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1. Patterns of primes

Notation: pn the nth prime, P = {pi}∞i=1, dn = pn+1 − pn.

Abbreviation: i.o. = infinitely often, Z+ = {1, 2, . . . }
Twin Prime Conjecture {n, n + 2} ∈ P2 i.o. ⇐⇒ dν = 2
i.o.

Polignac Conjecture (1849) 2 | h −→ dn = h i.o.

Definition
H = Hk = {hi}ki=1, 0 ≤ h1 < h2 < hk is admissible if the
number of residue classes covered by H mod p, νp(H) < p for
every prime p.

Dickson Conjecture (1904). Hk admissible
=⇒ {n + hi}ki=1 ∈ Pk i.o.
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Hardy–Littlewood Conjecture (1923). H = Hk admissible
=⇒ ∑

n≤x
{n+hi}∈Pk

1 ∼ x
logk x

σ(H),

σ(H) =
∏
p

(
1− νp(H)

p

)(
1− 1

p

)−k
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Remark 1. HL conjecture implies:

Strong HL conjecture: H = Hk admissible =⇒∑
n≤x

{n+hi}∈Pk

n+h/∈P if h∈[0,hk ], h 6=hi

1 ∼ x
(log x)k σ(H)

Proof. By Selberg’s upper bound sieve∑
n≤x

{n+hi}∈Pk

n+h∈P

1� x
(log x)k+1 .

Remark 2. Dickson Conjecture 6=⇒ Strong Dickson
Conjecture.

4 / 35



5

2. Primes in Arithmetic Progressions (AP)

Conjecture (Lagrange, Waring, Erdős–Turán (1936)). The
primes contain k-term AP’s for every k.

Conjecture (Erdős–Turán (1936)). If A ⊂ Z+ has positive
upper density then A contains k-term AP’s for every k.

Roth (1953): This is true for k = 3.

Szemerédi (1975) This is true for every k .
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3. History before 2000 (2004)

Erdős (1940) dn < (1− c0) log n i.o. c0 > 0 fix.

Bombieri–Davenport (1966) dn < (log n)/2 i.o.

H. Maier (1988) dn < (log n)/4 i.o.

Van der Corput (1939) P contains infinitely many 3-term
AP’s.

Heath-Brown (1984) There are infinitely many pairs n, d
such that n, n + d , n + 2d ∈ P , n + 3d ∈ P2.

Definition
n = Pk-number if it has at most k prime factors (ALMOST
PRIMES).

6 / 35



7

4. Results after 2000

Green–Tao Theorem (2004–2008): P contains k-term AP’s
for every k .

Goldston–Pintz–Yıldırım (2005–2009): lim inf
n→∞

dn/ log n = 0.

GPY (2006–2010): lim inf
n→∞

dn/(log n)c = 0 if c >
1
2
.

Zhang (2013–2014): Hk admissible, k > 3.5 · 106 =⇒ n +Hk

contains at least 2 primes i.o.
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Maynard (2013–2015): This is true for k ≥ 105.

Polymath (2014): This is true for k ≥ 50.

Maynard (2013–2015), Tao unpublished: Hk admissible
=⇒ n +Hk contains at least

(
1
4 + o(1)

)
log k primes i.o.
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5. Patterns of primes in arithmetic progressions

A common generalization of the Green–Tao and Maynard–Tao
theorem is

Theorem 1 (J. P. 2017)

Let m > 0 and A = {a1, . . . , ar} be a set of r distinct integers
with r sufficiently large depending on m. Let N(A) denote the
number of integer m-tuples {h1, . . . , hm} ⊆ A such that there
exist for every ` infinitely many `-term arithmetic progressions
of integers {ni}`i=1 where ni + hj is the j th prime following ni

prime for each pair i , j . Then

(5.1) N(A)�m #
{

(h1, . . . , hm) ∈ A
}
�m |A|m = rm.
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Theorem 1 will follow by the application of Maynard’s method
from the weaker

Theorem 2 (J. P. 2017)

Let m be a positive integer, H = {h1, . . . , hk} be an
admissible set of k distinct non-negative integers hi 6 H,
k = dCm2e4me with a sufficiently large absolute constant C .
Then there exists an m-element subset

(5.2) {h′1, h′2, . . . , h′m} ⊆ H

such that for every positive integer ` we have infinitely many
`-element non-trivial arithmetic progressions of integers ni

such that ni + h′j ∈ P for 1 6 i 6 `, 1 6 j 6 m, further
ni + h′j is always the j th prime following ni .
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In fact we prove a stronger result, namely

