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⋆ Thue-Morse sequence

Thue-Morse sequence (tn)n>0:
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⋆ Thue-Morse sequence

Thue-Morse sequence (tn)n>0:

0
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⋆ Thue-Morse sequence

Thue-Morse sequence (tn)n>0:

01
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⋆ Thue-Morse sequence

Thue-Morse sequence (tn)n>0:

0110
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⋆ Thue-Morse sequence

Thue-Morse sequence (tn)n>0:

01101001
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⋆ Thue-Morse sequence

Thue-Morse sequence (tn)n>0:

0110100110010110
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⋆ Thue-Morse sequence

Thue-Morse sequence (tn)n>0:

01101001100101101001011001101001
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⋆ Thue-Morse sequence

Thue-Morse sequence (tn)n>0:

011010011001011010010110011010011001011001101 · · ·

t0 = 0, t2n+k = 1−tk (0 6 k < 2n)
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⋆ Thue-Morse sequence

Thue-Morse sequence (tn)n>0:

011010011001011010010110011010011001011001101 · · ·

t0 = 0, t2n+k = 1−tk (0 6 k < 2n)

tn = s2(n) mod 2

n =

ℓ−1
∑

i=0

εi(n)q
i εi(n) ∈ {0,1, . . . ,q − 1}, sq(n) =

ℓ−1
∑

i=0

εi(n)
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⋆ Thue-Morse sequence

Thue-Morse sequence (tn)n>0:

011010011001011010010110011010011001011001101 · · ·

t0 = 0, t2n+k = 1−tk (0 6 k < 2n) or t2k = tk , t2k+1 = 1−tk

tn = s2(n) mod 2

n =

ℓ−1
∑

i=0

εi(n)q
i εi(n) ∈ {0,1, . . . ,q − 1}, sq(n) =

ℓ−1
∑

i=0

εi(n)
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⋆ Thue-Morse sequence

Thue-Morse sequence (tn)n>0:

011010011001011010010110011010011001011001101 · · ·
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⋆ Thue-Morse sequence

Thue-Morse sequence (tn)n>0:

011010011001011010010110011010011001011001101 · · ·
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⋆ Thue-Morse sequence

Thue-Morse sequence (tn)n>0:

011010011001011010010110011010011001011001101 · · ·
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⋆ Thue-Morse sequence

Thue-Morse sequence (tn)n>0:

011010011001011010010110011010011001011001101 · · ·
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⋆ Thue-Morse sequence

Thue-Morse sequence (tn)n>0:

011010011001011010010110011010011001011001101 · · ·

# {0 6 n < N : tn = 0} ∼
N

2
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⋆ Thue-Morse sequence

Thue-Morse sequence (tn)n>0:

011010011001011010010110011010011001011001101 · · ·

# {0 6 n < N : tn = 0} ∼
N

2

The letters 0 and 1 appear with asymptotic frequency 1
2
.
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⋆ Thue-Morse sequence

TM sequence is not periodic and cubeless.

TM sequence is almost periodic:

Every appearing consecutive block appears infinitely many times

with bounded gaps.

Subword complexity is linear: pk 6 10
3 k

pk ... subword complexity (number of different consecutive blocks

of length k that appear in the TM sequence).

Zero topological entropy of the corresponding dynamical

system:

h = limk→∞
1
k log pk = 0

Linear subsequences (tan+b)n>0 have the same properties.

The TM sequence and its linear subsequences are automatic

sequences.
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⋆ Thue-Morse sequence

Automaton that generates the Thue-Morse sequence:

tn =
∑

j>0 εj(n) mod 2

s1 / 0 s2 / 1

1

1

0 0
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⋆ Rudin-Shapiro sequence

Rudin-Shapiro sequence (rn)n>0:
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⋆ Rudin-Shapiro sequence

Rudin-Shapiro sequence (rn)n>0:

000100100001110100010010111000100001001000011101111 · · ·
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⋆ Rudin-Shapiro sequence

Rudin-Shapiro sequence (rn)n>0:

000100100001110100010010111000100001001000011101111 · · ·

r0 = 0, r2k = rk , r2k+1 =

{

rk if k is even,

1 − rk if k is odd.
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⋆ Rudin-Shapiro sequence

Rudin-Shapiro sequence (rn)n>0:

