Normal Subsequences of Automatic Sequences

Michael Drmota

supported by the Austrian Science Foundation FWF, project F5502

Institut für Diskrete Mathematik und Geometrie Technische Universität Wien

Ergodic Theory and its Connections with Arithmetic and Combinatorics, CIRM, Luminy, December 12–16, 2016

Thue-Morse sequence $(t_n)_{n \ge 0}$:

$$t_0 = 0, t_{2^n+k} = 1 - t_k (0 \le k < 2^n)$$

Thue-Morse sequence $(t_n)_{n \ge 0}$:

$$t_0=0, \qquad t_{2^n+k}=1-t_k \quad (0\leqslant k<2^n)$$

$$t_n = s_2(n) \mod 2$$

$$n = \sum_{i=0}^{\ell-1} \varepsilon_i(n) q^i$$
 $\varepsilon_i(n) \in \{0, 1, \dots, q-1\},$ $s_q(n) = \sum_{i=0}^{\ell-1} \varepsilon_i(n)$

Thue-Morse sequence $(t_n)_{n \ge 0}$:

$$t_0 = 0,$$
 $t_{2^n+k} = 1 - t_k$ $(0 \le k < 2^n)$ or $t_{2k} = t_k, t_{2k+1} = 1 - t_k$

$$t_n = s_2(n) \mod 2$$

$$n = \sum_{i=0}^{\ell-1} \varepsilon_i(n) q^i$$
 $\varepsilon_i(n) \in \{0, 1, \dots, q-1\},$ $s_q(n) = \sum_{i=0}^{\ell-1} \varepsilon_i(n)$

Thue-Morse sequence $(t_n)_{n \ge 0}$:

Thue-Morse sequence $(t_n)_{n \ge 0}$:

0110100110010110100101100110011001011001101101...

Thue-Morse sequence $(t_n)_{n \ge 0}$:

011010011001011010010110011010011001011001101...

Thue-Morse sequence $(t_n)_{n \ge 0}$:

Thue-Morse sequence $(t_n)_{n \ge 0}$:

$$\# \{ 0 \leqslant n < N : t_n = 0 \} \sim \frac{N}{2}$$

Thue-Morse sequence $(t_n)_{n \ge 0}$:

 $0110100110010110100101100110011001011001101101\cdots$

$$\# \{ 0 \leqslant n < N : t_n = 0 \} \sim \frac{N}{2}$$

The letters 0 and 1 appear with asymptotic frequency $\frac{1}{2}$.

- TM sequence is **not periodic** and **cubeless**.
- TM sequence is **almost periodic**: Every appearing consecutive block appears infinitely many times with bounded gaps.
- Subword complexity is linear: $p_k \leq \frac{10}{3}k$

 p_k ... subword complexity (number of different consecutive blocks of length k that appear in the TM sequence).

• Zero topological entropy of the corresponding dynamical system:

 $h = \lim_{k \to \infty} \frac{1}{k} \log p_k = 0$

- Linear subsequences $(t_{an+b})_{n\geq 0}$ have the same properties.
- The TM sequence and its linear subsequences are automatic sequences.

Automaton that generates the Thue-Morse sequence: $t_n = \sum_{j \ge 0} \varepsilon_j(n) \mod 2$

Rudin-Shapiro sequence $(r_n)_{n \ge 0}$:

Rudin-Shapiro sequence $(r_n)_{n \ge 0}$:

Rudin-Shapiro sequence $(r_n)_{n \ge 0}$:

$$r_0 = 0,$$
 $r_{2k} = r_k,$ $r_{2k+1} = \begin{cases} r_k & \text{if } k \text{ is even,} \\ 1 - r_k & \text{if } k \text{ is odd.} \end{cases}$

Rudin-Shapiro sequence $(r_n)_{n \ge 0}$:

$$r_0 = 0,$$
 $r_{2k} = r_k,$ $r_{2k+1} = \begin{cases} r_k & \text{if } k \text{ is even,} \\ 1 - r_k & \text{if } k \text{ is odd.} \end{cases}$

$$r_n = \sum_{i \ge 0} \varepsilon_i(n) \varepsilon_{i+1}(n) \mod 2$$

$$n = \sum_{i=0}^{\ell-1} \varepsilon_i(n) q^i$$
 $\varepsilon_i(n) \in \{0, 1, \dots, q-1\}$

