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Ordinary Correlations

In Ergodic Theory

A system (X,µ, T ) is a probability space (X,µ) endowed with a transformation

T : X → Xmeasurable, invertible and preserving µ.

Notation.

We omit the σ-algebra. Tn = T ◦ · · · ◦ T ; Tnx = Tn(x).

If f is a function on X, Tnf = f ◦ Tn.

Definition.

The correlation of 2 functions f0, f1 ∈ L2(µ) is the sequence φ = (φ(n))n∈Z
defined by

φ(n) =
∫
X
f0 · Tnf1 dµ.
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Notation. e(t) = exp(2πit).

Some definitions.

• A trigonometric polynomial on Z is a sequence φ = (φ(n))n∈Z of the form

φ(n) =
m∑
j=1

cj e(ntj)

where cj ∈ C and tj ∈ T = R/Z for j = 1, . . . ,m.

• A sequence φ ∈ `∞(Z) is almost periodic if it is the uniform limit of trigono-

metric polynomials.

• A sequence φ ∈ `∞(Z) tends to 0 in density if

lim
N→+∞

sup
M∈Z

1

N

M+N−1∑
n=M

|φ(n)|2 = 0.
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Proposition.

Let f0, f1 ∈ L2(µ). The correlation

φ(n) =
∫
X
f0 · Tnf1 dµ

is the sum of an almost periodic sequence and a sequence tending to 0 in

density.

Proof. By the Spectral Theorem, φ is the Fourier-Stieltjes transform σ̂ of a

(complex) measure σ of finite total variation on T = Z/Z. Let σd and σc be the

discrete and continuous parts of σ. Then the sequence σ̂d is almost periodic

and σ̂c tends to 0 in density.
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Correlations of bounded sequences

The correlation of f0, f1 ∈ `∞(Z) is defined by

φ(n) = lim
N→+∞

1

N

N−1∑
x=0

f0(x)f1(x+ n)

if the limits exists. Otherwise, pass to a subsequence.

Proposition.

The correlation φ of 2 elements of `∞(Z) is the sum of an almost periodic

sequence and a sequence tending to 0 in density.

Proof. We reduce to the preceding case by using Furstenberg Correspondence

Principle.
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Correlations in the finite universe

Notation. ZN = Z/NZ.

If A is a finite set, |A| = Card(A). If f is a function on A,

Ex∈A f(x) =
1

|A|
∑
x∈A

f(x).

Definition.

Let N ∈ N. If f0, f1 are two functions on ZN , their correlation is defined by

φ(n) = Ex∈ZN f0(x) f1(x+ n) for n ∈ ZN .
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Definition. A trigonometric polynomial on ZN with m frequencies is a function

φ : ZN → C of the form

φ(n) =
m∑
j=1

cj e
(
n
ξj

N

)
where cj ∈ C and ξj ∈ ZN , j = 1, . . . ,m.

Proposition.

For every ε > 0 there exists M ∈ N with the following property:

For every N ≥ 1 and all functions f0, f1 : ZN → C with |fi| ≤ 1, the correlation

φ(n) = Ex∈ZNf0(x)f1(x+ n)

is the sum

φ(n) = φstruct(n) + φsml(n)

of a trigonometric polynomial φstruct with at most M frequencies, and a function

φsml with ‖φsml‖2 ≤ ε.
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Our problem:

Establish corresponding results for multiple correlations



In Ergodic Theory

Let (X,µ, T ) be a system and f0, f1, . . . , fk ∈ L∞(µ). What can be said about

the sequence φ = (φ(n))n∈Z defined by

φ(n) =
∫
f0 · Tnf1 · T2nf2 . . . T

knfk dµ ?

More generally, let (X,µ, T1, . . . , Tk) be a system where the Tj’s are commuting

measure preserving transformations. For f0, f1, · · · ∈ L∞(µ), we also study the

sequence φ given by

φ(n) =
∫
f0 · Tn1 f1 · Tn2 f2 . . . T

n
k fk dµ.