000100100001110100010010111000100001001000011101111 · · ·

r0 = 0, r2k = rk , r2k+1 =

{

rk if k is even,

1 − rk if k is odd.

rn =
∑

i>0

εi(n)εi+1(n) mod 2

n =

ℓ−1
∑

i=0

εi(n)q
i εi(n) ∈ {0,1, . . . ,q − 1}
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⋆ Rudin-Shapiro sequence

Automaton that generates the Rudin-Shapiro sequence:

rn =
∑

j>0 εj(n)εj+1(n) mod 2

s1 / 0 s2 / 0

1
0

0

s3 / 1 s4 / 1

0 0

1

1

1
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⋆ Automatic sequences

Definition

A sequence (un)n>0 is called a q-automatic sequence, if un is the

output of an automaton when the input is the q-ary expansion of n.

s1/a s2 /a

s3 /b

1

1

1

0 0

0

2

22

(un)n>0 : aaaaabaabaabaaabbaaabaaabbaaabaaabbaaaaaaba . . .

Michael Drmota Normal Subsequences of Automatic Sequences



⋆ Automatic sequences

• Sum-of-digits-function: un = sq(n) mod m

• q-additive function modulo m: un = f (n) mod m

f (n) =
∑

j>0

f (εj(n)) and f (0) = 0.

• q-block-additive function modulo m: un = f (n) mod m

f (n) =
∑

j>0

f (εj(n), εj+1(n), . . . , εj+k−1(n)) and f (0,0, . . . ,0) = 0.
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⋆ Automatic sequences

For every q-automatic sequence un (on an alphabet A) there

exists the logarithmic density (for every letter a ∈ A)

logdens(un,a) = lim
N→∞

1

log N

∑

16n6N

1

n
· I[un=a]

which is also computable.

If the densities

dens(un,a) = lim
N→∞

1

N
#{n 6 N : un = a}

exist then they coincide with the logarithmic densities.

Every subsequence uan+b along an arithmetic progression of

an automatic sequence un is automatic, too.

The subword complexity pk of an automatic sequence is (at

most) linear.
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⋆ Subsequences of Automatic Sequences

⋆ General idea:

1 Start with an automatic sequence un that is uniformly distributed

on the output alphabet.

(Recall: un has at most linear subword complexity)

2 Consider a relatively sparse subsequence unk
that has the same

asymptotic frequencies.

(It is assumed that the average size of the gaps increases

sufficiently fast so that one can expect random properties)

3 This subsequence should be pseudo-random (or normal) on the

output alphabet
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⋆ Thue-Morse sequence along Piatetski-Shapiro sequence ⌊nc⌋

Thue-Morse sequence (tn)n>0:

011010011001011010010110011010011001011001101 · · ·
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⋆ Thue-Morse sequence along Piatetski-Shapiro sequence ⌊nc⌋

Thue-Morse sequence (tn)n>0:

0110100110010110100101100110100110010110011011 · · ·
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⋆ Thue-Morse sequence along Piatetski-Shapiro sequence ⌊nc⌋

Thue-Morse sequence (tn)n>0:

0110100110010110100101100110100110010110011011 · · ·

Mauduit and Rivat (1995, 2005): 1 < c < 4/3, 1 < c < 7/5,

Spiegelhofer (2014,2015+), 1 < c < 1.42, 1 < c < 1.5 =⇒

# {0 6 n < N : t⌊nc⌋ = 0} ∼
N

2
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⋆ Subsequences along ⌊nc⌋

Theorem (Deshouillers, D. and Morgenbesser, 2012)

Let un be a q-automatic sequence (on an alphabet A) and

1 < c < 7/5.

Then for each a ∈ A the asymptotic density dens(u⌊nc⌋,a) of a in the

subsequence u⌊nc⌋ exists if and only if the asymptotic density of α in un

exists and we have

dens(u⌊nc⌋,a) = dens(un,a) .

