Normal Subsequences of Automatic Sequences

Michael Drmota

supported by the Austrian Science Foundation FWF, project F5502

Institut für Diskrete Mathematik und Geometrie Technische Universität Wien

Ergodic Theory and its Connections with Arithmetic and Combinatorics, CIRM, Luminy, December 12-16, 2016

* Thue-Morse sequence

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:

\star Thue-Morse sequence

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:
0

\star Thue-Morse sequence

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:
01

\star Thue-Morse sequence

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:
0110

\star Thue-Morse sequence

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:
01101001

\star Thue-Morse sequence

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:
0110100110010110

\star Thue-Morse sequence

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:
01101001100101101001011001101001

\star Thue-Morse sequence

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:

$011010011001011010010110011010011001011001101 \ldots$

$$
t_{0}=0, \quad t_{2^{n}+k}=1-t_{k} \quad\left(0 \leqslant k<2^{n}\right)
$$

\star Thue-Morse sequence

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:

$011010011001011010010110011010011001011001101 \ldots$

$$
t_{0}=0, \quad t_{2^{n}+k}=1-t_{k} \quad\left(0 \leqslant k<2^{n}\right)
$$

$$
t_{n}=s_{2}(n) \bmod 2
$$

$$
n=\sum_{i=0}^{\ell-1} \varepsilon_{i}(n) q^{i} \quad \varepsilon_{i}(n) \in\{0,1, \ldots, q-1\}, \quad s_{q}(n)=\sum_{i=0}^{\ell-1} \varepsilon_{i}(n)
$$

\star Thue-Morse sequence

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:
$011010011001011010010110011010011001011001101 \ldots$

$$
t_{0}=0, \quad t_{2^{n}+k}=1-t_{k} \quad\left(0 \leqslant k<2^{n}\right) \quad \text { or } \quad t_{2 k}=t_{k}, t_{2 k+1}=1-t_{k}
$$

$$
t_{n}=s_{2}(n) \bmod 2
$$

$$
n=\sum_{i=0}^{\ell-1} \varepsilon_{i}(n) q^{i} \quad \varepsilon_{i}(n) \in\{0,1, \ldots, q-1\}, \quad s_{q}(n)=\sum_{i=0}^{\ell-1} \varepsilon_{i}(n)
$$

\star Thue-Morse sequence

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:

$011010011001011010010110011010011001011001101 \ldots$

\star Thue-Morse sequence

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:
$011010011001011010010110011010011001011001101 \ldots$

\star Thue-Morse sequence

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:
$011010011001011010010110011010011001011001101 \ldots$

\star Thue-Morse sequence

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:

$011010011001011010010110011010011001011001101 \ldots$

\star Thue-Morse sequence

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:
$011010011001011010010110011010011001011001101 \ldots$

$$
\#\left\{0 \leqslant n<N: t_{n}=0\right\} \sim \frac{N}{2}
$$

\star Thue-Morse sequence

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:
$011010011001011010010110011010011001011001101 \ldots$

$$
\#\left\{0 \leqslant n<N: t_{n}=0\right\} \sim \frac{N}{2}
$$

The letters 0 and 1 appear with asymptotic frequency $\frac{1}{2}$.

- TM sequence is not periodic and cubeless.
- TM sequence is almost periodic:

Every appearing consecutive block appears infinitely many times with bounded gaps.

- Subword complexity is linear: $p_{k} \leqslant \frac{10}{3} k$
$p_{k} \ldots$ subword complexity (number of different consecutive blocks of length k that appear in the TM sequence).
- Zero topological entropy of the corresponding dynamical system:

$$
h=\lim _{k \rightarrow \infty} \frac{1}{k} \log p_{k}=0
$$

- Linear subsequences $\left(t_{a n+b}\right)_{n \geqslant 0}$ have the same properties.
- The TM sequence and its linear subsequences are automatic sequences.

