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1. Patterns of primes
Notation: p, the nth prime, P = {p;}%°,, dp = Pns1 — Pn.
Abbreviation: i.o. = infinitely often, Z* ={1,2,...}

Twin Prime Conjecture {n,n+2} € P?io. < d, =2
1.o.

Polignac Conjecture (1849) 2| h— d, = hi.o.
Definition

H =M, ={h},, 0<hy <hy< hisadmissible if the

number of residue classes covered by H mod p, v,(H) < p for
every prime p.

Dickson Conjecture (1904). H, admissible
= {n+h}, €Pkio.
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Hardy—Littlewood Conjecture (1923). H = H, admissible

> x
Z 1~ K o(H),
nex og X
{n+h;}ePk

-1 42) o-2)

P
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Remark 1. HL conjecture implies:
Strong HL conjecture: ‘H = Hy admissible —-

X ™

n<x
{n+h;}ePk
n+h¢P if he[0,hy], h#h;

Proof. By Selberg's upper bound sieve

X
1< ——.

n<x
{n+h;}ePk
n+heP

Remark 2. Dickson Conjecture #=- Strong Dickson
Conjecture.

4/35



2. Primes in Arithmetic Progressions (AP)

Conjecture (Lagrange, Waring, Erdés—Turan (1936)). The
primes contain k-term AP'’s for every k.

Conjecture (Erd6és—Turan (1936)). If A C Z* has positive
upper density then A contains k-term AP'’s for every k.

Roth (1953): This is true for k = 3.
Szemerédi (1975) This is true for every k.
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3. History before 2000 (2004)

Erd6s (1940) d, < (1 — ¢)logni.o. ¢ > 0 fix.
Bombieri-Davenport (1966) d, < (logn)/2 i.o.
H. Maier (1988) d, < (logn)/4 i.o.

Van der Corput (1939) 7P contains infinitely many 3-term
AP'’s.

Heath-Brown (1984) There are infinitely many pairs n, d
such that n,n+d,n+2d € P, n+3d € P,.

Definition

n = Py-number if it has at most k prime factors (ALMOST
PRIMES).
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4. Results after 2000

Green—Tao Theorem (2004-2008): P contains k-term AP's
for every k.

Goldston—Pintz-Yildirm (2005-2009): liminf d,/logn = 0.
n—o0

1
GPY (2006-2010): liminfd,/(logn)c =0 if ¢ > 5

Zhang (2013-2014): H, admissible, k > 3.5-10° = n + H,
contains at least 2 primes i.o.
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Maynard (2013-2015):  This is true for k > 105.
Polymath (2014): This is true for k > 50.

Maynard (2013-2015), Tao unpublished: H, admissible
—> n+ Hy contains at least (1 + o(1)) log k primes i.o.
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5. Patterns of primes in arithmetic progressions

A common generalization of the Green-Tao and Maynard—Tao
theorem is

Theorem 1 (J. P. 2017)

Let m >0 and A= {ay1,...,a} be aset of r distinct integers
with r sufficiently large depending on m. Let N(A) denote the
number of integer m-tuples {hy, ..., h,} C A such that there
exist for every ( infinitely many (-term arithmetic progressions
of integers {n;}t_; where n; + h; is the j*™ prime following n;
prime for each pair i,j. Then

(51)  N(A) S #{(h1, ... hn) € AL >0 |A7 = r7,
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Theorem 1 will follow by the application of Maynard's method
from the weaker

Theorem 2 (J. P. 2017)

Let m be a positive integer, H = {hy, ..., h} be an
admissible set of k distinct non-negative integers h; < H,

k = [Cm?e*™] with a sufficiently large absolute constant C.
Then there exists an m-element subset

(5.2) {h,ho,. .. W} CH

such that for every positive integer { we have infinitely many
(-element non-trivial arithmetic progressions of integers n;
such that n; + h; € P for1 <i <V, 1< < m, further

n; + h} is always the jth prime following n;.
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In fact we prove a stronger result, namely

Theorem 3 (J. P. 2017)

There is some C, such that for all ky and all k > Ckge‘”‘0
there is some ¢ > 0, such that for all admissible tuples
{h1,..., he} the number N(x) of integers n < x, such that
n+ h; is n°-pseudo prime, and among these k integers there
are at least ko primes, satisfies N(x) > e These N(x)
integers n < x contain an m-term AP if x > Co(m).
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6. Structure of the proof of the Maynard—Tao theorem
(i) Key parameters: H = {hy,..., hc} given

(0< h < hy<...<hy)

N large, we look for primes of the form n+ h; with n € [N, 2N)
R = N%2=¢ where 6 is a level of distribution of primes:

(6.1) Z max

que (a7q):1

7(x) X

0699 = )] A Tlog )

holds for any A > 0 where the < symbol of Vinogradov means
that f(x) = O(g(x)) is abbreviated by f(x) < g(x).
Remark. 6 = 1/2 admissible: Bombieri—Vinogradov theorem
(1965). 6 > 0 Rényi (1947)

(6.2) W = H p Dy = C*(k) suitably large

p<Do

(6.3) n=wy(mod W) (vo+h, W)=1 fori=1,....k ..
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(i) We weight the numbers n = 1y (mod W), n € [N,2N) by
w,, so that w, > 0 and on average w, would be large if we
have many primes among {n+ h;}%_,,

(6.4 = X Naa)

d,-|n+h,- Vi

.....
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log ry log r
6.6 o, = F e
(6:6) Yrion (IogR log R

where F is piecewise differentiable, real, F and F’ bounded,
supported on

k
(6.7) Rk:{(xl,...,xk)é[O,l]k:Zx,-gl}.