The same property holds for the logarithmic density.
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⋆ Thue-Morse sequence along squares

Thue-Morse sequence (tn)n>0:

011010011001011010010110011010011001011001101 · · ·
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⋆ Thue-Morse sequence along squares

Thue-Morse sequence (tn)n>0:

011010011001011010010110011010011001011001101 · · ·
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⋆ Thue-Morse sequence along squares

Thue-Morse sequence (tn)n>0:

011010011001011010010110011010011001011001101· · ·

Mauduit and Rivat (2009):

# {0 6 n < N : tn2 = 0} ∼
N

2

Michael Drmota Normal Subsequences of Automatic Sequences



⋆ Thue-Morse sequence along squares

Thue-Morse sequence (tn)n>0:

011010011001011010010110011010011001011001101· · ·

Mauduit and Rivat (2009):

# {0 6 n < N : tn2 = 0} ∼
N

2

Solution of a Conjecture of Gelfond (1968)
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⋆ Subsequences along squares

Theorem (Müllner, 2016+)

Let un be a q-automatic sequence (on an alphabet A) generated by a

strongly connected automaton such that a zero input at the initial

state is mapped to the initial state.

Then for each a ∈ A the asymptotic density

dens(un2 ,a)

exists (and can be computed).
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⋆ Subsequences along squares

Theorem (Müllner, 2016+)

Let un be a q-automatic sequence (on an alphabet A) generated by a

strongly connected automaton such that a zero input at the initial

state is mapped to the initial state.

Then for each a ∈ A the asymptotic density

dens(un2 ,a)

exists (and can be computed).

This also generalizes a result of D.+Morgenbesser (2012) on invertible

automatic sequences, where the transitions on the automaton are

invertible. The proof is based on a clever representation of automatic

sequences and relies very much on a general method by Mauduit and

Rivat (2015+) that was applied to the Rudin-Shapiro sequence.
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⋆ Thue-Morse sequence along primes

Thue-Morse sequence (tn)n>0:

011010011001011010010110011010011001011001101 · · ·
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⋆ Thue-Morse sequence along primes

Thue-Morse sequence (tn)n>0:

011010011001011010010110011010011001011001101 · · ·
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⋆ Thue-Morse sequence along primes

Thue-Morse sequence (tn)n>0:

011010011001011010010110011010011001011001101· · ·

Mauduit and Rivat (2010):

# {0 6 p < N : tp = 0} ∼
π(N)

2
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⋆ Thue-Morse sequence along primes

Thue-Morse sequence (tn)n>0:

011010011001011010010110011010011001011001101· · ·

Mauduit and Rivat (2010):

# {0 6 p < N : tp = 0} ∼
π(N)

2

Solution of a Conjecture of Gelfond (1968)
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⋆ Thue-Morse sequence along primes

Thue-Morse sequence (tn)n>0:

011010011001011010010110011010011001011001101· · ·

Mauduit and Rivat (2010):

# {0 6 p < N : tp = 0} ∼
π(N)

2

Solution of a Conjecture of Gelfond (1968)

Related to the Sarnak Conjecture
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⋆ Subsequences along primes

Theorem (Müllner, 2016+)

Let un be a q-automatic sequence (on an alphabet A) generated by a

strongly connected automaton such that a zero input at the initial

state is mapped to the initial state.

Then for each a ∈ A the asymptotic density

dens(upn ,a)

exists, where pn denotes the n-th prime number.
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⋆ Subsequences along primes

Theorem (Müllner, 2016+)

Let un be a q-automatic sequence (on an alphabet A) generated by a

strongly connected automaton such that a zero input at the initial

state is mapped to the initial state.

Then for each a ∈ A the asymptotic density

dens(upn ,a)

exists, where pn denotes the n-th prime number.

This also generalizes a result of D. (2014) on invertible automatic

sequences.
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⋆ Sarnak conjecture for automatic sequences

Theorem (Müllner, 2016+)

Let un be a complex valued q-automatic sequence.

Then we have
∑

n<N

µ(n)un = o(N),

where µ(n) denotes the Möbius function.
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⋆ Sarnak conjecture for automatic sequences

Theorem (Müllner, 2016+)

Let un be a complex valued q-automatic sequence.

Then we have
∑

n<N

µ(n)un = o(N),

where µ(n) denotes the Möbius function.

This generalizes several results by Dartyge and Tenenbaum

(Thue-Morse); Mauduit and Rivat (Rudin-Shapiro); Tao

(Rudin-Shapiro); D. (invertible); Ferenczi, Kułaga-Przymus,

Lemanczyk, and Mauduit (invertible); Deshoulliers, D. and Müllner

(synchronizing).
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⋆ Thue-Morse sequence along squares

p
(2)
k ... subword complexity of (tn2)n>0.