\star Thue-Morse sequence

Automaton that generates the Thue-Morse sequence: $t_{n}=\sum_{j \geqslant 0} \varepsilon_{j}(n) \bmod 2$

\star Rudin-Shapiro sequence

Rudin-Shapiro sequence $\left(r_{n}\right)_{n \geqslant 0}$:

\star Rudin-Shapiro sequence

Rudin-Shapiro sequence $\left(r_{n}\right)_{n \geqslant 0}$:
$000100100001110100010010111000100001001000011101111 \ldots$

\star Rudin-Shapiro sequence

Rudin-Shapiro sequence $\left(r_{n}\right)_{n \geqslant 0}$:
$000100100001110100010010111000100001001000011101111 \ldots$

$$
r_{0}=0, \quad r_{2 k}=r_{k}, \quad r_{2 k+1}=\left\{\begin{array}{cl}
r_{k} & \text { if } k \text { is even }, \\
1-r_{k} & \text { if } k \text { is odd } .
\end{array}\right.
$$

\star Rudin-Shapiro sequence

Rudin-Shapiro sequence $\left(r_{n}\right)_{n \geqslant 0}$:
$000100100001110100010010111000100001001000011101111 \ldots$

$$
r_{0}=0, \quad r_{2 k}=r_{k}, \quad r_{2 k+1}=\left\{\begin{array}{cl}
r_{k} & \text { if } k \text { is even }, \\
1-r_{k} & \text { if } k \text { is odd } .
\end{array}\right.
$$

$$
\begin{array}{r}
r_{n}=\sum_{i \geqslant 0} \varepsilon_{i}(n) \varepsilon_{i+1}(n) \bmod 2 \\
n=\sum_{i=0}^{\ell-1} \varepsilon_{i}(n) q^{i} \quad \varepsilon_{i}(n) \in\{0,1, \ldots, q-1\}
\end{array}
$$

\star Rudin-Shapiro sequence
Automaton that generates the Rudin-Shapiro sequence:
$r_{n}=\sum_{j \geqslant 0} \varepsilon_{j}(n) \varepsilon_{j+1}(n) \bmod 2$

\star Automatic sequences

Definition

A sequence $\left(u_{n}\right)_{n \geqslant 0}$ is called a q-automatic sequence, if u_{n} is the output of an automaton when the input is the q-ary expansion of n.

$\left(u_{n}\right)_{n \geqslant 0}$: aaaaabaabaabaaabbaaabaaabbaaabaaabbaaaaaaba...

\star Automatic sequences

- Sum-of-digits-function: $u_{n}=s_{q}(n) \bmod m$
- q-additive function modulo $m: u_{n}=f(n) \bmod m$

$$
f(n)=\sum_{j \geqslant 0} f\left(\varepsilon_{j}(n)\right) \quad \text { and } \quad f(0)=0
$$

- q-block-additive function modulo $m: u_{n}=f(n) \bmod m$

$$
f(n)=\sum_{j \geqslant 0} f\left(\varepsilon_{j}(n), \varepsilon_{j+1}(n), \ldots, \varepsilon_{j+k-1}(n)\right) \quad \text { and } \quad f(0,0, \ldots, 0)=0
$$

\star Automatic sequences

- For every q-automatic sequence u_{n} (on an alphabet \mathcal{A}) there exists the logarithmic density (for every letter $a \in \mathcal{A}$)

$$
\log \operatorname{dens}\left(u_{n}, a\right)=\lim _{N \rightarrow \infty} \frac{1}{\log N} \sum_{1 \leqslant n \leqslant N} \frac{1}{n} \cdot \mathbf{l}_{\left[u_{n}=a\right]}
$$

which is also computable.

- If the densities

$$
\operatorname{dens}\left(u_{n}, a\right)=\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n \leqslant N: u_{n}=a\right\}
$$

exist then they coincide with the logarithmic densities.

- Every subsequence $u_{a n+b}$ along an arithmetic progression of an automatic sequence u_{n} is automatic, too.
- The subword complexity p_{k} of an automatic sequence is (at most) linear.