We also consider sequences defined by several commuting transformations raised

to polynomial powers, like

φ(n) =
∫
f0 · Tn1 T

n2

2 f1 · Tn
2+n

1 Tn
2−n

2 f2 . . . dµ.
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Multiple correlations on ZN

Let f0, f1, f2, . . . be functions on ZN . We want to describe correlation sequences
of the form

φ(n) = En∈ZN f0(x) · f1(x+ n) · f2(x+ 2n) . . . fk(x+ kn)

We also consider correlations arising from functions of 2 variables, like:

φ(n) = Ex,y∈ZN f0(x, y) · f1(x+ n, y) · f2(x, y + n) · f3(x+ n, y + n)

and we also introduce polynomial terms, like

Ex,y∈ZN f0(x, y) · f1(x+ n, y + n2) · f2(x+ n2 + n, y + n2 − n) . . .

Most general case:

φ(n) = Ex1,...,xd∈ZN
∏̀
i=1

fi

(
x1 + pi,1(n) , x2 + pi,2(n) , . . . , xd + pi,d(n)

)

where, for i = 1, . . . , `, fi is a function on ZdN and pi,j : Z→ Z is a polynomial for
j = 1, . . . , d.
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The surprising fact is that in both cases the multiple correlation sequences are

far from being arbitrary sequences.

The results in ergodic theory and in the finite universe look similar, and the

general strategies of proofs are closely related.

However, the context and the tools are completely different.
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Nilmanifolds, nilsequences

Definition.

Let k ≥ 1, G a k-step nilpotent Lie group, connected and simply connected,

and Γ a discrete co-compact subgroup of G. .

Then X = G/Γ is a k-step nilmanifold.

The group G acts on X by left translations: (g, x) 7→ g · x

G is implicitly endowed with a right invariant Riemannian distance, and X = G/Γ
with the quotient distance.

1-step nilmanifolds are finite dimensional tori.

An example of a 2-step nilmanifold is the Heisenberg nilmanifold:

G =

1 R R
0 1 R
0 0 1

 ; Γ =

1 Z Z
0 1 Z
0 0 1

 ;X = G/Γ.
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Definition.

Let X = G/Γ be a k-step nilmanifold, F : X → C a continuous function, g ∈ G
and x ∈ X. Then the sequence φ defined by(

F (gn · x)
)
n∈Z

is a k-step nilsequence.

Trigonometric polynomials are 1-step nilsequences.

If p ∈ R[t] is a polynomial of degree k then (e(p(n))n∈Z is a k-step nilsequence.

But there are many others.
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For the study of multiple correlations on ZN , we need a notion of complex-

ity of a k-step nilsequences corresponding to the number of frequencies of a

trigonometric polynomial.

For M ∈ N, we do not give an explicit definition of a k-step nilsequences of

complexity at most M .

For every k-step nilmanifold X = G/Γ and every C > 0 there exists M = M(X,C)

such that every nilsequence φ of the form

φ(n) = F (gn · x) where g ∈ G, x ∈ X, F : X → C and ‖F‖Lip(X) ≤ C

has complexity ≤M .

Conversely, the family of k-step nilsequences of complexity ≤M can be defined

in this way.
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Results in Ergodic Theory

Theorem [Bergelson, H. & Kra, 2005]

Let k ≥ 1, (X,µ, T ) an ergodic system and f0, f1, . . . , fk ∈ L∞(µ). Then the

correlation φ defined by

φ(n) =
∫
f0 · Tnf1 · T2nf2 . . . , T

knfk dµ

can be decomposed as a sum

φ = φstruct + φnull

where φstruct is the uniform limit of k-step nilsequences and φnull tends to 0 in

density.

Generalization to non ergodic systems by using a result of Leibman (2015):
every integral of a family of nilsequences is the uniform limit of nilsequences.