(iii) Let xp(n) denote the characteristic function of P,
(6.8)

k
S = Z w,, S :i= Z <Wn Z Xp(n—l-h;)),
N<n<2N N<n<2N i=1

n=vp (mod W) n=vg (mod W)
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If we succeed to choose F, thereby A\q and w, in such a way
that (rk € Z*)

(6.9) S, > 851, or Sy > (re—1)S; resp.

we obtain at lest two, or ky primes, resp. among
n+ hy,...,n+ hy = bounded gaps between primes or even
ko primes in bounded intervals i.o.
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(iv) First step towards this: evaluation of S; and S,.

Proposition 1. We have as N — oo

(1+0 (F>2Vi(+‘1/|/) N(log R) )

(1+0(&)) AW Niog R+

(6.10) Sy =

(6.11) S, = = ZJ&‘)(F),
j=1
1 1
(6.12) I (F) :/.../F(tl,...,tk)zdtl...dtk,
0 0
(6.13)

1 11
2
JIEJ)(F):/.../(/ F(tl,...,tk)dtj> dty ... dtj_idtiyy ... dt.
0 0 0
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After this we immediately obtain

Corollary. If the sup is taken with F; as before and

> S (F)
j=1 . QAﬂk
(614) Mk = sup W, re = ’7—2 —‘

and let H be a fixed admissible sequence H = {hy, ..., hi} of
size k. Then there are infinitely many integers n such that at
least ry of the n+ h; (1 < i < k) are simultaneously primes.

Proposition 2. Mygs > 4 and My > log k — 2loglog k — 2 for
k > kg.

17/35



18

7. A stronger version of the Maynard—Tao theorem

Theorem 3 gives a stronger form in 3 aspects:

(i) all numbers n+ h; are almost primes, having all prime
factors greater than n(¥);
(k)N

log" N’
of magnitude of n € [N,2N) with all n+ h; being
n-almost primes;
(iii) for every ¢ we have (infinitely) many ¢-term AP's with the
same prime pattern.

(i) the number of such n's is at least the true order

Remark: properties (i) and (ii) are interesting in themselves,
but crucial in many applications, in particular in showing (iii).
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Let P~(n) denote the smallest prime factor of n.

The following Lemma shows that the contribution of n's to S;

with at least one prime p | [[(n + h;), p < n(K) is negligible if
ci(k) is suitably small (R = N/27).
Lemma 1. We have

_ ci(k)log N
7.1 S5 = " ——=_S,.
(7.1) 1 Z Wn <k,H ogR "

N<n<2N
n=vp (mod W)

P~ (ﬁ (n+h;)> <ne1()

i=1
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Corollary. We get immediately property (i). Further
(7.2) Wn < Afax < Yimax(log R)? < (log R)*

since [[(n + h;) has in this case just a bounded number of
prime factors, so the sum over the divisors can be substituted
by the largest term (apart from a factor depending on k). So
we get

. Si(1 + O(a(k))
(73) S = > 1> g RPF

n
N<n<2N
n=vg (mod W)

k
P~ ( IT (n—i—h,-)) >n1(k)
i=1
#{i;n+h;eP}=ry

by which we obtained property (ii).
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8. Green—Tao theorem: structure of proof

Original Szemerédi theorem. If A C Zjy has a positive
density then A contains m-term AP for every m, if N > C(m).

Relative Szemerédi theorem (Green—Tao). If A C Zy is
a pseudorandom set, B C A has a positive relative density
within A, i.e. with a measure v(n) obeying the linear forms
condition

> v(n)
(8.1) lim 2=MneB

N—oo Y. v(n)

n<N,ne A

=6>0

then B contains m-term AP for every m, if N > C(0, m).
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Definition. A set A C Zy is a pseudorandom set if there is a
measure v : Zy — RT which satisfies the linear forms
condition if the following holds.

Let (Lj), 1 <i</¥, 1< <trational numbers with all
numerators and denominators at most Lg, b; € Zy, ¢ < 4y,

t
m < mg. Let ¢;(x) = > L ;x; + b;, where the t-tuples
j=1
(Lj)i<j<t € QF are non-zero and no t-tuple is a rational

multiple of another. Then

(8:2) E(1(t1(x)) . v(tm(x)) | X € Ziy) = 1+ 01 ,ma(1):
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Remark 1. The primes up to N form a set of density
1/log N — 0 as N — oo. Therefore we cannot use the
Szemerédi theorem.