\star Subsequences of Automatic Sequences

* General idea:
(1) Start with an automatic sequence u_{n} that is uniformly distributed on the output alphabet.
(Recall: u_{n} has at most linear subword complexity)
(2) Consider a relatively sparse subsequence $u_{n_{k}}$ that has the same asymptotic frequencies.
(It is assumed that the average size of the gaps increases sufficiently fast so that one can expect random properties)
(3) This subsequence should be pseudo-random (or normal) on the output alphabet
\star Thue-Morse sequence along Piatetski-Shapiro sequence $\left\lfloor n^{c}\right\rfloor$
Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:
$011010011001011010010110011010011001011001101 \ldots$
\star Thue-Morse sequence along Piatetski-Shapiro sequence $\left\lfloor n^{c}\right\rfloor$
Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:

$0110100110010110100101100110100110010110011011 \ldots$

\star Thue-Morse sequence along Piatetski-Shapiro sequence $\left\lfloor n^{c}\right\rfloor$
Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:

$$
\begin{array}{llllllllllll}
011 & 10 & 11 & 0 & 11 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array} \cdots
$$

Mauduit and Rivat (1995, 2005): $1<c<4 / 3,1<c<7 / 5$, Spiegelhofer (2014,2015+), $1<c<1.42,1<c<1.5 \Longrightarrow$

$$
\#\left\{0 \leqslant n<N: t_{\left\lfloor n^{c}\right\rfloor}=0\right\} \sim \frac{N}{2}
$$

\star Subsequences along $\left\lfloor n^{c}\right\rfloor$

Theorem (Deshouillers, D. and Morgenbesser, 2012)

Let u_{n} be a q-automatic sequence (on an alphabet \mathcal{A}) and

$$
1<c<7 / 5 .
$$

Then for each $a \in \mathcal{A}$ the asymptotic density $\operatorname{dens}\left(u_{\left[n^{n}\right]}, a\right)$ of a in the subsequence $u_{\left\lfloor n^{c}\right\rfloor}$ exists if and only if the asymptotic density of α in u_{n} exists and we have

$$
\operatorname{dens}\left(u_{\left\lfloor n^{c}\right\rfloor}, a\right)=\operatorname{dens}\left(u_{n}, a\right)
$$

The same property holds for the logarithmic density.
\star Thue-Morse sequence along squares
Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:

$011010011001011010010110011010011001011001101 \ldots$

\star Thue-Morse sequence along squares

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:

$011010011001011010010110011010011001011001101 \ldots$

\star Thue-Morse sequence along squares

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:

$$
\begin{array}{llllll}
01 & 1 & 0 & 1 & 1 & 0
\end{array}
$$

Mauduit and Rivat (2009):

$$
\#\left\{0 \leqslant n<N: t_{n^{2}}=0\right\} \sim \frac{N}{2}
$$

\star Thue-Morse sequence along squares

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:

$$
\begin{array}{llllll}
01 & 1 & 0 & 1 & 1 & 0
\end{array}
$$

Mauduit and Rivat (2009):

$$
\#\left\{0 \leqslant n<N: t_{n^{2}}=0\right\} \sim \frac{N}{2}
$$

Solution of a Conjecture of Gelfond (1968)

\star Subsequences along squares

Theorem (Müllner, 2016+)

Let u_{n} be a q-automatic sequence (on an alphabet \mathcal{A}) generated by a strongly connected automaton such that a zero input at the initial state is mapped to the initial state.
Then for each $a \in \mathcal{A}$ the asymptotic density

$$
\operatorname{dens}\left(u_{n^{2}}, a\right)
$$

exists (and can be computed).

Theorem (Müllner, 2016+)

Let u_{n} be a q-automatic sequence (on an alphabet \mathcal{A}) generated by a strongly connected automaton such that a zero input at the initial state is mapped to the initial state.
Then for each $a \in \mathcal{A}$ the asymptotic density

$$
\operatorname{dens}\left(u_{n^{2}}, a\right)
$$

exists (and can be computed).
This also generalizes a result of D.+Morgenbesser (2012) on invertible automatic sequences, where the transitions on the automaton are invertible. The proof is based on a clever representation of automatic sequences and relies very much on a general method by Mauduit and Rivat (2015+) that was applied to the Rudin-Shapiro sequence.