Conjecture (Allouche and Shallit, 2003)

p
(2)
k

= 2k

Equivalently: every block B ∈ {0,1}k , k > 1, appears in (tn2)n>0.

[Moshe, 2007]: p
(2)
k = 2k

Problem. What can be said about the frequency of a given block?

Michael Drmota Normal Subsequences of Automatic Sequences



⋆ Thue-Morse sequence along squares

Definition

A sequence (un)n>0 ∈ {0,1}N is normal if for any k ∈ N and any

B = (b0, . . . ,bk−1) ∈ {0,1}k , we have

lim
N→∞

1

N
#{i < N, ui = b0, . . . ,ui+k−1 = bk−1} =

1

2k
.
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⋆ Thue-Morse sequence along squares

Definition

A sequence (un)n>0 ∈ {0,1}N is normal if for any k ∈ N and any

B = (b0, . . . ,bk−1) ∈ {0,1}k , we have

lim
N→∞

1

N
#{i < N, ui = b0, . . . ,ui+k−1 = bk−1} =

1

2k
.

Remark. There are only few (known) explicit examples of normal

sequences.
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⋆ Normal subsequences

Theorem (D.+Mauduit+Rivat 2013+)

The sequence (tn2)n>0 is normal.
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⋆ Normal subsequences

Theorem (Spiegelhofer 2014+, Spiegelhofer+Müllner 2015+)

Suppose that 1 < c < 3/2. Then the sequence (t⌊nc⌋)n>0 is normal.
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⋆ Normal subsequences

Theorem (Spiegelhofer 2014+, Spiegelhofer+Müllner 2015+)

Suppose that 1 < c < 3/2. Then the sequence (t⌊nc⌋)n>0 is normal.

Theorem (Müllner 2015+)

Let f (n) be a q-block-additive function and un = f (n) mod m an

automatic sequence with is uniformly distributed on the alphabet

A = {0,1, . . . ,m − 1}.

Then the sequence (u⌊nc⌋)n>0 is normal for all c with 1 < c < 4/3.

Furthermore if the subsequence (un2)n>0 is uniformly distributed on

the alphabet A = {0,1, . . . ,m − 1} then (un2)n>0 is normal.
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⋆ Normal subsequences

Conjecture (1)

Suppose that c > 1 and c 6∈ Z. Then for every automatic sequence un

(on an alphabet A) the asymptotic density dens(u⌊nc⌋,a) of a ∈ A in the

subsequence u⌊nc⌋ exists if and only if the asymptotic density of α in un

exists and we have

lim
N→∞

1

N
#{n < N, u⌊nc⌋ = b0, u⌊(n+1)c⌋ = b1, . . . ,u⌊(n+k−1)c⌋ = bk−1}

= dens(un,b0) · dens(un,b1) · · · dens(un,bk−1)

for every k > 1 and for all b0, . . . ,bk−1 ∈ A.
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⋆ Normal subsequences

Conjecture (2)

Let P(x) be a positive integer valued polynomial and un an automatic

sequence generated by a strongly connected automaton.

Then for every a ∈ A the densities δa = dens(uP(n),a) exist and we

have

lim
N→∞

1

N
#{n < N, uP(n) = b0, uP(n+1) = b1, . . . ,uP(n+k−1) = bk−1}

= δb0
· δb1

· · · δbk−1

for every k > 1 and for all b0, . . . ,bk−1 ∈ A.
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⋆ Limits of the method

Let un be an automatic sequence and φ(n) a positive sequences such

that φ(n)/n is non-decreasing.

What can be said about u⌊φ(n)⌋ ?

We cannot expect general results for exponentially growing

sequences φ(n).

If φ(n) = an + b with integers a,b then uφ(n) is again an automatic

sequence.

If φ(n) = n log2 n then t⌊φ(n)⌋ behaves as the Thue-Morse

sequence tn but the limit

lim
N→∞

1

N
#{n < N, t⌊n log2 n⌋ = b0, t⌊(n+1) log2(n+1)⌋ = b1}

does not exist. [Deshouilliers+D.+Morgenbesser (2012)]
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⋆ General subsequences

Conjecture (3)

Suppose that φ(x) is a positive function such that logφ(x) ∼ c log x for

some c > 1 as well as φ′(x)/φ(x) ∼ c/x and

c1/x2 6 φ′′(x)/φ(x) 6 c2/x2 (for some constancs c1, c2 that have the

same sign).