Automaton that generates the Rudin-Shapiro sequence: $r_n = \sum_{j \ge 0} \varepsilon_j(n) \varepsilon_{j+1}(n) \mod 2$

★ Automatic sequences

Definition

A sequence $(u_n)_{n \ge 0}$ is called a *q*-automatic sequence, if u_n is the output of an automaton when the input is the *q*-ary expansion of *n*.

★ Automatic sequences

- Sum-of-digits-function: $u_n = s_q(n) \mod m$
- *q*-additive function modulo m: $u_n = f(n) \mod m$

$$f(n) = \sum_{j \ge 0} f(\varepsilon_j(n))$$
 and $f(0) = 0$.

• *q*-block-additive function modulo m: $u_n = f(n) \mod m$

$$f(n) = \sum_{j \ge 0} f(\varepsilon_j(n), \varepsilon_{j+1}(n), \dots, \varepsilon_{j+k-1}(n))$$
 and $f(0, 0, \dots, 0) = 0$.

★ Automatic sequences

For every *q*-automatic sequence *u_n* (on an alphabet *A*) there exists the logarithmic density (for every letter *a* ∈ *A*)

$$\operatorname{logdens}(u_n, a) = \lim_{N \to \infty} \frac{1}{\log N} \sum_{1 \leq n \leq N} \frac{1}{n} \cdot \mathbf{I}_{[u_n = a]}$$

which is also computable.

• If the densities

dens
$$(u_n, a) = \lim_{N \to \infty} \frac{1}{N} \# \{n \leq N : u_n = a\}$$

exist then they coincide with the logarithmic densities.

- Every subsequence u_{an+b} along an arithmetic progression of an automatic sequence u_n is automatic, too.
- The subword complexity p_k of an automatic sequence is (at most) linear.

★ Subsequences of Automatic Sequences

★ General idea:

- Start with an automatic sequence u_n that is uniformly distributed on the output alphabet. (Recall: u_n has at most linear subword complexity)
- Consider a relatively sparse subsequence u_{nk} that has the same asymptotic frequencies.
 (It is assumed that the average size of the gaps increases sufficiently fast so that one can expect random properties)
- This subsequence should be pseudo-random (or normal) on the output alphabet

\star Thue-Morse sequence along Piatetski-Shapiro sequence $\lfloor n^c \rfloor$

Thue-Morse sequence $(t_n)_{n \ge 0}$:

\star Thue-Morse sequence along Piatetski-Shapiro sequence $\lfloor n^c \rfloor$

Thue-Morse sequence $(t_n)_{n \ge 0}$:

0110100110010110100101100110100110010110011011011...

\star Thue-Morse sequence along Piatetski-Shapiro sequence $\lfloor n^c \rfloor$

Thue-Morse sequence $(t_n)_{n \ge 0}$:

011 10 11 0 11 0 0 0 1 1 1 1 ... Mauduit and Rivat (1995, 2005): 1 < c < 4/3, 1 < c < 7/5, Spiegelhofer (2014,2015+), 1 < c < 1.42, $1 < c < 1.5 \Longrightarrow$

$$\# \left\{ 0 \leqslant n < N : t_{\lfloor n^c \rfloor} = 0 \right\} \sim \frac{N}{2}$$

\star Subsequences along $\lfloor n^c \rfloor$

Theorem (Deshouillers, D. and Morgenbesser, 2012) Let u_n be a *q*-automatic sequence (on an alphabet A) and

1 < c < 7/5.

Then for each $a \in A$ the asymptotic density dens $(u_{\lfloor n^c \rfloor}, a)$ of a in the subsequence $u_{\lfloor n^c \rfloor}$ exists if and only if the asymptotic density of α in u_n exists and we have

dens
$$(u_{\lfloor n^c \rfloor}, a) = dens(u_n, a)$$

The same property holds for the logarithmic density.

