PATTERNS OF PRIMES IN ARITHMETIC PROGRESSIONS

JÁNOS PINTZ Rényi Institute of the Hungarian Academy of Sciences

CIRM, Dec. 13, 2016

1. Patterns of primes

Notation: p_n the n^{th} prime, $\mathcal{P} = \{p_i\}_{i=1}^{\infty}, d_n = p_{n+1} - p_n$. Abbreviation: i.o. = infinitely often, $\mathbb{Z}^+ = \{1, 2, ...\}$

Twin Prime Conjecture $\{n, n+2\} \in \mathcal{P}^2$ i.o. $\iff d_{\nu} = 2$ i.o.

Polignac Conjecture (1849) $2 \mid h \longrightarrow d_n = h$ i.o.

Definition

 $\mathcal{H} = \mathcal{H}_k = \{h_i\}_{i=1}^k, \ 0 \le h_1 < h_2 < h_k$ is admissible if the number of residue classes covered by $\mathcal{H} \mod p, \nu_p(\mathcal{H}) < p$ for every prime p.

Dickson Conjecture (1904). \mathcal{H}_k admissible $\implies \{n + h_i\}_{i=1}^k \in \mathcal{P}^k \text{ i.o.}$

3

Hardy–Littlewood Conjecture (1923). $\mathcal{H} = \mathcal{H}_{k}$ admissible $\implies \sum_{\substack{n \leq x \\ \{n+h_{i}\} \in \mathcal{P}^{k}}} 1 \sim \frac{x}{\log^{k} x} \sigma(\mathcal{H}),$ $\sigma(\mathcal{H}) = \prod \left(1 - \frac{\nu_{p}(\mathcal{H})}{p}\right) \left(1 - \frac{1}{p}\right)^{-k}$ Remark 1. HL conjecture implies:

Strong HL conjecture: $\mathcal{H} = \mathcal{H}_k$ admissible \Longrightarrow

Proof. By Selberg's upper bound sieve

$$\sum_{\substack{n \leq x \\ \{n+h_i\} \in \mathcal{P}^k \\ n+h \in \mathcal{P}}} 1 \ll \frac{x}{(\log x)^{k+1}}.$$

Remark 2. Dickson Conjecture $\neq \Rightarrow$ Strong Dickson Conjecture.

2. Primes in Arithmetic Progressions (AP)

Conjecture (Lagrange, Waring, Erdős–Turán (1936)). *The* primes contain k-term AP's for every k.

Conjecture (Erdős–Turán (1936)). If $A \subset \mathbb{Z}^+$ has positive upper density then A contains k-term AP's for every k.

Roth (1953): This is true for k = 3.

Szemerédi (1975) This is true for every k.

3. History before 2000 (2004) Erdős (1940) $d_n < (1 - c_0) \log n \text{ i.o. } c_0 > 0 \text{ fix.}$ Bombieri–Davenport (1966) $d_n < (\log n)/2 \text{ i.o.}$ H. Maier (1988) $d_n < (\log n)/4 \text{ i.o.}$ Van der Corput (1939) \mathcal{P} contains infinitely many 3-term AP's.

Heath-Brown (1984) There are infinitely many pairs n, d such that $n, n + d, n + 2d \in \mathcal{P}$, $n + 3d \in \mathcal{P}_2$.

Definition

 $n = P_k$ -number if it has at most k prime factors (ALMOST PRIMES).

4. Results after 2000

Green–Tao Theorem (2004–2008): \mathcal{P} contains k-term AP's for every k.

Goldston–Pintz–Yıldırım (2005–2009): $\liminf_{n \to \infty} d_n / \log n = 0.$

GPY (2006–2010): $\liminf_{n\to\infty} d_n/(\log n)^c = 0$ if $c > \frac{1}{2}$. Zhang (2013–2014): \mathcal{H}_k admissible, $k > 3.5 \cdot 10^6 \Longrightarrow n + \mathcal{H}_k$ contains at least 2 primes i.o. Maynard (2013–2015): This is true for $k \ge 105$. Polymath (2014): This is true for $k \ge 50$. Maynard (2013–2015), Tao unpublished: \mathcal{H}_k admissible $\implies n + \mathcal{H}_k$ contains at least $(\frac{1}{4} + o(1)) \log k$ primes i.o.