Theorem 3 (J. P. 2017)

There is some C, such that for all k0 and all k > Ck2
0e

4k0

there is some c > 0, such that for all admissible tuples
{h1, . . . , hk} the number N(x) of integers n ≤ x, such that
n + hi is nc-pseudo prime, and among these k integers there
are at least k0 primes, satisfies N(x)� x

logk x
. These N(x)

integers n ≤ x contain an m-term AP if x > C0(m).
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6. Structure of the proof of the Maynard–Tao theorem
(i) Key parameters: H = {h1, . . . , hk} given
(0 ≤ h1 < h2 < . . . < hk)

N large, we look for primes of the form n+hi with n ∈ [N, 2N)

R = Nθ/2−ε, where θ is a level of distribution of primes:

(6.1)
∑
q6xθ

max
a

(a,q)=1

∣∣∣∣π(x , q, a)− π(x)

ϕ(q)

∣∣∣∣�A
x

(log x)A

holds for any A > 0 where the � symbol of Vinogradov means
that f (x) = O(g(x)) is abbreviated by f (x)� g(x).
Remark. θ = 1/2 admissible: Bombieri–Vinogradov theorem
(1965). θ > 0 Rényi (1947)

(6.2) W =
∏

p≤D0

p D0 = C ∗(k) suitably large

(6.3) n ≡ ν0(mod W ) (ν0 + hi ,W ) = 1 for i = 1, . . . , k . 12 / 35
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(ii) We weight the numbers n ≡ ν0 (mod W ), n ∈ [N, 2N) by
wn, so that wn ≥ 0 and on average wn would be large if we
have many primes among {n + hi}ki=1,

(6.4) wn =

( ∑
di |n+hi ∀i

λd1,...,dk

)2

.

(6.5) λd1,...,dk =

( k∏
i=1

µ(di)di

) ∑
r1,...,rk
di |ri ∀i

(ri ,W )=1

µ
( k∏

i=1
ri
)2

k∏
i=1

ϕ(ri)
yr1,...,rk

whenever
( k∏

i=1
di ,W

)
= 1 and λd1,...,dr = 0 otherwise.
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(6.6) yr1,...,rk = F
(
log r1
logR

, . . . ,
log rk
logR

)
where F is piecewise differentiable, real, F and F ′ bounded,
supported on

(6.7) Rk =

{
(x1, . . . , xk) ∈ [0, 1]k :

k∑
i=1

xi 6 1

}
.

(iii) Let χP(n) denote the characteristic function of P ,
(6.8)

S1 :=
∑

n
N6n<2N

n≡ν0 (mod W )

wn, S2 :=
∑

n
N6n<2N

n≡ν0 (mod W )

(
wn

k∑
i=1

χP(n+hi)

)
,
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If we succeed to choose F , thereby λd and wn in such a way
that

(
rk ∈ Z+

)
(6.9) S2 > S1, or S2 > (rk − 1)S1 resp.

we obtain at lest two, or k0 primes, resp. among
n + h1, . . . , n + hk =⇒ bounded gaps between primes or even
k0 primes in bounded intervals i.o.
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(iv) First step towards this: evaluation of S1 and S2.

Proposition 1. We have as N →∞

(6.10) S1 =

(
1 + O

(
1

D0

))
ϕ(W )kN(logR)k

W k+1 Ik(F ),

(6.11) S2 =

(
1 + O

(
1

D0

))
ϕ(W )kN(logR)k+1

W k+1

k∑
j=1

J(j)
k (F ),

(6.12) Ik(F ) =

1∫
0

. . .

1∫
0

F (t1, . . . , tk)2dt1 . . . dtk ,

(6.13)

J(j)
k (F ) =

1∫
0

. . .

1∫
0

( 1∫
0

F (t1, . . . , tk)dtj

)2

dt1 . . . dtj−1dtj+1 . . . dtk .
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After this we immediately obtain

Corollary. If the sup is taken with Fk as before and

(6.14) Mk = sup

k∑
j=1

J(j)
k (F )

Ik(F )
, rk =

⌈
θMk

2

⌉
and let H be a fixed admissible sequence H = {h1, . . . , hk} of
size k. Then there are infinitely many integers n such that at
least rk of the n + hi (1 6 i 6 k) are simultaneously primes.

Proposition 2. M105 > 4 and Mk > log k − 2 log log k − 2 for
k > k0.

