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Dirichlet’s theorem in Euclidean space

To measure the quality of approximation of a vector x ∈ Rd by
rational vectors, let ‖x‖∞ denote the maximum norm,

let ψ : R+ → (0,1) be a non increasing gauge function

and call x ψ-approximable if there are infinitely many solutions
(p,q) ∈ Zd × N+ to the Diophantine inequality:∥∥∥∥x− p

q

∥∥∥∥
∞
≤ ψ(q)

q
.

Dirichlet’s theorem. For ψ(q) = 1
q1/m , every x ∈ Rd is

ψ-approximable.
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General gauge functions

Clearly x is ψ-approximable if and only if it belongs to the cubes
of edge size ψ(q)

q and center p
q infinitely often.

Since the measure of the cube with edge size 2ψ(q) is (2ψ(q))d ,

it follows that if the sum over all (p,q) ∈ Zd × N+ with p
q ∈ (0,1)d

of the measures of the cubes B( p
q ,

ψ(q
q ) is finite, or equivalently if∑

q≥1

(2ψ(q))d <∞ ,

then the Borel-Cantelli lemma shows that almost every x is not
ψ-approximable.
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Khinchin’s theorem in Euclidean space (1924)

The converse is given by Khinchin’s theorem :

If
∑

q≥1 ψ(q)d =∞, then for almost every x ∈ Rd the system of

inequalities
∥∥∥x− p

q

∥∥∥ ≤ ψ(q)
q has infinitely many solutions , namely

x is ψ-approximable.

This sharp dichotomy, giving rise to infinitely many solutions in
the divergence case, is very satisfying. Naturally, it raises the
following

Question: If x is ψ-approximable, so that there are infinitely
many solutions to the Diophantine inequality, how many solutions
are there of a given bounded size ?
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W. Schmidt’s theorem in Euclidean space (1960)

Define the solution counting function at x (with gauge ψ)

NT (x) =

∣∣∣∣{(p,q) ∈ Zd × N+ ; 1 ≤ q ≤ T and
∥∥∥∥x− p

q

∥∥∥∥ ≤ ψ(q)

q

}∣∣∣∣

and the following volume growth function

VT =
∑

(p,q)∈Zd×N+,1≤q≤T , p
q∈(0,1)d

m
(

B
(

p
q
,
ψ(q
q

))
=

∑
1≤q≤T

(2ψ(q))d .

W. Schmidt’s theorem: If VT →∞, namely if the divergence
case of Khinchin’s theorem holds, then for almost every x ∈ Rd

NT (x) = VT + Ox,ε

(
V

1
2 +ε

T

)
(for all ε > 0).
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Diophantine approximation on submanifolds

A more general problem that arises is to approximate points on a
submanifold of Rd by the rational points in Qd .

One classical example is the curve (α, α2, . . . , αd ). More
generally, smooth submanifolds which are suitably
non-degenerate were extensively studied.

Recent (and not so recent) contributors to this theory include
Beresnevich, Bernik, Dani, Dickinson, Dodson, Drutu, Kleinbock,
Margulis, Paulin, Sprindzuk, Velani....and many others.

We emphasize that the approximation process here is allowed to
utilize all rational points in Rd .
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Lang’s problem on intrinsic Diophantine approximation

In his 1965 "Report on Diophantine approximation" Lang raised
the problem of establishing the Diophantine approximation
properties of typical points on homogeneous algebraic varieties
embedded in Rd .

Thus one can consider the problem of establishing an exponent
of Diophantine approximation namely an analog of Dirichlet’s
theorem, an analog of Khinchin’s theorem, and an analog of
Schmidt’s theorem.

The challenge here, however, is that the approximation process
is allowed to use only rational points on the variety itself rather
than all rational points in Rd .

Previously, the problem of intrinsic Diophantine approximation
has been studied mainly when the variety in question is a
commutative algebraic group or an Abelian variety.
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Diophantine approximation on algebraic varieties

We will consider the problem of intrinsic Diophantine
approximation on a homogeneous algebraic variety X defined
over Q. For simplicity, we will assume it is simply transitive under
an action of a simple algebraic group G defined over Q, which is
algebraically simply connected.

Denote by X(R) ⊂ RN the set of real solutions, and by X(Q) the
set of rational solutions. We would like to analyze the system of
intrinsic Diophantine inequalities :

‖x − r‖ ≤ ε and D(r) ≤ ε−κ

with x ∈ X (R) and r ∈ X(Q), and D(r) the reduced denominator.