Thue-Morse sequence $(t_n)_{n \ge 0}$:

Thue-Morse sequence $(t_n)_{n \ge 0}$:

Thue-Morse sequence $(t_n)_{n \ge 0}$:

01 1 0 1 1 0 … Mauduit and Rivat (2009):

$$\# \{ 0 \leqslant n < N : t_{n^2} = 0 \} \sim \frac{N}{2}$$

Thue-Morse sequence $(t_n)_{n \ge 0}$:

01 1 0 1 1 0 … Mauduit and Rivat (2009):

$$\# \{ 0 \leqslant n < N : t_{n^2} = 0 \} \sim \frac{N}{2}$$

Solution of a Conjecture of Gelfond (1968)
★ Subsequences along squares

Theorem (Müllner, 2016+)

Let u_n be a q-automatic sequence (on an alphabet A) generated by a **strongly connected automaton** such that a zero input at the initial state is mapped to the initial state. Then for each $a \in A$ the asymptotic density

dens (u_{n^2}, a)

exists (and can be computed).

★ Subsequences along squares

Theorem (Müllner, 2016+)

Let u_n be a q-automatic sequence (on an alphabet A) generated by a **strongly connected automaton** such that a zero input at the initial state is mapped to the initial state. Then for each $a \in A$ the asymptotic density

dens (u_{n^2}, a)

exists (and can be computed).

This also generalizes a result of *D.+Morgenbesser* (2012) on **invertible automatic sequences**, where the transitions on the automaton are invertible. The proof is based on a clever representation of automatic sequences and relies very much on a general method by *Mauduit and Rivat* (2015+) that was applied to the **Rudin-Shapiro sequence**.

Thue-Morse sequence $(t_n)_{n \ge 0}$:

Thue-Morse sequence $(t_n)_{n \ge 0}$:

011010011001011010010110011010011001011001101...

Thue-Morse sequence $(t_n)_{n \ge 0}$:

10 0 1 1 1 0 1 0 0 1 1 1 0 ···· Mauduit and Rivat (2010):

$$\# \{ 0 \leqslant \rho < N : t_{\rho} = 0 \} \sim \frac{\pi(N)}{2}$$

Thue-Morse sequence $(t_n)_{n \ge 0}$:

10 0 1 1 1 0 1 0 0 1 1 1 0 ··· Mauduit and Rivat (2010):

$$\# \{ 0 \leq \rho < N : t_{\rho} = 0 \} \sim \frac{\pi(N)}{2}$$

Solution of a Conjecture of Gelfond (1968)

Thue-Morse sequence $(t_n)_{n \ge 0}$:

10 0 1 1 1 0 1 0 0 1 1 1 0 ··· Mauduit and Rivat (2010):

$$\# \{ 0 \leq \rho < N : t_{\rho} = 0 \} \sim \frac{\pi(N)}{2}$$

Solution of a **Conjecture of Gelfond** (1968) Related to the **Sarnak Conjecture**

★ Subsequences along primes

Theorem (Müllner, 2016+)

Let u_n be a q-automatic sequence (on an alphabet A) generated by a **strongly connected automaton** such that a zero input at the initial state is mapped to the initial state. Then for each $a \in A$ the asymptotic density

dens (u_{p_n}, a)

exists, where p_n denotes the *n*-th prime number.

★ Subsequences along primes

Theorem (Müllner, 2016+)

Let u_n be a q-automatic sequence (on an alphabet A) generated by a **strongly connected automaton** such that a zero input at the initial state is mapped to the initial state. Then for each $a \in A$ the asymptotic density

dens (u_{p_n}, a)

exists, where p_n denotes the *n*-th prime number.

This also generalizes a result of D. (2014) on **invertible automatic** sequences.

★ Sarnak conjecture for automatic sequences

Theorem (Müllner, 2016+)

Let u_n be a complex valued q-automatic sequence. Then we have

$$\sum_{n$$

where $\mu(n)$ denotes the Möbius function.

★ Sarnak conjecture for automatic sequences

Theorem (Müllner, 2016+)

Let u_n be a complex valued q-automatic sequence. Then we have

$$\sum_{n$$

where $\mu(n)$ denotes the Möbius function.