5. Patterns of primes in arithmetic progressions

A common generalization of the Green–Tao and Maynard–Tao theorem is

Theorem 1 (J. P. 2017)

Let m > 0 and $\mathcal{A} = \{a_1, \ldots, a_r\}$ be a set of r distinct integers with r sufficiently large depending on m. Let $N(\mathcal{A})$ denote the number of integer m-tuples $\{h_1, \ldots, h_m\} \subseteq \mathcal{A}$ such that there exist for every ℓ infinitely many ℓ -term arithmetic progressions of integers $\{n_i\}_{i=1}^{\ell}$ where $n_i + h_j$ is the j^{th} prime following n_i prime for each pair i, j. Then

$$(5.1) \qquad \mathsf{N}(\mathcal{A}) \gg_m \# \{(h_1, \ldots, h_m) \in \mathcal{A}\} \gg_m |\mathcal{A}|^m = r^m$$

Theorem 1 will follow by the application of Maynard's method from the weaker

Theorem 2 (J. P. 2017)

Let *m* be a positive integer, $\mathcal{H} = \{h_1, \ldots, h_k\}$ be an admissible set of *k* distinct non-negative integers $h_i \leq H$, $k = \lceil Cm^2 e^{4m} \rceil$ with a sufficiently large absolute constant *C*. Then there exists an *m*-element subset

$$(5.2) {h'_1, h'_2, \ldots, h'_m} \subseteq \mathcal{H}$$

such that for every positive integer ℓ we have infinitely many ℓ -element non-trivial arithmetic progressions of integers n_i such that $n_i + h'_j \in \mathcal{P}$ for $1 \leq i \leq \ell$, $1 \leq j \leq m$, further $n_i + h'_j$ is always the j^{th} prime following n_i . 11

In fact we prove a stronger result, namely

Theorem 3 (J. P. 2017)

There is some C, such that for all k_0 and all $k > Ck_0^2 e^{4k_0}$ there is some c > 0, such that for all admissible tuples $\{h_1, \ldots, h_k\}$ the number N(x) of integers $n \le x$, such that $n + h_i$ is n^c -pseudo prime, and among these k integers there are at least k_0 primes, satisfies $N(x) \gg \frac{x}{\log^k x}$. These N(x)integers $n \le x$ contain an m-term AP if $x > C_0(m)$.

6. Structure of the proof of the Maynard–Tao theorem (i) Key parameters: $\mathcal{H} = \{h_1, \ldots, h_k\}$ given $(0 \le h_1 < h_2 < \ldots < h_k)$ N large, we look for primes of the form $n + h_i$ with $n \in [N, 2N)$

 $R = N^{\theta/2-\varepsilon}$, where θ is a level of distribution of primes:

(6.1)
$$\sum_{q \leq x^{\theta}} \max_{\substack{a \\ (a,q)=1}} \left| \pi(x,q,a) - \frac{\pi(x)}{\varphi(q)} \right| \ll_{A} \frac{x}{(\log x)^{A}}$$

holds for any A > 0 where the \ll symbol of Vinogradov means that f(x) = O(g(x)) is abbreviated by $f(x) \ll g(x)$. **Remark**. $\theta = 1/2$ admissible: Bombieri–Vinogradov theorem (1965). $\theta > 0$ Rényi (1947)

(6.2)
$$W = \prod_{p \le D_0} p$$
 $D_0 = C^*(k)$ suitably large

(6.3)
$$n \equiv \nu_0 \pmod{W}$$
 $(\nu_0 + h_i, W) = 1$ for $i = 1, \dots, k$.