Our goal is to establish a value of κ that gives an exponent of
Diophantine apporoximation, to establish the existence of
infinitely many solutions almost surely as in Khintchin’s theorem,
and then to count their number, as in Schmidt’s theorem.

Intrinsic Diophantine approximation



Diophantine approximation on algebraic varieties

We will consider the problem of intrinsic Diophantine
approximation on a homogeneous algebraic variety X defined
over Q. For simplicity, we will assume it is simply transitive under
an action of a simple algebraic group G defined over Q, which is
algebraically simply connected.

Denote by X(R) ⊂ RN the set of real solutions, and by X(Q) the
set of rational solutions. We would like to analyze the system of
intrinsic Diophantine inequalities :

‖x − r‖ ≤ ε and D(r) ≤ ε−κ

with x ∈ X (R) and r ∈ X(Q), and D(r) the reduced denominator.

Our goal is to establish a value of κ that gives an exponent of
Diophantine apporoximation, to establish the existence of
infinitely many solutions almost surely as in Khintchin’s theorem,
and then to count their number, as in Schmidt’s theorem.

Intrinsic Diophantine approximation



Diophantine approximation on algebraic varieties

We will consider the problem of intrinsic Diophantine
approximation on a homogeneous algebraic variety X defined
over Q. For simplicity, we will assume it is simply transitive under
an action of a simple algebraic group G defined over Q, which is
algebraically simply connected.

Denote by X(R) ⊂ RN the set of real solutions, and by X(Q) the
set of rational solutions. We would like to analyze the system of
intrinsic Diophantine inequalities :

‖x − r‖ ≤ ε and D(r) ≤ ε−κ

with x ∈ X (R) and r ∈ X(Q), and D(r) the reduced denominator.

Our goal is to establish a value of κ that gives an exponent of
Diophantine apporoximation, to establish the existence of
infinitely many solutions almost surely as in Khintchin’s theorem,
and then to count their number, as in Schmidt’s theorem.

Intrinsic Diophantine approximation



Approximation with integrality constraints

In our exposition here, we focus on the problem of intrinsic
Diophantine approximation by a constrained set of rational
points, namely those in X(Z[1/p]) where p is prime.

The problem of Diophantine approximation by all rational points
in X(Q) can also be handled, as does the problem of imposing
other integrality constraints on the approximating vectors. This is
achieved via adelic analysis.

we have established an effective uniform approximation
exponent to the Dirichlet problem uniformly for every point on
semisimple group varieties.

and we have also established an effective almost sure
approximation exponent, and a Khinchin type result, which are
best possible in some cases.

Main new point : We prove an analog of Schmidt’s theorem,
establishing an effective uniform asymptotics for the solutions
counting functions on group varieties.
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Some examples

One class of examples consist of the constant determinant
varieties : {g ∈ GLN ; det g = m}, m 6= 0.

others are provided by free actions and faithful representations of
linear algebraic groups such as the symplectic group SP2n,
(covers of) orthogonal groups....

We assume that for the prime p in question the group G(Qp) is
non-compact (and then X(Z[1/p]) is not discrete in X(R)),

and we attach to X, G and p two parameters, as follows.
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The parameters of diophantine exponents

Growth parameter. For a general algebraic variety X, we
consider the empirical distribution of X(Z[ 1

p ]) points, and set :

ap(X) = sup
compact Ω ⊂ X(R)

lim sup
R→∞

log |{r ∈ Ω ∩ X(Z[1/p]) : D(r) ≤ R}|
log(R)

.

Spectral parameter. qp(G) will denote the integrability parameter
of spherical functions appearing in a suitable automorphic
representation associated with the group G, as will be explained
below.
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Uniform and almost sure approximation exponents on
homogeneous varieties

We can now state :

for almost every x ∈ X(R), every κ > dim G
ap(G)

qp(G)
2 , and

ε ∈ (0, ε0(x , κ)), the system of inequalities

‖x − r‖ ≤ ε and D(r) ≤ ε−κ

has a solution r ∈ X(Z[1/p]).

for every x ∈ X(R), every κ > dim G
ap(G) qp(G), and ε ∈ (0, ε0(κ)), the

system of inequalities

‖x − r‖ ≤ ε and D(r) ≤ ε−κ

has a solution r ∈ X(Z[1/p]).
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Infinitely many solutions almost surely

The value τ = dim G qp(G)
2 provides an analog of Khinchin’s

theorem. Namely, for any rate function ψ the Diophantine
inequality :

‖x − r‖ ≤ ψ(D(r))

has infinitely many solutions if
∑

r∈X(Z[ 1
p ]) ψ(D(r))τ+ε =∞

(for some ε > 0)

Whereas conversely, if
∑

r∈X(Z[ 1
p ]) ψ(D(r))dim G <∞, the

inequality has finitely many solutions.