The original method relies on a Structure Theorem and can not be used to study
correlations arising from a system with several commuting transformations: no
known structure theorem.
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A similar result holds for all correlations, but with a completely different proof.

Theorem [Frantzikinakis 2015]

All multiple correlations in Ergodic Theory can be decomposed as a sum of a

nilsequence and a small error term.

Here “small” refers to the seminorm

‖φ‖2 =
(

lim
N→+∞

sup
M∈Z

1

N

M+N−1∑
n=M

|φ(n)|2
)1/2

on `∞(Z).
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Multiple Correlations in the Finite Universe

Theorem.

For every k and every ε > 0 there exists M with the following property. For

every N and all functions f0, f1, . . . , fk : ZN → C with |fi| ≤ 1, the correlation

φ(n) = Ex∈ZN f0(x) · f1(x+ n) . . . fk(x+ kn)

can be written as a sum

φ(n) = φnil(n) + φsml(n)

where φnil is a k-step nilsequence of complexity ≤M and ‖φsml‖2 < ε.

The basic tool is the Inverse Theorem for Gowers Norms of Green, Tao &

Ziegler (2012).
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There is no Inverse Theorem for the “box norms” and the next result needs

another method.

Theorem

For every k and every ε > 0 there exists M with the following property:

For every N and all functions f0, f1, . . . , fk : ZkN → C with |fi| ≤ 1, the correlation

φ(n) = Ex1,...,xk∈ZN f0(x1, x2, . . . , xk) · f1(x1 + n, x2, . . . , xk)·
· f2(x1, x2 + n, . . . , xk) . . . fk(x1, x2, . . . , xk + n)

can be written as a sum

φ(n) = φnil(n) + φsml(n)

where φnil is a k-step nilsequence of complexity ≤M and ‖φsml‖2 < ε.
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We have a similar result for all polynomial multiple correlations.

Most general form of the Theorem

Let d, ` ∈ N and let pi,j : Z→ Z, 1 ≤ i ≤ `, 1 ≤ j ≤ d be polynomials. Then there

exists k ∈ N and for every ε > 0 there exists M with the following property.

For every N , for all functions f1, . . . , f` : ZN → C with |fj| ≤ 1, the correlation φ

given by

φ(n) = Ex1,...,xd∈ZN
∏̀
i=1

fi

(
x1 + pi,1(n) , x2 + pi,2(n) , . . . , xd + pi,d(n)

)
can be decomposed as a sum

φ(n) = φnil(n) + φsml(n)

where

φnil is a k-step nilsequence of complexity ≤M and ‖φsml‖2 < ε.
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Tools for the proof of the theorem in the finite case
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Gowers norms on ZN

Definition.

Let f be a function on ZN .

‖f‖U1 =
∣∣∣Ex∈ZN f(x)

∣∣∣.
For k ≥ 1, writing fh(x) = f(x+ h),

‖f‖Uk+1 =
(
Eh∈ZN ‖ f · fh ‖

2k

Uk

)1/2k+1

.

For k ≥ 2, f 7→ ‖f‖Uk is a norm.

A direct computation gives ‖f‖U2 = ‖ f̂ ‖`4(ZN) but there is no similar formula

for ‖f‖Uk, k > 2.

‖f‖8
U3 =

Ex,h1,h2,h3∈ZN

(
f(x)f(x+ h1)f(x+ h2)f(x+ h1 + h2)

f(x+ h3)f(x+ h1 + h3)f(x+ h2 + h3)f(x+ h1 + h2 + h3)
)
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Arithmetic Regularity Lemma

Theorem. [Green & Tao, 2010]

Let k ≥ 1 and Φ: R+ → R+ a function.

Then for every δ > 0 there exists M with the following property. For every N ,

every function f : ZN → R with |f | ≤ 1 admits a decomposition

f(n) = fnil(n) + fsml(n) + funif(n)

where

• fnil is a k-step nilsequence of complexity ≤M ;

• ‖fsml‖2 ≤ δ;

• ‖funif‖Uk+1 ≤ Φ(M)−1.