17 / 35



18

7. A stronger version of the Maynard–Tao theorem

Theorem 3 gives a stronger form in 3 aspects:

(i) all numbers n + hi are almost primes, having all prime
factors greater than nc(k);

(ii) the number of such n’s is at least
c ′(k)N
logk N

, the true order

of magnitude of n ∈ [N, 2N) with all n + hi being
nc-almost primes;

(iii) for every ` we have (infinitely) many `-term AP’s with the
same prime pattern.

Remark: properties (i) and (ii) are interesting in themselves,
but crucial in many applications, in particular in showing (iii).
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Let P−(n) denote the smallest prime factor of n.

The following Lemma shows that the contribution of n’s to S1

with at least one prime p |
∏

(n + hi), p < nc1(k) is negligible if
c1(k) is suitably small

(
R = Nθ/2−ε).

Lemma 1. We have

(7.1) S−1 =
∑

N6n<2N
n≡ν0 (mod W )

P−

(
k∏

i=1
(n+hi )

)
<nc1(k)

wn �k,H
c1(k) logN

logR
S1.

19 / 35



20

Corollary. We get immediately property (i). Further

(7.2) wn � λ2
max � y 2

max(logR)2k � (logR)2k

since
∏

(n + hi) has in this case just a bounded number of
prime factors, so the sum over the divisors can be substituted
by the largest term (apart from a factor depending on k). So
we get

(7.3) S∗1 :=
∑

n
N6n<2N

n≡ν0 (mod W )

P−
( k∏

i=1
(n+hi )

)
>nc1(k)

#{i ;n+hi∈P}>rk

1 ≥ S1(1 + O(c1(k))

(logR)2k ,

by which we obtained property (ii).
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8. Green–Tao theorem: structure of proof

Original Szemerédi theorem. If A ⊆ ZN has a positive
density then A contains m-term AP for every m, if N > C (m).

Relative Szemerédi theorem (Green–Tao). If A ⊆ ZN is
a pseudorandom set, B ⊆ A has a positive relative density
within A, i.e. with a measure ν(n) obeying the linear forms
condition

(8.1) lim
N→∞

∑
n≤N,n∈B

ν(n)∑
n≤N,n∈A

ν(n)
= δ > 0

then B contains m-term AP for every m, if N > C (δ,m).
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Definition. A set A ⊆ ZN is a pseudorandom set if there is a
measure ν : ZN → R+ which satisfies the linear forms
condition if the following holds.

Let (Lij), 1 ≤ i ≤ `, 1 ≤ j ≤ t rational numbers with all
numerators and denominators at most L0, bi ∈ ZN , ` ≤ `0,

m ≤ m0. Let ψi(x) =
t∑

j=1
Li ,jxj + bi , where the t-tuples

(Lij)1≤j≤t ∈ Qt are non-zero and no t-tuple is a rational
multiple of another. Then

(8.2) E
(
ν(ψ1(x)

)
. . . ν(ψm(x)) | x ∈ Zt

N

)
= 1 + oL0,`0,m0(1).
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Remark 1. The primes up to N form a set of density
1/ logN → 0 as N →∞. Therefore we cannot use the
Szemerédi theorem.

Step 1. To formulate and show a generalization of the
Szemerédi theorem where the set ZN = [1, 2, . . . ,N] can be
substituted by some sparse set satisfying some regularity
condition like (8.2). This result is called Relative Szemerédi
Theorem.
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Remark 2. Another condition, the correlation condition in
the original work of Green and Tao could be avoided by a
different proof of Conlon–Fox–Zhao (2015).

Step 2. To find a suitable pseudo-random set A where the
set P of the primes can be embedded as a subset of positive
density. This was proved in an unpublished manuscript of
Goldston and Yıldırım (2003). This set A is the set of almost
primes; the measure (µ is the Möbius function, c > 0 small)

(8.3) ν(n) =

( ∑
d |n,d≤R

µ(d)

(
1− log d

logR

))2

R = Nc .
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9. Combination of the methods of Green–Tao and
Maynard–Tao

Difficulty: the original Maynard–Tao method produces
directly (without using any further ideas) only at least

(9.1) Nc/ log log N

integers n ∈ [N, 2N) with at least k0 =
1
4

(1 + o(1)) log k

primes among {n + hi}ki=s . The expected number of n’s with
this property is

(9.2) c2(k0)
N

(logN)k0
,

which is much more.
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Hope: By Theorem 1 (cf. 7 (i)–(ii)) we obtain

(9.3)
c3(k)N
logk N

such numbers, which is still less than (9.2).