\star Thue-Morse sequence along primes

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:
$011010011001011010010110011010011001011001101 \ldots$

\star Thue-Morse sequence along primes

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:

011010011001011010010110011010011001011001101

\star Thue-Morse sequence along primes

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:

$$
\begin{array}{lllllllllllll}
10 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0
\end{array} \cdots
$$

Mauduit and Rivat (2010):

$$
\#\left\{0 \leqslant p<N: t_{p}=0\right\} \sim \frac{\pi(N)}{2}
$$

\star Thue-Morse sequence along primes

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:

$$
\begin{array}{lllllllllllll}
10 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0
\end{array} \cdots
$$

Mauduit and Rivat (2010):

$$
\#\left\{0 \leqslant p<N: t_{p}=0\right\} \sim \frac{\pi(N)}{2}
$$

Solution of a Conjecture of Gelfond (1968)

\star Thue-Morse sequence along primes

Thue-Morse sequence $\left(t_{n}\right)_{n \geqslant 0}$:

$$
\begin{array}{lllllllllllll}
10 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}
$$

Mauduit and Rivat (2010):

$$
\#\left\{0 \leqslant p<N: t_{p}=0\right\} \sim \frac{\pi(N)}{2}
$$

Solution of a Conjecture of Gelfond (1968) Related to the Sarnak Conjecture

\star Subsequences along primes

Theorem (Müllner, 2016+)

Let u_{n} be a q-automatic sequence (on an alphabet \mathcal{A}) generated by a strongly connected automaton such that a zero input at the initial state is mapped to the initial state.
Then for each $a \in \mathcal{A}$ the asymptotic density

$$
\operatorname{dens}\left(u_{p_{n}}, a\right)
$$

exists, where p_{n} denotes the n-th prime number.

\star Subsequences along primes

Theorem (Müllner, 2016+)

Let u_{n} be a q-automatic sequence (on an alphabet \mathcal{A}) generated by a strongly connected automaton such that a zero input at the initial state is mapped to the initial state.
Then for each $a \in \mathcal{A}$ the asymptotic density

$$
\operatorname{dens}\left(u_{p_{n}}, a\right)
$$

exists, where p_{n} denotes the n-th prime number.
This also generalizes a result of D. (2014) on invertible automatic sequences.

\star Sarnak conjecture for automatic sequences

Theorem (Müllner, 2016+)
Let u_{n} be a complex valued q-automatic sequence.
Then we have

$$
\sum_{n<N} \mu(n) u_{n}=o(N),
$$

where $\mu(n)$ denotes the Möbius function.

\star Sarnak conjecture for automatic sequences

Theorem (Müllner, 2016+)

Let u_{n} be a complex valued q-automatic sequence.
Then we have

$$
\sum_{n<N} \mu(n) u_{n}=o(N)
$$

where $\mu(n)$ denotes the Möbius function.
This generalizes several results by Dartyge and Tenenbaum (Thue-Morse); Mauduit and Rivat (Rudin-Shapiro); Tao (Rudin-Shapiro); D. (invertible); Ferenczi, Kułaga-Przymus, Lemanczyk, and Mauduit (invertible); Deshoulliers, D. and Müllner (synchronizing).

\star Thue-Morse sequence along squares

$p_{k}^{(2)} \ldots$ subword complexity of $\left(t_{n^{2}}\right)_{n \geqslant 0}$.
Conjecture (Allouche and Shallit, 2003)

$$
p_{k}^{(2)}=2^{k}
$$

Equivalently: every block $B \in\{0,1\}^{k}, k \geqslant 1$, appears in $\left(t_{n^{2}}\right)_{n \geqslant 0}$.
[Moshe, 2007]: $p_{k}^{(2)}=2^{k}$
Problem. What can be said about the frequency of a given block?

\star Thue-Morse sequence along squares

Definition

A sequence $\left(u_{n}\right)_{n \geqslant 0} \in\{0,1\}^{\mathbb{N}}$ is normal if for any $k \in \mathbb{N}$ and any $B=\left(b_{0}, \ldots, b_{k-1}\right) \in\{0,1\}^{k}$, we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{i<N, u_{i}=b_{0}, \ldots, u_{i+k-1}=b_{k-1}\right\}=\frac{1}{2^{k}} .
$$

\star Thue-Morse sequence along squares

Definition

A sequence $\left(u_{n}\right)_{n \geqslant 0} \in\{0,1\}^{\mathbb{N}}$ is normal if for any $k \in \mathbb{N}$ and any $B=\left(b_{0}, \ldots, b_{k-1}\right) \in\{0,1\}^{k}$, we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{i<N, u_{i}=b_{0}, \ldots, u_{i+k-1}=b_{k-1}\right\}=\frac{1}{2^{k}} .
$$

Remark. There are only few (known) explicit examples of normal sequences.