Moreover, |fnil| ≤ 1 and |fnil + fsml| ≤ 1.

The proof used the Inverse Theorem for the Gowers Norms of Green, Tao and

Ziegler (2012).
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Sketch of the proof in a particular case

Theorem

For every k and every ε > 0 there exists with the following property. For every

N and all function f0, f1, . . . , fk : ZkN → C with |fi| ≤ 1, the correlation

φ(n) = Ex1,...,xk ∈ZN f0(x1, x2, . . . , xk) · f1(x1 + n, x2, . . . , xk)·
· f2(x1, x2 + n, . . . , xk) . . . fk(x1, x2, . . . , xk + n)

can be written as a sum

φ(n) = φnil(n) + φsml(n)

where φnil is a k-step nilsequence of complexity ≤M and ‖φsml‖2 < ε.

Proof.

The idea is to use the Regularity Lemma to obtain a decomposition of φ, and

not of the functions fi.
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φ(n) = Ex1,...,xk ∈ZN f0(x1, x2, . . . , xk) · f1(x1 + n, x2, . . . , xk)·
· f2(x1, x2 + n, . . . , xk) . . . fk(x1, x2, . . . , xk + n)

Let Φ: R+ → R+ be a function and δ > 0 a constant to be specified later. Using

the Regularity Lemma, we write

φ = φnil + φsml + φunif

where

• φnil is a k-step nilsequence of complexity ≤M ;

• ‖φsml‖2 ≤ δ;

• ‖φunif‖Uk+1 ≤ Φ(M)−1

and moreover |φnil| ≤ 1 and |φnil + φsml| ≤ 1.

We show that in fact we have ‖φunif‖2 ≤ ε/2
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We write

‖φunif‖22 = En∈ZN |φunif(n)|2

= En∈ZN φunif(n)φ(n)

︸ ︷︷ ︸
first term

− En∈ZN φunif(n)φsml(n)

︸ ︷︷ ︸
second term

− En∈ZN φunif(n)φnil(n)

︸ ︷︷ ︸
third term

and we bound each term on the right hand side.

First term.

Proposition.

Let f0, . . . , fk : ZN → C with |fi| ≤ 1 and let ψ : ZN → C. Then∣∣∣∣En∈ZN ψ(n)Ex1,...,xk∈ZN f0(x1, x2, . . . , xk) · f1(x1 + n, x2, . . . , xk)·

· f2(x1, x2 + n, . . . , xk) . . . fk(x1, x2, . . . , xk + n)
∣∣∣∣ ≤ c ‖ψ‖Uk.

Therefore we have∣∣∣En∈ZN φunif(n)φ(n)
∣∣∣ ≤ cΦ(M)−1 ≤ ε2/12.
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Second term

Since ‖φunif‖∞ ≤ 2 and ‖φsml‖2 ≤ δ,∣∣∣En∈ZN φunif(n)φsml(n)
∣∣∣ ≤ 2δ < ε2/12.

Third term

Theorem.

Let k ≥ 1. For every M and every δ > 0 there exists C(M, δ) > 0 such that for

every function θ : ZN → C and every k-step nilsequence ψ of complexity ≤ M ,

we have ∣∣∣En∈ZN θ(n)ψ(n)
∣∣∣ ≤ C(M, δ) ‖θ‖Uk+1 + δ ‖θ‖∞.

Therefore we have∣∣∣En∈ZNφunif(n)φnil(n)
∣∣∣ ≤ C(M, δ)Φ(M)−1 + δ < ε2/12.
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Putting the bounds together we obtain ‖φunif‖2 ≤ ε/2.

We have

φ = φnil + (φsml + φunif)

and ‖φsml + φunif‖2 < ε.
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