Note that usually qp(G) ≥ 2, and equality provides the best
possible result, namely a sharp threshold in Khinchin’s theorem.
This occurs, for example, for Z[ 1

p ]-approximations on S2 and S3.
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theorem. Namely, for any rate function ψ the Diophantine
inequality :

‖x − r‖ ≤ ψ(D(r))

has infinitely many solutions if
∑

r∈X(Z[ 1
p ]) ψ(D(r))τ+ε =∞

(for some ε > 0)

Whereas conversely, if
∑

r∈X(Z[ 1
p ]) ψ(D(r))dim G <∞, the

inequality has finitely many solutions.
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Uniform version of Schmidt’s theorem

Define the solution counting function (with gauge ψ(h) = h−b for
suitable b > 0) :

NT (x) =

∣∣∣∣{r ∈ X (Z[
1
p

]) ; 1 ≤ D(r) ≤ T , and ‖x − r‖ < ψ(D(r))

}∣∣∣∣

and the volume growth function :

VT =
∑

1≤h≤T

m(B(x , ψ(h))

∣∣∣∣{r ∈ X (Z[
1
p

]) ; D(r) = h
}∣∣∣∣ .

then there exist θ = θ(b) ∈ (0,1) such that for every x ∈ X(R)

NT (x) = VT + Ox
(
V θ

T
)
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Discrepancy of Z[1
p ] points on the variety

Consider Z[ 1
p ]-points on X(R) with bounded denominator :

Bh =

{
r ∈ X (Z[

1
p

]) ; D(r) ≤ ph
}

Define the discrepancy of the family of finite sets Bh in a set B via

∆(Bh,B) =

∣∣∣∣Bh ∩ B
Bh

−m(B)

∣∣∣∣ .
The discrepancy measures the deviation of the sets Bh from
being fairly deposited in the set B. Taking B = B(x , δ) we are
measuring the discrepancy at scale δ, and would like to a bound
valid also at very small scales δ → 0.

The uniform analog of Schmidt’s theorem stated above obviously
yields an effective uniform bound on the discrepancy of Z[ 1

p ]

points on the variety, for suitable scales δ ∼ h−b for 0 < b < b0.
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Some previous results

Uniform discrepancy bounds on the spheres S2 and S3 for
approximation by Z[ 1

p ]-points appears in the celebrated work of
Lubotzky-Phillips-Sarank. Diophantine exponents can also be
derived from their work, and in higher dimensional spheres from
the work of Clozel, Ullmo and Oh. The intersection with group
varieties amounts to S3 only.

For approximation by all rational points, Kleinbock and Merrill
established the best possible exponent in Dirichlet’s theorem for
uniform approximation on the spheres Sd , d ≥ 2. They also
obtain the sharp threshold in Khinchin’s theorem.

The methods they use involve homogeneous dynamics,
particularly Dani-Margulis arguments regarding visiting times to
shrinking neighborhoods of cusps, and a method previously
introduced by Drutu to reduce the problem to this context. It is
not clear whether this approach can yield an effective analog of
Schmidt’s theorem.
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Scope of the method

It is possible to derive similar results on uniform and almost sure
Diophantine approximation :

for arbitrary simply transitive affine homogenous varieties of all
semisimple groups,

defined over an arbitrary number field K ,

using K -rational points constrained by arbitrarily prescribed
integrality conditions,

achieving simultaneous approximation over several completions
of the field K ,

with the approximation rate being given as an explicit exponent.
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Method of proof

Our approach to the proof of the analogs of Schmidt’s theorem is
based on the following ingredients :

Reduction to an effective solution for the problem of counting
points of a lattice subgroup Γ in variable domains in a
semisimple group G.

Reduction of the lattice point counting problem to an effective
mean ergodic theorem for the action of the group on the
probability space G/Γ.

Utilizing spectral estimates in the automorphic representation of
G in L2(G/Γ) to bound the averages appearing in the mean
ergodic theorem.
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From Diophantine approximation to dynamics

In order to study the density of the set X(Z[1/p]) in X(R) when
X = G is a group variety, note first that this set coincides with the
subgroup Γ = G(Z[1/p]) ⊂ G(R).

