k-tuple. If the set $\mathcal{N}(\mathcal{H})$ satisfies with constants $c_{1}(k), c_{2}(k)$
(9.5) $\quad \mathcal{N}(\mathcal{H}) \subseteq\left\{n ; P^{-}\left(\prod_{i=1}^{k}\left(n+h_{i}\right)\right) \geqslant n^{c_{1}(k)}\right\}$
and
(9.6)

$$
\#\{n \leqslant X, n \in \mathcal{N}(\mathcal{H})\} \geqslant \frac{c_{2}(k) X}{\log ^{k} X}
$$

for $X>X_{0}$, then $N(\mathcal{H})$ contains ℓ-term arithmetic progressions for every ℓ.

Main idea of the proof: We use the measure
(9.7) $\quad \nu(n):= \begin{cases}\left(\frac{\varphi(W)}{W}\right)^{k} \prod_{i=1}^{k} \frac{\Lambda_{R}^{2}\left(W_{n}+\nu_{0}+h_{i}\right)}{\log R}, & n \in[N, 2 N) \\ 0 & \text { otherwise }\end{cases}$
with $R=N^{c_{1}(k)}$ and
(9.8)

$$
\Lambda_{R}(u)=\sum_{d \leq R, d \mid u} \mu(d) \log \frac{R}{d} .
$$

Remark. If $P^{-}\left(\prod_{i=1}^{k}\left(u+h_{i}\right)\right)>N^{c_{1}(k)}=R$, then
$\Lambda_{R}\left(u+h_{i}\right)=\log R$ (the single term in the sum is that with $d=1$) and $\nu(u)=(\varphi(W) / W)^{k} \log ^{k} R$ does not depend on u.

The pseudorandomness of the measure ν can be proved by a generalization of the original Goldston-Yıldırım method. The original GY method is exactly the case $k=1$. The possible methods are either
(i) analytic number theoretical (using the zeta-function) or
(ii) Fourier series or
(iii) real elementary.

Remark. The proof that we obtain consecutive primes by this procedure follows from the fact that the number of $n \in[N, 2 N)$ obtained is at least $c(k) N / \log ^{k} N$. If any of the numbers $n+h, 0 \leq h \leq h_{k}, h \neq h_{i}(i=1,2, \ldots, k)$ were additionally prime then by Selberg's upper bound sieve we would find at most $c^{\prime}(k) N / \log ^{k+1} N$ such numbers (cf. the estimate in 1.) since all $n+h_{i}(i=1,2, \ldots, k)$ are almost primes (similarly to the case of the Strong HL conjecture). So here we also need both properties 7 (i) and 7 (ii).

10. Sketch of the proof of Lemma 2

The proof is essentially the same for an arbitrary k as for the simplest case $k=1$. So let $k=1$. We choose a prime $p<N^{c_{1}(k)}$ and try to evaluate
(10.1)

$$
S_{p}^{*}=\sum_{\substack{N \leq n<2 N, p\left|n+h, n \equiv \nu_{0}(W) \\[d, e]\right| n+h}} \lambda_{d} \lambda_{e}
$$

Distinguishing the cases
(10.2)

$$
p \nmid[d, e] \Longrightarrow \sim \frac{N}{p W} \frac{\lambda_{d} \lambda_{e}}{[d, e]}
$$

(10.3) $\quad d=d^{\prime} p, \quad p \nmid e \Longrightarrow \sim \frac{N}{p W} \frac{\lambda_{d} \lambda_{e}}{\left[d^{\prime}, e\right]}$ (or reversed)
(10.4) $d=d^{\prime} p, \quad e=e^{\prime} p \Longrightarrow \sim \frac{N}{p W} \frac{\lambda_{d} \lambda_{e}}{\left[d^{\prime}, e^{\prime}\right]}$
we obtain in all cases an asymptotic of type
(10.5) $\quad S_{p}^{*}=\frac{N}{p W} \sum \frac{\lambda_{d} \lambda_{e}}{[d, e, p] / p}+O\left(R^{2+\varepsilon}\right)$.

Lemma (Selberg, Coll. Works 1991, Greaves 2000)
(10.6) $\quad T_{p}:=\sum \frac{\lambda_{d} \lambda_{e}}{[d, e, p] / p}=\sum_{\substack{r \\ p \nmid r}} \frac{\mu^{2}(r)}{\varphi(r)}\left(y_{r}-y_{r p}\right)^{2}$.

However, by the definition of y_{r} and F we have (10.7)
$\left(y_{r}-y_{r p}\right)^{2}=\left(F\left(\frac{\log r}{\log R}\right)-F\left(\frac{\log r+\log p}{\log R}\right)\right)^{2} \ll F \frac{\log p}{\log R}$,
(10.8) $T_{p} \ll \frac{\log p}{\log R} \cdot \log R \frac{\varphi(W)}{W} \Longrightarrow S_{p}^{*} \ll \frac{\log p}{p} \cdot \frac{N}{W} \cdot \frac{\varphi(W)}{W}$,
(10.9)

$$
S^{*}=\sum_{p<N c_{1}(k)} S_{p}^{*} \ll \frac{N}{W} c_{1}(k) \log N \cdot \frac{\varphi(W)}{W} \lll k, \theta \quad c_{1}(k) S_{1}
$$

which is negligible if $c_{1}(k)$ is sufficiently small.