Step 1. To formulate and show a generalization of the
Szemerédi theorem where the set Zy = [1,2,..., N] can be
substituted by some sparse set satisfying some regularity
condition like (8.2). This result is called Relative Szemerédi
Theorem.
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Remark 2. Another condition, the correlation condition in
the original work of Green and Tao could be avoided by a
different proof of Conlon—Fox—Zhao (2015).

Step 2. To find a suitable pseudo-random set A where the
set P of the primes can be embedded as a subset of positive
density. This was proved in an unpublished manuscript of
Goldston and Yildirnm (2003). This set A is the set of almost
primes; the measure (u is the Mobius function, ¢ > 0 small)

(8.3) V(n):( 3 uld) (1 '°gd>)2 R = N°.

"~ logR
dnd<R &
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9. Combination of the methods of Green—Tao and
Maynard—-Tao

Difficulty: the original Maynard—Tao method produces
directly (without using any further ideas) only at least

(9.1) Nc/ log log N

1
integers n € [N,2N) with at least ky = Z(l + 0(1)) log k
primes among {n + h;}%__. The expected number of n's with
this property is

N

(9.2) Cz(ko)W>

which is much more.

25/35



26

Hope: By Theorem 1 (cf. 7 (i)—(ii)) we obtain

cg(k)ﬁv

9.3
©:3) log" N

such numbers, which is still less than (9.2).

Further idea: if we require additionally that all n+ h;'s
should be almost primes, i.e. P~(n+ h;) > n<() then we
obtain also c(k)N/log" N numbers n € [N,2N) which is
already the true order of magnitude of such n's.
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Solution: instead of embedding primes into the set of almost
primes we embed the set of n's, n € [N,2N) with

at least ko primes among {n+ h;}*_, and

(9.4) P~ <ﬁ(n + h,-)) 0

i=1
into the set of n's, n € [N,2N) with (9.4).

Remark: in some sense we embed the set of almost prime
k-tuples with at least kg primes into the set of all almost prime
k-tuples.
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Lemma 2. Let k be an arbitrary positive integer and
H ={h,..., h} be an admissible k-tuple. If the set N'(H)

satisfies with constants c(k), c(k)

(9.5) N(H) C {n; P~ <H(n + h,-)) > nq(k)}

i=1
and

CQ(k)X

(9.6) #{n<X,neN(H)} > 0" X

for X > Xy, then N(#) contains (-term arithmetic
progressions for every (.
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Main idea of the proof: We use the measure

k k
V) Ng(Wh'tvo +hi) e
(97) V(n) = ( w > il;[l log R , heg [ s )
0 otherwise
with R = Na(k) and
R
(9:8) Ar(u) = Z p(d) IOgE,

d<R.d|u

=

Remark. If P~ (H(u + h,-)) > Nk = R, then
=1
Ar(u+ h;) = log R (the single term in the sum is that with

d =1) and v(u) = (o(W)/W)¥log" R does not depend on w.
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The pseudorandomness of the measure v can be proved by a
generalization of the original Goldston—Yildinm method. The
original GY method is exactly the case k = 1. The possible
methods are either

(i) analytic number theoretical (using the zeta-function) or
(i) Fourier series or

(iii) real elementary.
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Remark. The proof that we obtain consecutive primes by this
procedure follows from the fact that the number of

n € [N,2N) obtained is at least c(k)N/log" N. If any of the
numbers n+h, 0 < h< h,, h#h; (i=1,2,..., k) were
additionally prime then by Selberg's upper bound sieve we
would find at most ¢/(k)N/log“™ N such numbers (cf. the
estimate in 1.) since all n+ h; (i =1,2,..., k) are almost
primes (similarly to the case of the Strong HL conjecture). So
here we also need both properties 7 (i) and 7 (ii).
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10. Sketch of the proof of Lemma 2

The proof is essentially the same for an arbitrary k as for the
simplest case k = 1. So let k = 1. We choose a prime
p < N<() and try to evaluate

(10.1) Sy = > Xade

N<n<2N,p|n+h,n=vo(W)
[d.e][n+h
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Distinguishing the cases

(10.2) ptld, e] =

(10.3) d=dp, pte= ~

(104) d=dp, e=ép=~

pW [d', €]

N Agde

T W [d, €]

AdAe
N Ag (or reversed)

N Ag)e
pW [d', e]
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we obtain in all cases an asymptotic of type

105 Sr = + O(R**9).
(10:5) PopW 2 [d,e pl/p ()

Lemma (Selberg, Coll. Works 1991, Greaves 2000)

(10.6) = e lp Aale 0y, — )2

e nlfp 2 o)
ptr
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However, by the definition of y, and F we have
(10.7)

log r log r + log p\ \° log p
=y = F _ (BT OEP oeP
e = o) ( (IogR) ( log R Flog R’
log p (W) logp N (W)
10. log R~ e
(10.8) IogROg W == 5, < W W
(109)
W
Z S < <—c1 )|og/v-LW)<<m a(k)S

p<Neilk

which is negligible if c;(k) is sufficiently small. W
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