Then for every automatic sequence un (on an alphabet A) that is

generated by a strongly connected automaton the asymptotic densities

dens(u⌊φ(n)⌋,a)

and

dens(u⌊φ(pn)⌋,a)

of a ∈ A exist.

(As above pn denotes the n-th prime number.)
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⋆ Proof methods

Comparision of un and u⌊φ(n)⌋ by a clever partial summation

Fourier analytic sieving

Clever representation of automatic sequences
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⋆ Clever partial summation

Proposition (Deshouilliers+D.+Morgenbesser)

Suppose that un is a complex valued automatic sequences and

1 < c < 7/5. Then we have

∣

∣

∣

∣

∣

N
∑

n=0

u⌊nc⌋ −
1

c

N
∑

n=0

n
1
c
−1un

∣

∣

∣

∣

∣

≪ N1−δ,

where δ < (7 − 5c)/9.
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⋆ Clever partial summation

Proposition (Deshouilliers+D.+Morgenbesser)

Suppose that un is a complex valued automatic sequences and

1 < c < 7/5. Then we have

∣

∣

∣

∣

∣

N
∑

n=0

u⌊nc⌋ −
1

c

N
∑

n=0

n
1
c
−1un

∣

∣

∣

∣

∣

≪ N1−δ,

where δ < (7 − 5c)/9.

This generalizes a method by Mauduit and Rivat (2005) and uses

Vaaler’s approximation method as well as the double large sieve.
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⋆ Fourier estimates

Truncated sum-of-digits function

s2,λ(n + k2λ) = s2(n), 0 6 n < 2λ, k > 0.

Alternatively

s2,λ(n) =

λ−1
∑

i=0

εi(n),

where

n =
∞
∑

i=0

εi(n)2
i εi(n) ∈ {0,1},

s2,λ is periodic with period 2λ
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⋆ Fourier estimates

Discrete Fourier transform

Fλ(h, α) =
1

2λ

∑

06u<2λ

e(αs2,λ(u)− hu2−λ)

of the function n 7→ e(αsq,λ(n)); e(x) = exp(2πix).
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⋆ Fourier estimates

Discrete Fourier transform

Fλ(h, α) =
1

2λ

∑

06u<2λ

e(αs2,λ(u)− hu2−λ)

of the function n 7→ e(αsq,λ(n)); e(x) = exp(2πix).

Fλ(h, α) =
1

2λ

∏

06k<λ

(

1 + e
(

α− h2k−λ
))
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⋆ Fourier estimates

Lemma

ϕ(x) := 1 + e(x) =⇒

max
06x<1

|ϕ(α − x)ϕ(α− 2x)| 6 4 e−c‖α‖2

.

for some constant c > 0. (‖α‖ = min{|α− k | : k ∈ Z})
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⋆ Fourier estimates

Lemma

ϕ(x) := 1 + e(x) =⇒

max
06x<1

|ϕ(α − x)ϕ(α− 2x)| 6 4 e−c‖α‖2

.

for some constant c > 0. (‖α‖ = min{|α− k | : k ∈ Z})

Corollary

|Fλ(h, α)| 6 2−c‖α‖2⌊m/2⌋|Fλ−m(h, α)|
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⋆ Fourier estimates

Proposition

Suppose that Fλ(h, α) satisfies the property

|Fλ(h, α)| 6 2−c‖α‖2⌊m/2⌋|Fλ−m(h, α)|

(for some c > 0. Then it follows that

∣

∣

∣

∣

∣

∑

n<N

e(αs2(n
2))

∣

∣

∣

∣

∣

≪ N1−c′‖α‖2

(for some constant c′ > 0) and consequently

# {0 6 n < N : tn2 = 0} ∼
N

2
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⋆ Fourier estimates

Proposition

Suppose that Fλ(h, α) satisfies the property

|Fλ(h, α)| 6 2−c‖α‖2⌊m/2⌋|Fλ−m(h, α)|

(for some c > 0. Then it follows that

∣

∣

∣

∣

∣

∑

n<N

e(αs2(n
2))