Consider therefore the group G(R)× G(Qp), where the group
Γ = G(Z[1/p]) embeds diagonally as a lattice subgroup, namely
as a discrete subgroup with finite covolume, (Borel-Harish
Chandra 1960).

We can then consider the finite-measure homogeneous space

Y = (G(R)× G(Qp))/G(Z[1/p]).

on which G(R)× G(Qp) acts (transitively) as a group of
probability measure preserving transformations.
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Counting lattice points

Consider the increasing sequence of height balls Bh of G(Qp)

Bh = {g ∈ G(Qp) ; Hp(g) ≤ h}

Hp(g) the p-adic height (= the denominator above),

and consider also the shrinking system of neighborhoods B(e, δ)
of the identity in G(R).

The Diophantine problem analogous to Schmidt’s theorem that
we raised above is the problem of counting the number of
rational points with p-height bounded by h which are within δ of a
point x in G(R).

Clearly, this problem is identical to counting the number of points
in the (diagonally embedded) lattice Γ = G(Z[1/p]) which fall in
the set

B(x , δ)× Bh ⊂ G(R)× G(Qp)

.
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Effective mean ergodic theorems

We will now use the tools of ergodic theory, and solve the lattice
point counting problem by analyzing the behavior of suitable
averaging operators on the space Y .

Let βδ,h denote the Haar-uniform probability measure supported
on the sets B(e, δ)×Bh ⊂ G(R)×G(Qp). Consider the operators

πY (βδ,h) : L2(Y )→ L2(Y )

defined by averaging over these sets, namely

πY (βδ,h)φ((x , y)) =

=
1

m(B(e, δ))m(Bh)

∫
(u,v)∈(B(e,δ)×Bh

φ((u−1x , v−1y))dudv .

Then the following effective mean ergodic theorem holds :∥∥∥∥πY (βδ,h)(φ)−
∫

Y
φdmY

∥∥∥∥
2
≤ Cη · vol(Bh)

− 1
qp (G) +η‖φ‖2.
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The rate of convergence amounts to an operator norm estimate
of the averaging operators acting in the automorphic
representation, which can be deduced from the spectrum of the
unitary representation of the group G(Qp) in L2(Y ).

More concretely, the rate of convergence is determined by the
integrability exponent qp(G) associated with the spherical
functions appearing as matrix coefficients in the representation.

It is well known that qp(G) is finite, by integrability of matrix
coefficients, due to Cowling, Howe, Moore, Borel, Wallach......

We note that in order to derive the optimal Diophantine exponent
and threshold in Khinchin’s theorem using this method, optimality
of the operator norm estimate in L2 is crucial. This amounts to
qp(G) = 2, or equivalently, the representation of G(Qp) being
tempered.
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Regularity of domains

For a locally compact second countable group G, a lattice
subgroup Γ, and a family of sets Bt let us assume the following :

A) the validity of the effective mean ergodic theorem in the
G-action on L2(G/Γ), in the form∥∥∥∥∥βt f −

∫
G/Γ

fdm

∥∥∥∥∥
2

≤ Cηm(Bt )
−θ+η ‖f‖2

B) the regularity condition for the sets Bt given by (t > t0,
0 < ε < ε0)

m(OεBtOε) ≤ (1 + cε)m(∩u,v∈Oε
uBtv)

where Oε is a family of decreasing neighborhoods of e ∈ G
satisfying : m(Oε) ≥ Cεd .
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Solution of the lattice point counting problem

Theorem (Gorodnik+N, 2008.) For any lcsc group G and any
lattice Γ, under conditions A and B, the lattice point counting
problem in the domains Bt has the solution

|Γ ∩ Bt |
m(Bt )

= 1 + O
(

m(Bt )
−θ/(d+1)

)

In our present case, G = G(R)× G(Qp), Γ = G(Z[1/p]), and the
sets we are interested in are B(e, δ)× Bh.

This is a 2-parameter family, and we would like to let h→∞ and
δ → 0 simultaneously. This calls for an extension of the theorem
stated which establishes an effective solution of the lattice point
counting problem in a variable family of domains.

We establish such an extension under suitable restrictions
limiting the speed at which δ can converge to 0, as a function of
h−1. This concludes the outline of the proof of the uniform analog
Schmidt’s theorem in this context.
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