\star Normal subsequences

Theorem (D.+Mauduit+Rivat 2013+)
The sequence $\left(t_{n^{2}}\right)_{n \geqslant 0}$ is normal.

\star Normal subsequences

Theorem (Spiegelhofer 2014+, Spiegelhofer+Müllner 2015+) Suppose that $1<c<3 / 2$. Then the sequence $\left(t_{\left[n^{\circ}\right]}\right)_{n \geqslant 0}$ is normal.

\star Normal subsequences

Theorem (Spiegelhofer 2014+, Spiegelhofer+Müllner 2015+)
Suppose that $1<c<3 / 2$. Then the sequence $\left(t_{\left[n^{\prime}\right\rfloor}\right)_{n \geqslant 0}$ is normal.

Theorem (Müllner 2015+)

Let $f(n)$ be a q-block-additive function and $u_{n}=f(n) \bmod m$ an automatic sequence with is uniformly distributed on the alphabet $\mathcal{A}=\{0,1, \ldots, m-1\}$.
Then the sequence $\left(u_{\left\lfloor n^{\circ}\right\rfloor}\right)_{n \geqslant 0}$ is normal for all c with $1<c<4 / 3$. Furthermore if the subsequence $\left(u_{n^{2}}\right)_{n \geqslant 0}$ is uniformly distributed on the alphabet $\mathcal{A}=\{0,1, \ldots, m-1\}$ then $\left(u_{n^{2}}\right)_{n \geqslant 0}$ is normal.

\star Normal subsequences

Conjecture (1)

Suppose that $c>1$ and $c \notin \mathbb{Z}$. Then for every automatic sequence u_{n} (on an alphabet \mathcal{A}) the asymptotic density $\operatorname{dens}\left(u_{\left\lfloor n^{c}\right\rfloor}, a\right)$ of $a \in \mathcal{A}$ in the subsequence $u_{\left\lfloor n^{c}\right\rfloor}$ exists if and only if the asymptotic density of α in u_{n} exists and we have

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N, u_{\left\lfloor n^{c}\right\rfloor}=b_{0}, u_{\left\lfloor(n+1)^{c}\right\rfloor}=b_{1}, \ldots, u_{\left\lfloor(n+k-1)^{c}\right\rfloor}=b_{k-1}\right\} \\
& \quad=\operatorname{dens}\left(u_{n}, b_{0}\right) \cdot \operatorname{dens}\left(u_{n}, b_{1}\right) \cdots \operatorname{dens}\left(u_{n}, b_{k-1}\right)
\end{aligned}
$$

for every $k \geqslant 1$ and for all $b_{0}, \ldots, b_{k-1} \in \mathcal{A}$.

\star Normal subsequences

Conjecture (2)

Let $P(x)$ be a positive integer valued polynomial and u_{n} an automatic sequence generated by a strongly connected automaton.
Then for every $a \in \mathcal{A}$ the densities $\delta_{a}=\operatorname{dens}\left(u_{P(n)}, a\right)$ exist and we have

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N, u_{P(n)}=b_{0}, u_{P(n+1)}=b_{1}, \ldots, u_{P(n+k-1)}=b_{k-1}\right\} \\
& =\delta_{b_{0}} \cdot \delta_{b_{1}} \cdots \delta_{b_{k-1}}
\end{aligned}
$$

for every $k \geqslant 1$ and for all $b_{0}, \ldots, b_{k-1} \in \mathcal{A}$.

\star Limits of the method

Let u_{n} be an automatic sequence and $\phi(n)$ a positive sequences such that $\phi(n) / n$ is non-decreasing.

What can be said about $u_{\lfloor\phi(n)\rfloor}$?