∣

∣

∣

∣

∣

≪ N1−c′‖α‖2

(for some constant c′ > 0) and consequently

# {0 6 n < N : tn2 = 0} ∼
N

2

Proof methods: two applications of the Van-der-Corput inequality, a

proper Fourier analysis and estimates for quadratic exponential sums.
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⋆ Fourier estimates

Fourier term with correlations in oder to handle blocks of length > 1:

GI
λ(h,d) =

1

2λ

∑

06u<2λ

e

(

1

2

k−1
∑

ℓ=0

αℓs2,λ(u + ℓd + iℓ)− hu2−λ

)

,

where α0, . . . , αk−1 ∈ {0,1} and I = (i0, . . . , ik−1 ∈ Ik :

Ik := {I = (i0, . . . , ik−1) : i0 = 0, iℓ−1 6 iℓ 6 iℓ−1 + 1,1 6 ℓ 6 k − 1}
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⋆ Fourier estimates

Fourier term with correlations in oder to handle blocks of length > 1:

GI
λ(h,d) =

1

2λ

∑

06u<2λ

e

(

1

2

k−1
∑

ℓ=0

αℓs2,λ(u + ℓd + iℓ)− hu2−λ

)

,

where α0, . . . , αk−1 ∈ {0,1} and I = (i0, . . . , ik−1 ∈ Ik :

Ik := {I = (i0, . . . , ik−1) : i0 = 0, iℓ−1 6 iℓ 6 iℓ−1 + 1,1 6 ℓ 6 k − 1}

Uniform upper bounds.

max
I∈Ik

∣

∣

∣
GI

λ(h,d)
∣

∣

∣
≪ 2−ηm max

J∈Ik

∣

∣

∣
GJ

λ−m(h, ⌊d/2m⌋)
∣

∣

∣

(for some constant η > 0 and odd K = α0 + · · ·+ αk−1).
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⋆ Fourier estimates

Proposition

Suppose that GI
λ(h,d) satisfies the property

max
I∈Ik

∣

∣

∣
GI

λ(h,d)
∣

∣

∣
≪ 2−ηm max

J∈Ik

∣

∣

∣
GJ

λ−m(h, ⌊d/2m⌋)
∣

∣

∣

(for some η > 0 and odd K ). Then it follows that

∑

n<N

e

(

1

2

k−1
∑

ℓ=0

αℓs2((n + ℓ)2)

)

≪ N1−η′

for some constant η′ > 0 and odd K , where α0, . . . , αk−1 ∈ {0,1}.
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⋆ Fourier estimates

Proposition

Suppose that GI
λ(h,d) satisfies the property

max
I∈Ik

∣

∣

∣
GI

λ(h,d)
∣

∣

∣
≪ 2−ηm max

J∈Ik

∣

∣

∣
GJ

λ−m(h, ⌊d/2m⌋)
∣

∣

∣

(for some η > 0 and odd K ). Then it follows that

∑

n<N

e

(

1

2

k−1
∑

ℓ=0

αℓs2((n + ℓ)2)

)

≪ N1−η′

for some constant η′ > 0 and odd K , where α0, . . . , αk−1 ∈ {0,1}.

For even K a corresponding property holds and so we get

# {0 6 n < N : tn2 = b0, . . . , t(n+k−1)2 = bk−1} ∼
N

2k
.
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⋆ Representation of automatic sequences

Combination of invertible and synchronizing automata:

Proposition (Müllner)

Suppose that A is an automaton such that the input 0 maps the initial

state of A to itself and let u = (un)n>0 be the corresponding automatic

sequence.

Then there exists a synchronizing automaton A′ and permutation

matrices M0, . . . ,Mq−1 such that

un = f (u′
n,S(n)) ,

where u′
n is the automatic sequence related to A′,

S(n) = Mε0(n)Mε1(n) · · ·Mεℓ−1(n)

and f is a properly chosen function.
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⋆ Synchronizing automatic sequences

Definition

An automaton A is called synchronizing if there exists a

synchronizing word w0 on the input alphabet such that w0 applied to

all initial states terminates always in the same state of A.
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⋆ Synchronizing automatic sequences

Definition

An automaton A is called synchronizing if there exists a

synchronizing word w0 on the input alphabet such that w0 applied to

all initial states terminates always in the same state of A.

1
1

0

0
0

1

synchronizing word = 00
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Thank you!
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