This generalizes several results by *Dartyge and Tenenbaum* (Thue-Morse); *Mauduit and Rivat* (Rudin-Shapiro); *Tao* (Rudin-Shapiro); *D.* (invertible); *Ferenczi, Kułaga-Przymus, Lemanczyk, and Mauduit* (invertible); *Deshoulliers, D. and Müllner* (synchronizing).

★ Thue-Morse sequence along squares

$$p_k^{(2)}$$
 ... subword complexity of $(t_{n^2})_{n \ge 0}$.

Conjecture (Allouche and Shallit, 2003)

$$p_k^{(2)} = 2^k$$

Equivalently: every block $B \in \{0, 1\}^k$, $k \ge 1$, appears in $(t_{n^2})_{n \ge 0}$.

[Moshe, 2007]: $p_k^{(2)} = 2^k$

Problem. What can be said about the frequency of a given block?

★ Thue-Morse sequence along squares

Definition

A sequence $(u_n)_{n \ge 0} \in \{0, 1\}^{\mathbb{N}}$ is normal if for any $k \in \mathbb{N}$ and any $B = (b_0, \dots, b_{k-1}) \in \{0, 1\}^k$, we have

$$\lim_{N \to \infty} \frac{1}{N} \# \{ i < N, \ u_i = b_0, \dots, u_{i+k-1} = b_{k-1} \} = \frac{1}{2^k}.$$

★ Thue-Morse sequence along squares

Definition

A sequence $(u_n)_{n \ge 0} \in \{0, 1\}^{\mathbb{N}}$ is normal if for any $k \in \mathbb{N}$ and any $B = (b_0, \dots, b_{k-1}) \in \{0, 1\}^k$, we have

$$\lim_{N \to \infty} \frac{1}{N} \# \{ i < N, \ u_i = b_0, \dots, u_{i+k-1} = b_{k-1} \} = \frac{1}{2^k}.$$

Remark. There are only few (known) explicit examples of normal sequences.

Theorem (Spiegelhofer 2014+, Spiegelhofer+Müllner 2015+) Suppose that 1 < c < 3/2. Then the sequence $(t_{\lfloor n^c \rfloor})_{n \ge 0}$ is normal.

Theorem (Spiegelhofer 2014+, Spiegelhofer+Müllner 2015+)

Suppose that 1 < c < 3/2. Then the sequence $(t_{\lfloor n^c \rfloor})_{n \ge 0}$ is normal.

Theorem (Müllner 2015+)

Let f(n) be a *q*-block-additive function and $u_n = f(n) \mod m$ an automatic sequence with is uniformly distributed on the alphabet $\mathcal{A} = \{0, 1, \dots, m-1\}.$ Then the sequence $(u_{\lfloor n^c \rfloor})_{n \ge 0}$ is **normal** for all *c* with 1 < c < 4/3. Furthermore if the subsequence $(u_{n^2})_{n \ge 0}$ is uniformly distributed on the alphabet $\mathcal{A} = \{0, 1, \dots, m-1\}$ then $(u_{n^2})_{n \ge 0}$ is **normal**.

Conjecture (1)

Suppose that c > 1 and $c \notin \mathbb{Z}$. Then for every automatic sequence u_n (on an alphabet \mathcal{A}) the asymptotic density $dens(u_{\lfloor n^c \rfloor}, a)$ of $a \in \mathcal{A}$ in the subsequence $u_{\lfloor n^c \rfloor}$ exists if and only if the asymptotic density of α in u_n exists and we have

$$\lim_{N\to\infty}\frac{1}{N}\#\{n< N, \ u_{\lfloor n^c\rfloor}=b_0, \ u_{\lfloor (n+1)^c\rfloor}=b_1, \ldots, u_{\lfloor (n+k-1)^c\rfloor}=b_{k-1}\}$$
$$= \operatorname{dens}(u_n, b_0) \cdot \operatorname{dens}(u_n, b_1) \cdots \operatorname{dens}(u_n, b_{k-1})$$

for every $k \ge 1$ and for all $b_0, \ldots, b_{k-1} \in \mathcal{A}$.