(ii) We weight the numbers $n \equiv \nu_0 \pmod{W}$, $n \in [N, 2N)$ by w_n , so that $w_n \ge 0$ and on average w_n would be large if we have many primes among $\{n + h_i\}_{i=1}^k$,

(6.4)
$$w_n = \left(\sum_{d_i \mid n+h_i \,\forall i} \lambda_{d_1,\dots,d_k}\right)^2$$

(6.5)
$$\lambda_{d_1,...,d_k} = \left(\prod_{i=1}^k \mu(d_i)d_i\right) \sum_{\substack{r_1,...,r_k \\ d_i | r_i \,\forall i \\ (r_i,W) = 1}} \frac{\mu\left(\prod_{i=1}^k r_i\right)^2}{\prod_{i=1}^k \varphi(r_i)} y_{r_1,...,r_k}$$

whenever
$$\left(\prod\limits_{i=1}^k d_i, W
ight) = 1$$
 and $\lambda_{d_1,...,d_r} = 0$ otherwise.

(6.6)
$$y_{r_1,\ldots,r_k} = F\left(\frac{\log r_1}{\log R},\ldots,\frac{\log r_k}{\log R}\right)$$

where F is piecewise differentiable, real, F and F' bounded, supported on

(6.7)
$$R_k = \left\{ (x_1, \ldots, x_k) \in [0, 1]^k : \sum_{i=1}^k x_i \leq 1 \right\}.$$

(iii) Let $\chi_{\mathcal{P}}(n)$ denote the characteristic function of \mathcal{P} , (6.8)

$$S_1 := \sum_{\substack{n \\ N \leq n < 2N \\ n \equiv \nu_0 \pmod{W}}} w_n, \quad S_2 := \sum_{\substack{n \leq n < 2N \\ n \equiv \nu_0 \pmod{W}}} \left(w_n \sum_{i=1}^k \chi_{\mathcal{P}}(n+h_i) \right),$$

If we succeed to choose F, thereby $\lambda_{\mathbf{d}}$ and w_n in such a way that $(r_k \in \mathbb{Z}^+)$

(6.9)
$$S_2 > S_1$$
, or $S_2 > (r_k - 1)S_1$ resp.

we obtain at lest two, or k_0 primes, resp. among $n + h_1, \ldots, n + h_k \Longrightarrow$ bounded gaps between primes or even k_0 primes in bounded intervals i.o.

(iv) First step towards this: evaluation of S_1 and S_2 . **Proposition 1**. We have as $N \to \infty$ $S_{1} = \frac{\left(1 + O\left(\frac{1}{D_{0}}\right)\right)\varphi(W)^{k}N(\log R)^{k}}{I_{M}(k+1)}I_{k}(F),$ (6.10) (6.11) $S_2 = \frac{\left(1 + O\left(\frac{1}{D_0}\right)\right)\varphi(W)^k N(\log R)^{k+1}}{W^{k+1}} \sum_{k=1}^k J_k^{(j)}(F),$ $I_k(F) = \int_{1}^{1} \dots \int_{2}^{1} F(t_1, \dots, t_k)^2 dt_1 \dots dt_k,$ (6.12) (6.13) $J_k^{(j)}(F) = \int_1^1 \dots \int_1^1 \left(\int_1^1 F(t_1, \dots, t_k) dt_j \right)^2 dt_1 \dots dt_{j-1} dt_{j+1} \dots dt_k.$

After this we immediately obtain

Corollary. If the sup is taken with F_k as before and

(6.14)
$$M_k = \sup \frac{\sum_{j=1}^k J_k^{(j)}(F)}{I_k(F)}, \quad r_k = \left\lceil \frac{\theta M_k}{2} \right\rceil$$

and let \mathcal{H} be a fixed admissible sequence $\mathcal{H} = \{h_1, \ldots, h_k\}$ of size k. Then there are infinitely many integers n such that at least r_k of the $n + h_i$ $(1 \le i \le k)$ are simultaneously primes.