- We cannot expect general results for exponentially growing sequences $\phi(n)$.
- If $\phi(n)=a n+b$ with integers a, b then $u_{\phi(n)}$ is again an automatic sequence.
- If $\phi(n)=n \log _{2} n$ then $t_{\lfloor\phi(n)\rfloor}$ behaves as the Thue-Morse sequence t_{n} but the limit

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N, t_{\left\lfloor n \log _{2} n\right\rfloor}=b_{0}, t_{\left\lfloor(n+1) \log _{2}(n+1)\right\rfloor}=b_{1}\right\}
$$

does not exist. [Deshouilliers+D.+Morgenbesser (2012)]

\star General subsequences

Conjecture (3)

Suppose that $\phi(x)$ is a positive function such that $\log \phi(x) \sim c \log x$ for some $c>1$ as well as $\phi^{\prime}(x) / \phi(x) \sim c / x$ and $c_{1} / x^{2} \leqslant \phi^{\prime \prime}(x) / \phi(x) \leqslant c_{2} / x^{2}$ (for some constancs c_{1}, c_{2} that have the same sign).
Then for every automatic sequence u_{n} (on an alphabet \mathcal{A}) that is generated by a strongly connected automaton the asymptotic densities

$$
\operatorname{dens}\left(u_{\lfloor\phi(n)\rfloor}, a\right)
$$

and

$$
\operatorname{dens}\left(u_{\left\lfloor\phi\left(p_{n}\right)\right\rfloor}, a\right)
$$

of $a \in \mathcal{A}$ exist.
(As above p_{n} denotes the n-th prime number.)

\star Proof methods

- Comparision of u_{n} and $u_{\lfloor\phi(n)\rfloor}$ by a clever partial summation
- Fourier analytic sieving
- Clever representation of automatic sequences

\star Clever partial summation

Proposition (Deshouilliers+D.+Morgenbesser)

Suppose that u_{n} is a complex valued automatic sequences and $1<c<7 / 5$. Then we have

$$
\left|\sum_{n=0}^{N} u_{\left\lfloor n^{c}\right\rfloor}-\frac{1}{c} \sum_{n=0}^{N} n^{\frac{1}{c}-1} u_{n}\right| \ll N^{1-\delta},
$$

where $\delta<(7-5 c) / 9$.

\star Clever partial summation

Proposition (Deshouilliers+D.+Morgenbesser)

Suppose that u_{n} is a complex valued automatic sequences and $1<c<7 / 5$. Then we have

$$
\left|\sum_{n=0}^{N} u_{\left\lfloor n^{c}\right\rfloor}-\frac{1}{c} \sum_{n=0}^{N} n^{\frac{1}{c}-1} u_{n}\right| \ll N^{1-\delta},
$$

where $\delta<(7-5 c) / 9$.
This generalizes a method by Mauduit and Rivat (2005) and uses Vaaler's approximation method as well as the double large sieve.

\star Fourier estimates

Truncated sum-of-digits function

$$
s_{2, \lambda}\left(n+k 2^{\lambda}\right)=s_{2}(n), \quad 0 \leqslant n<2^{\lambda}, k \geqslant 0 .
$$

Alternatively

$$
s_{2, \lambda}(n)=\sum_{i=0}^{\lambda-1} \varepsilon_{i}(n)
$$

where

$$
n=\sum_{i=0}^{\infty} \varepsilon_{i}(n) 2^{i} \quad \varepsilon_{i}(n) \in\{0,1\},
$$

$s_{2, \lambda}$ is periodic with period 2^{λ}

\star Fourier estimates

Discrete Fourier transform

$$
F_{\lambda}(h, \alpha)=\frac{1}{2^{\lambda}} \sum_{0 \leqslant u<2^{\lambda}} e\left(\alpha s_{2, \lambda}(u)-h u 2^{-\lambda}\right)
$$

of the function $n \mapsto e\left(\alpha s_{q, \lambda}(n)\right) ; e(x)=\exp (2 \pi i x)$.

\star Fourier estimates

Discrete Fourier transform

$$
F_{\lambda}(h, \alpha)=\frac{1}{2^{\lambda}} \sum_{0 \leqslant u<2^{\lambda}} e\left(\alpha s_{2, \lambda}(u)-h u 2^{-\lambda}\right)
$$

of the function $n \mapsto e\left(\alpha s_{q, \lambda}(n)\right) ; e(x)=\exp (2 \pi i x)$.

$$
F_{\lambda}(h, \alpha)=\frac{1}{2^{\lambda}} \prod_{0 \leqslant k<\lambda}\left(1+e\left(\alpha-h 2^{k-\lambda}\right)\right)
$$