Conjecture (2)

Let P(x) be a positive integer valued polynomial and u_n an automatic sequence generated by a strongly connected automaton. Then for every $a \in A$ the densities $\delta_a = \text{dens}(u_{P(n)}, a)$ exist and we have

$$\lim_{N \to \infty} \frac{1}{N} \# \{ n < N, \ u_{P(n)} = b_0, \ u_{P(n+1)} = b_1, \dots, u_{P(n+k-1)} = b_{k-1} \}$$

= $\delta_{b_0} \cdot \delta_{b_1} \cdots \delta_{b_{k-1}}$

for every $k \ge 1$ and for all $b_0, \ldots, b_{k-1} \in \mathcal{A}$.

★ Limits of the method

Let u_n be an automatic sequence and $\phi(n)$ a positive sequences such that $\phi(n)/n$ is non-decreasing.

What can be said about $u_{\lfloor \phi(n) \rfloor}$?

- We cannot expect general results for exponentially growing sequences φ(n).
- If φ(n) = an + b with integers a, b then u_{φ(n)} is again an automatic sequence.
- If φ(n) = n log₂ n then t_{↓φ(n)} behaves as the Thue-Morse sequence t_n but the limit

$$\lim_{N \to \infty} \frac{1}{N} \# \{ n < N, \ t_{\lfloor n \log_2 n \rfloor} = b_0, \ t_{\lfloor (n+1) \log_2(n+1) \rfloor} = b_1 \}$$

does not exist. [Deshouilliers+D.+Morgenbesser (2012)]

★ General subsequences

Conjecture (3)

Suppose that $\phi(x)$ is a positive function such that $\log \phi(x) \sim c \log x$ for some c > 1 as well as $\phi'(x)/\phi(x) \sim c/x$ and $c_1/x^2 \leq \phi''(x)/\phi(x) \leq c_2/x^2$ (for some constancs c_1, c_2 that have the same sign).

Then for every automatic sequence u_n (on an alphabet A) that is generated by a strongly connected automaton the asymptotic densities

dens
$$(u_{\lfloor \phi(n) \rfloor}, a)$$

and

dens
$$(u_{\lfloor \phi(p_n) \rfloor}, a)$$

of $a \in A$ exist. (As above p_n denotes the *n*-th prime number.)

★ Proof methods

- Comparision of u_n and $u_{\lfloor \phi(n) \rfloor}$ by a *clever* partial summation
- Fourier analytic *sieving*
- Clever representation of automatic sequences

★ Clever partial summation

Proposition (Deshouilliers+D.+Morgenbesser)

Suppose that u_n is a complex valued automatic sequences and 1 < c < 7/5. Then we have

$$\left|\sum_{n=0}^{N}u_{\lfloor n^{c}\rfloor}-\frac{1}{c}\sum_{n=0}^{N}n^{\frac{1}{c}-1}u_{n}\right|\ll N^{1-\delta},$$

where $\delta < (7 - 5c)/9$.

★ Clever partial summation

Proposition (Deshouilliers+D.+Morgenbesser)

Suppose that u_n is a complex valued automatic sequences and 1 < c < 7/5. Then we have

$$\left|\sum_{n=0}^{N} u_{\lfloor n^c \rfloor} - \frac{1}{c} \sum_{n=0}^{N} n^{\frac{1}{c}-1} u_n\right| \ll N^{1-\delta},$$

where $\delta < (7 - 5c)/9$.

This generalizes a method by Mauduit and Rivat (2005) and uses Vaaler's approximation method as well as the double large sieve.

Truncated sum-of-digits function

$$\mathbf{s}_{\mathbf{2},\lambda}(n+k\mathbf{2}^{\lambda})=\mathbf{s}_{\mathbf{2}}(n), \quad \mathbf{0}\leqslant n<\mathbf{2}^{\lambda}, \; k\geqslant \mathbf{0}.$$

Alternatively

$$s_{2,\lambda}(n) = \sum_{i=0}^{\lambda-1} \varepsilon_i(n),$$

where

$$n = \sum_{i=0}^{\infty} \varepsilon_i(n) 2^i$$
 $\varepsilon_i(n) \in \{0, 1\},$

 $s_{2,\lambda}$ is periodic with period 2^{λ}

Discrete Fourier transform

$$F_{\lambda}(h,\alpha) = \frac{1}{2^{\lambda}} \sum_{0 \leq u < 2^{\lambda}} e(\alpha s_{2,\lambda}(u) - hu2^{-\lambda})$$

of the function $n \mapsto e(\alpha s_{q,\lambda}(n))$; $e(x) = \exp(2\pi i x)$.