Proposition 2. $M_{105} > 4$ and $M_k > \log k - 2 \log \log k - 2$ for $k > k_0$.

7. A stronger version of the Maynard–Tao theorem Theorem 3 gives a stronger form in 3 aspects:

(i) all numbers $n + h_i$ are almost primes, having all prime factors greater than $n^{c(k)}$;

(ii) the number of such *n*'s is at least $\frac{c'(k)N}{\log^k N}$, the true order of magnitude of $n \in [N, 2N)$ with all $n + h_i$ being n^c -almost primes;

(iii) for every ℓ we have (infinitely) many ℓ-term AP's with the same prime pattern.

Remark: properties (i) and (ii) are interesting in themselves, but crucial in many applications, in particular in showing (iii).

Let $P^{-}(n)$ denote the smallest prime factor of n.

The following Lemma shows that the contribution of n's to S_1 with at least one prime $p \mid \prod (n + h_i)$, $p < n^{c_1(k)}$ is negligible if $c_1(k)$ is suitably small $(R = N^{\theta/2-\varepsilon})$.

Lemma 1. We have

(7.1)
$$S_1^- = \sum_{\substack{N \le n < 2N \\ n \equiv \nu_0 \pmod{W}}} w_n \ll_{k,H} \frac{c_1(k) \log N}{\log R} S_1.$$

 $P^- \left(\prod_{i=1}^k (n+h_i)\right) < n^{c_1(k)}$

Corollary. We get immediately property (i). Further

(7.2)
$$w_n \ll \lambda_{\max}^2 \ll y_{\max}^2 (\log R)^{2k} \ll (\log R)^{2k}$$

since $\prod(n + h_i)$ has in this case just a bounded number of prime factors, so the sum over the divisors can be substituted by the largest term (apart from a factor depending on k). So we get

(7.3)
$$S_{1}^{*} := \sum_{\substack{N \leq n < 2N \\ n \equiv \nu_{0} \pmod{W} \\ P^{-} \left(\prod_{i=1}^{k} (n+h_{i})\right) > n^{c_{1}(k)} \\ \#\{i; n+h_{i} \in \mathcal{P}\} \ge r_{k}}} 1 \ge \frac{S_{1}(1+O(c_{1}(k)))}{(\log R)^{2k}},$$

by which we obtained property (ii).

8. Green-Tao theorem: structure of proof

Original Szemerédi theorem. If $\mathcal{A} \subseteq \mathbb{Z}_N$ has a positive density then \mathcal{A} contains *m*-term AP for every *m*, if N > C(m).

Relative Szemerédi theorem (Green–Tao). If $\mathcal{A} \subseteq \mathbb{Z}_N$ is a *pseudorandom* set, $\mathcal{B} \subseteq \mathcal{A}$ has a positive relative density within \mathcal{A} , i.e. with a measure $\nu(n)$ obeying the linear forms condition

(8.1)
$$\lim_{N\to\infty}\frac{\sum\limits_{n\leq N,n\in\mathcal{B}}\nu(n)}{\sum\limits_{n\leq N,n\in\mathcal{A}}\nu(n)}=\delta>0$$

then \mathcal{B} contains *m*-term AP for every *m*, if $N > C(\delta, m)$.

Definition. A set $\mathcal{A} \subseteq \mathbb{Z}_N$ is a *pseudorandom* set if there is a measure $\nu : \mathbb{Z}_N \to \mathbb{R}^+$ which satisfies the *linear forms* condition if the following holds.

Let (L_{ij}) , $1 \le i \le \ell$, $1 \le j \le t$ rational numbers with all numerators and denominators at most L_0 , $b_i \in \mathbb{Z}_N$, $\ell \le \ell_0$, $m \le m_0$. Let $\psi_i(\mathbf{x}) = \sum_{j=1}^t L_{i,j} x_j + b_i$, where the *t*-tuples $(L_{ij})_{1\le j\le t} \in \mathbb{Q}^t$ are non-zero and no *t*-tuple is a rational multiple of another. Then

$$(8.2) \quad \mathbb{E}\Big(\nu(\psi_1(\mathsf{x})) \dots \nu(\psi_m(\mathsf{x})) \mid \mathsf{x} \in \mathbb{Z}_N^t\Big) = 1 + o_{L_0,\ell_0,m_0}(1).$$

Remark 1. The primes up to *N* form a set of density $1/\log N \rightarrow 0$ as $N \rightarrow \infty$. Therefore we cannot use the Szemerédi theorem.