\star Fourier estimates

Lemma
$\varphi(x):=1+e(x) \Longrightarrow$

$$
\max _{0 \leqslant x<1}|\varphi(\alpha-x) \varphi(\alpha-2 x)| \leqslant 4 e^{-c\|\alpha\|^{2}} .
$$

for some constant $c>0$. $(\|\alpha\|=\min \{|\alpha-k|: k \in \mathbb{Z}\})$

\star Fourier estimates

Lemma
$\varphi(x):=1+e(x) \Longrightarrow$

$$
\max _{0 \leqslant x<1}|\varphi(\alpha-x) \varphi(\alpha-2 x)| \leqslant 4 e^{-c\|\alpha\|^{2}} .
$$

for some constant $c>0$. $(\|\alpha\|=\min \{|\alpha-k|: k \in \mathbb{Z}\})$

Corollary

$$
\left|F_{\lambda}(h, \alpha)\right| \leqslant 2^{-c\|\alpha\|^{2}[m / 2\rfloor}\left|F_{\lambda-m}(h, \alpha)\right|
$$

\star Fourier estimates

Proposition

Suppose that $F_{\lambda}(h, \alpha)$ satisfies the property

$$
\left|F_{\lambda}(h, \alpha)\right| \leqslant 2^{-c\|\alpha\|^{2}\lfloor m / 2\rfloor}\left|F_{\lambda-m}(h, \alpha)\right|
$$

(for some $c>0$. Then it follows that

$$
\left|\sum_{n<N} e\left(\alpha s_{2}\left(n^{2}\right)\right)\right| \ll N^{1-c^{\prime}\|\alpha\|^{2}}
$$

(for some constant $c^{\prime}>0$) and consequently

$$
\#\left\{0 \leqslant n<N: t_{n^{2}}=0\right\} \sim \frac{N}{2}
$$

\star Fourier estimates

Proposition

Suppose that $F_{\lambda}(h, \alpha)$ satisfies the property

$$
\left|F_{\lambda}(h, \alpha)\right| \leqslant 2^{-c\|\alpha\|^{2}\lfloor m / 2\rfloor}\left|F_{\lambda-m}(h, \alpha)\right|
$$

(for some $c>0$. Then it follows that

$$
\left|\sum_{n<N} e\left(\alpha s_{2}\left(n^{2}\right)\right)\right| \ll N^{1-c^{\prime}\|\alpha\|^{2}}
$$

(for some constant $c^{\prime}>0$) and consequently

$$
\#\left\{0 \leqslant n<N: t_{n^{2}}=0\right\} \sim \frac{N}{2}
$$

Proof methods: two applications of the Van-der-Corput inequality, a proper Fourier analysis and estimates for quadratic exponential sums.

\star Fourier estimates

Fourier term with correlations in oder to handle blocks of length >1 :

$$
G_{\lambda}^{\prime}(h, d)=\frac{1}{2^{\lambda}} \sum_{0 \leqslant u<2^{\lambda}} \mathrm{e}\left(\frac{1}{2} \sum_{\ell=0}^{k-1} \alpha_{\ell} s_{2, \lambda}\left(u+\ell d+i_{\ell}\right)-h u 2^{-\lambda}\right),
$$

where $\alpha_{0}, \ldots, \alpha_{k-1} \in\{0,1\}$ and $I=\left(i_{0}, \ldots, i_{k-1} \in \mathcal{I}_{k}\right.$:

$$
\mathcal{I}_{k}:=\left\{I=\left(i_{0}, \ldots, i_{k-1}\right): i_{0}=0, i_{\ell-1} \leqslant i_{\ell} \leqslant i_{\ell-1}+1,1 \leqslant \ell \leqslant k-1\right\}
$$

\star Fourier estimates

Fourier term with correlations in oder to handle blocks of length >1 :

$$
G_{\lambda}^{\prime}(h, d)=\frac{1}{2^{\lambda}} \sum_{0 \leqslant u<2^{\lambda}} \mathrm{e}\left(\frac{1}{2} \sum_{\ell=0}^{k-1} \alpha_{\ell} s_{2, \lambda}\left(u+\ell d+i_{\ell}\right)-h u 2^{-\lambda}\right),
$$

where $\alpha_{0}, \ldots, \alpha_{k-1} \in\{0,1\}$ and $I=\left(i_{0}, \ldots, i_{k-1} \in \mathcal{I}_{k}\right.$:

$$
\mathcal{I}_{k}:=\left\{I=\left(i_{0}, \ldots, i_{k-1}\right): i_{0}=0, i_{\ell-1} \leqslant i_{\ell} \leqslant i_{\ell-1}+1,1 \leqslant \ell \leqslant k-1\right\}
$$