Further idea: if we require additionally that all n + hi ’s
should be almost primes, i.e. P−(n + hi) > nc1(k), then we
obtain also c(k)N/ logk N numbers n ∈ [N, 2N) which is
already the true order of magnitude of such n’s.
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Solution: instead of embedding primes into the set of almost
primes we embed the set of n’s, n ∈ [N, 2N) with

at least k0 primes among {n + hi}ki=1 and

(9.4) P−
( k∏

i=1

(n + hi)

)
> nc1(k)

into the set of n’s, n ∈ [N, 2N) with (9.4).

Remark: in some sense we embed the set of almost prime
k-tuples with at least k0 primes into the set of all almost prime
k-tuples.
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Lemma 2. Let k be an arbitrary positive integer and
H = {h1, . . . , hk} be an admissible k-tuple. If the set N (H)
satisfies with constants c1(k), c2(k)

(9.5) N (H) ⊆

{
n;P−

( k∏
i=1

(n + hi)

)
> nc1(k)

}

and

(9.6) #
{
n 6 X , n ∈ N (H)

}
>

c2(k)X
logk X

for X > X0, then N(H) contains `-term arithmetic
progressions for every `.
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Main idea of the proof: We use the measure

(9.7) ν(n) :=


(
ϕ(W )

W

)k k∏
i=1

Λ2
R(Wn+ν0+hi )

log R , n ∈ [N, 2N)

0 otherwise

with R = Nc1(k) and

(9.8) ΛR(u) =
∑

d≤R,d |u

µ(d) log
R
d
.

Remark. If P−
(

k∏
i=1

(u + hi)

)
> Nc1(k) = R , then

ΛR(u + hi) = logR (the single term in the sum is that with
d = 1) and ν(u) = (ϕ(W )/W )k logk R does not depend on u.
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The pseudorandomness of the measure ν can be proved by a
generalization of the original Goldston–Yıldırım method. The
original GY method is exactly the case k = 1. The possible
methods are either

(i) analytic number theoretical (using the zeta-function) or

(ii) Fourier series or

(iii) real elementary.
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Remark. The proof that we obtain consecutive primes by this
procedure follows from the fact that the number of
n ∈ [N, 2N) obtained is at least c(k)N/ logk N. If any of the
numbers n + h, 0 ≤ h ≤ hk , h 6= hi (i = 1, 2, . . . , k) were
additionally prime then by Selberg’s upper bound sieve we
would find at most c ′(k)N/ logk+1 N such numbers (cf. the
estimate in 1.) since all n + hi (i = 1, 2, . . . , k) are almost
primes (similarly to the case of the Strong HL conjecture). So
here we also need both properties 7 (i) and 7 (ii).
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10. Sketch of the proof of Lemma 2

The proof is essentially the same for an arbitrary k as for the
simplest case k = 1. So let k = 1. We choose a prime
p < Nc1(k) and try to evaluate

(10.1) S∗p =
∑

N≤n<2N,p|n+h,n≡ν0(W )
[d ,e]|n+h

λdλe
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Distinguishing the cases

p - [d , e] =⇒ ∼ N
pW

λdλe

[d , e]
(10.2)

d = d ′p, p - e =⇒ ∼ N
pW

λdλe

[d ′, e]
(or reversed)(10.3)

d = d ′p, e = e ′p =⇒ ∼ N
pW

λdλe

[d ′, e ′]
(10.4)
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we obtain in all cases an asymptotic of type

(10.5) S∗p =
N
pW

∑ λdλe

[d , e, p]/p
+ O(R2+ε).

Lemma (Selberg, Coll. Works 1991, Greaves 2000)

(10.6) Tp :=
∑ λdλe

[d , e, p]/p
=
∑

r
p-r

µ2(r)

ϕ(r)
(yr − yrp)2.
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However, by the definition of yr and F we have
(10.7)

(yr − yrp)2 =

(
F
(
log r
logR

)
− F

(
log r + log p

logR

))2

�F
log p
logR

,

(10.8) Tp �
log p
logR

· logRϕ(W )

W
=⇒ S∗p �

log p
p
· N
W
·ϕ(W )

W
,

(10.9)

S∗ =
∑

p<Nc1(k)

S∗p �
N
W

c1(k) logN · ϕ(W )

W
�k,θ c1(k)S1

which is negligible if c1(k) is sufficiently small. �
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