Step 1. To formulate and show a generalization of the Szemerédi theorem where the set $\mathbb{Z}_N = [1, 2, ..., N]$ can be substituted by some *sparse set* satisfying some regularity condition like (8.2). This result is called Relative Szemerédi Theorem.

Remark 2. Another condition, the *correlation condition* in the original work of Green and Tao could be avoided by a different proof of Conlon–Fox–Zhao (2015).

Step 2. To find a suitable *pseudo-random* set A where the set P of the primes can be embedded as a subset of positive density. This was proved in an unpublished manuscript of Goldston and Yıldırım (2003). This set A is the set of almost primes; the measure (μ is the Möbius function, c > 0 small)

(8.3)
$$\nu(n) = \left(\sum_{d \mid n, d \leq R} \mu(d) \left(1 - \frac{\log d}{\log R}\right)\right)^2 \quad R = N^c.$$

9. Combination of the methods of Green–Tao and Maynard–Tao

Difficulty: the original Maynard–Tao method produces directly (without using any further ideas) only at least

$$(9.1) N^{c/\log\log N}$$

integers $n \in [N, 2N)$ with at least $k_0 = \frac{1}{4}(1 + o(1)) \log k$ primes among $\{n + h_i\}_{i=s}^k$. The expected number of n's with this property is

(9.2)
$$c_2(k_0) \frac{N}{(\log N)^{k_0}},$$

which is much more.

Hope: By Theorem 1 (cf. 7 (i)-(ii)) we obtain

(9.3)
$$\frac{c_3(k)N}{\log^k N}$$

such numbers, which is still less than (9.2).

Further idea: if we require additionally that all $n + h_i$'s should be almost primes, i.e. $P^-(n + h_i) > n^{c_1(k)}$, then we obtain also $c(k)N/\log^k N$ numbers $n \in [N, 2N)$ which is already the true order of magnitude of such *n*'s.

Solution: instead of embedding primes into the set of almost primes we embed the set of *n*'s, $n \in [N, 2N)$ with at least k_0 primes among $\{n + h_i\}_{i=1}^k$ and

(9.4)
$$P^{-}\left(\prod_{i=1}^{k}(n+h_i)\right) > n^{c_1(k)}$$

into the set of *n*'s, $n \in [N, 2N)$ with (9.4).

Remark: in some sense we embed the set of almost prime k-tuples with at least k_0 primes into the set of all almost prime k-tuples.

Lemma 2. Let k be an arbitrary positive integer and $\mathcal{H} = \{h_1, \ldots, h_k\}$ be an admissible k-tuple. If the set $\mathcal{N}(\mathcal{H})$ satisfies with constants $c_1(k)$, $c_2(k)$

(9.5)
$$\mathcal{N}(\mathcal{H}) \subseteq \left\{ n; P^{-}\left(\prod_{i=1}^{k} (n+h_i)\right) \ge n^{c_1(k)} \right\}$$

and

(9.6)
$$\#\{n \leq X, n \in \mathcal{N}(\mathcal{H})\} \geq \frac{c_2(k)X}{\log^k X}$$

for $X > X_0$, then $N(\mathcal{H})$ contains ℓ -term arithmetic progressions for every ℓ .