Uniform upper bounds.

$$
\max _{I \in \mathcal{I}_{k}}\left|G_{\lambda}^{\prime}(h, d)\right| \ll 2^{-\eta m} \max _{J \in \mathcal{I}_{k}}\left|G_{\lambda-m}^{J}\left(h,\left\lfloor d / 2^{m}\right\rfloor\right)\right|
$$

(for some constant $\eta>0$ and odd $K=\alpha_{0}+\cdots+\alpha_{k-1}$).

\star Fourier estimates

Proposition

Suppose that $G_{\lambda}^{\prime}(h, d)$ satisfies the property

$$
\max _{l \in I_{k}}\left|G_{\lambda}^{\prime}(h, d)\right| \ll 2^{-\eta m} \max _{J \in I_{k}}\left|G_{\lambda-m}^{J}\left(h,\left\lfloor d / 2^{m}\right\rfloor\right)\right|
$$

(for some $\eta>0$ and odd K). Then it follows that

$$
\sum_{n<N} e\left(\frac{1}{2} \sum_{\ell=0}^{k-1} \alpha_{\ell} s_{2}\left((n+\ell)^{2}\right)\right) \ll N^{1-\eta^{\prime}}
$$

for some constant $\eta^{\prime}>0$ and odd K, where $\alpha_{0}, \ldots, \alpha_{k-1} \in\{0,1\}$.

\star Fourier estimates

Proposition

Suppose that $G_{\lambda}^{\prime}(h, d)$ satisfies the property

$$
\max _{l \in \mathcal{I}_{k}}\left|G_{\lambda}^{\prime}(h, d)\right| \ll 2^{-\eta m} \max _{J \in \mathcal{I}_{k}}\left|G_{\lambda-m}^{J}\left(h,\left\lfloor d / 2^{m}\right\rfloor\right)\right|
$$

(for some $\eta>0$ and odd K). Then it follows that

$$
\sum_{n<N} e\left(\frac{1}{2} \sum_{\ell=0}^{k-1} \alpha_{\ell} s_{2}\left((n+\ell)^{2}\right)\right) \ll N^{1-\eta^{\prime}}
$$

for some constant $\eta^{\prime}>0$ and odd K, where $\alpha_{0}, \ldots, \alpha_{k-1} \in\{0,1\}$.
For even K a corresponding property holds and so we get

$$
\#\left\{0 \leqslant n<N: t_{n^{2}}=b_{0}, \ldots, t_{(n+k-1)^{2}}=b_{k-1}\right\} \sim \frac{N}{2^{k}} .
$$

* Representation of automatic sequences

Combination of invertible and synchronizing automata:

Proposition (Müllner)

Suppose that \mathcal{A} is an automaton such that the input 0 maps the initial state of \mathcal{A} to itself and let $\mathbf{u}=\left(u_{n}\right)_{n \geqslant 0}$ be the corresponding automatic sequence.
Then there exists a synchronizing automaton \mathcal{A}^{\prime} and permutation matrices M_{0}, \ldots, M_{q-1} such that

$$
u_{n}=f\left(u_{n}^{\prime}, S(n)\right)
$$

where u_{n}^{\prime} is the automatic sequence related to \mathcal{A}^{\prime},

$$
S(n)=M_{\varepsilon_{0}(n)} M_{\varepsilon_{1}(n)} \cdots M_{\varepsilon_{\ell-1}(n)}
$$

and f is a properly chosen function.

\star Synchronizing automatic sequences

Definition

An automaton \mathcal{A} is called synchronizing if there exists a synchronizing word w_{0} on the input alphabet such that w_{0} applied to all initial states terminates always in the same state of \mathcal{A}.

\star Synchronizing automatic sequences

Definition

An automaton \mathcal{A} is called synchronizing if there exists a synchronizing word w_{0} on the input alphabet such that w_{0} applied to all initial states terminates always in the same state of \mathcal{A}.

synchronizing word $=00$

Thank you!