Main idea of the proof: We use the measure

(9.7)
$$\nu(n) := \begin{cases} \left(\frac{\varphi(W)}{W}\right)^k \prod_{i=1}^k \frac{\Lambda_R^2(Wn + \nu_0 + h_i)}{\log R}, & n \in [N, 2N) \\ 0 & \text{otherwise} \end{cases}$$

with $R = N^{c_1(k)}$ and

(9.8)
$$\Lambda_R(u) = \sum_{d \leq R, d \mid u} \mu(d) \log \frac{R}{d}.$$

Remark. If
$$P^{-}\left(\prod_{i=1}^{k} (u+h_i)\right) > N^{c_1(k)} = R$$
, then $\Lambda_R(u+h_i) = \log R$ (the single term in the sum is that with $d = 1$) and $\nu(u) = (\varphi(W)/W)^k \log^k R$ does not depend on u .

The pseudorandomness of the measure ν can be proved by a generalization of the original Goldston–Yıldırım method. The original GY method is exactly the case k = 1. The possible methods are either

(i) analytic number theoretical (using the zeta-function) or

- (ii) Fourier series or
- (iii) real elementary.

31

Remark. The proof that we obtain *consecutive* primes by this procedure follows from the fact that the number of $n \in [N, 2N)$ obtained is at least $c(k)N/\log^k N$. If any of the numbers n + h, $0 \le h \le h_k$, $h \ne h_i$ (i = 1, 2, ..., k) were additionally prime then by Selberg's upper bound sieve we would find at most $c'(k)N/\log^{k+1} N$ such numbers (cf. the estimate in 1.) since all $n + h_i$ (i = 1, 2, ..., k) are almost primes (similarly to the case of the Strong HL conjecture). So here we also need both properties 7 (i) and 7 (ii).

10. Sketch of the proof of Lemma 2

The proof is essentially the same for an arbitrary k as for the simplest case k = 1. So let k = 1. We choose a prime $p < N^{c_1(k)}$ and try to evaluate

(10.1)
$$S_{p}^{*} = \sum_{\substack{N \leq n < 2N, p \mid n+h, n \equiv \nu_{0}(W) \\ [d,e] \mid n+h}} \lambda_{d} \lambda_{e}$$

Distinguishing the cases

(10.2)
$$p \nmid [d, e] \Longrightarrow \sim \frac{N}{pW} \frac{\lambda_d \lambda_e}{[d, e]}$$

(10.3)
$$d = d'p, p \nmid e \Longrightarrow \sim \frac{N}{pW} \frac{\lambda_d \lambda_e}{[d', e]}$$
 (or reversed)

(10.4)
$$d = d'p, e = e'p \Longrightarrow \sim \frac{N}{pW} \frac{\lambda_d \lambda_e}{[d', e']}$$

we obtain in all cases an asymptotic of type

(10.5)
$$S_{p}^{*} = \frac{N}{pW} \sum \frac{\lambda_{d}\lambda_{e}}{[d, e, p]/p} + O(R^{2+\varepsilon}).$$

Lemma (Selberg, Coll. Works 1991, Greaves 2000)

(10.6)
$$T_p := \sum \frac{\lambda_d \lambda_e}{[d, e, p]/p} = \sum_{\substack{r \\ p \nmid r}} \frac{\mu^2(r)}{\varphi(r)} (y_r - y_{rp})^2.$$

However, by the definition of y_r and F we have (10.7)

$$(y_r - y_{rp})^2 = \left(F\left(\frac{\log r}{\log R}\right) - F\left(\frac{\log r + \log p}{\log R}\right)\right)^2 \ll_F \frac{\log p}{\log R},$$

(10.8)
$$T_p \ll \frac{\log p}{\log R} \cdot \log R \frac{\varphi(W)}{W} \Longrightarrow S_p^* \ll \frac{\log p}{p} \cdot \frac{N}{W} \cdot \frac{\varphi(W)}{W},$$

(10.9)
$$S^* = \sum_{p < N^{c_1(k)}} S^*_p \ll \frac{N}{W} c_1(k) \log N \cdot \frac{\varphi(W)}{W} \ll_{k,\theta} c_1(k) S_1$$

which is negligible if $c_1(k)$ is sufficiently small.