Discrete Fourier transform

$$F_{\lambda}(h,\alpha) = \frac{1}{2^{\lambda}} \sum_{0 \leq u < 2^{\lambda}} e(\alpha s_{2,\lambda}(u) - hu2^{-\lambda})$$

of the function $n \mapsto e(\alpha s_{q,\lambda}(n))$; $e(x) = \exp(2\pi i x)$.

$$F_{\lambda}(h,\alpha) = \frac{1}{2^{\lambda}} \prod_{0 \leq k < \lambda} \left(1 + e\left(\alpha - h2^{k-\lambda}\right) \right)$$

Lemma

 $\varphi(x) := \mathbf{1} + \mathbf{e}(x) \implies$

$$\max_{0 \leq x < 1} |\varphi(\alpha - x)\varphi(\alpha - 2x)| \leq 4 e^{-c ||\alpha||^2}$$

for some constant c > 0. ($\|\alpha\| = \min\{|\alpha - k| : k \in \mathbb{Z}\}$)

Lemma

 $\varphi(x) := \mathbf{1} + \mathbf{e}(x) \implies$

$$\max_{0 \leq x < 1} |\varphi(\alpha - x)\varphi(\alpha - 2x)| \leq 4 e^{-c ||\alpha||^2}$$

for some constant c > 0. ($\|\alpha\| = \min\{|\alpha - k| : k \in \mathbb{Z}\}$)

Corollary

$$|F_{\lambda}(h,\alpha)| \leq 2^{-c\|\alpha\|^{2} \lfloor m/2 \rfloor} |F_{\lambda-m}(h,\alpha)|$$

Proposition

Suppose that $F_{\lambda}(h, \alpha)$ satisfies the property

$$|F_{\lambda}(h, \alpha)| \leq 2^{-c\|\alpha\|^2 \lfloor m/2 \rfloor} |F_{\lambda-m}(h, \alpha)|$$

(for some c > 0. Then it follows that

$$\left|\sum_{n$$

(for some constant c' > 0) and consequently

$$\# \{ 0 \leqslant n < N : t_{n^2} = 0 \} \sim \frac{N}{2}$$

Proposition

Suppose that $F_{\lambda}(h, \alpha)$ satisfies the property

$$|F_{\lambda}(h,\alpha)| \leq 2^{-c\|\alpha\|^{2}\lfloor m/2 \rfloor} |F_{\lambda-m}(h,\alpha)|$$

(for some c > 0. Then it follows that

$$\left|\sum_{n$$

(for some constant c' > 0) and consequently

$$\# \{ 0 \leqslant n < N : t_{n^2} = 0 \} \sim \frac{N}{2}$$

Proof methods: two applications of the Van-der-Corput inequality, a proper Fourier analysis and estimates for quadratic exponential sums.

Fourier term with correlations in oder to handle blocks of length > 1:

$$G_{\lambda}^{l}(h,d) = \frac{1}{2^{\lambda}} \sum_{0 \leq u < 2^{\lambda}} e\left(\frac{1}{2} \sum_{\ell=0}^{k-1} \alpha_{\ell} s_{2,\lambda}(u+\ell d+i_{\ell}) - hu2^{-\lambda}\right),$$

where $\alpha_0, ..., \alpha_{k-1} \in \{0, 1\}$ and $I = (i_0, ..., i_{k-1} \in I_k$:

$$\mathcal{I}_k := \{ I = (i_0, \dots, i_{k-1}) : i_0 = 0, i_{\ell-1} \leq i_\ell \leq i_{\ell-1} + 1, 1 \leq \ell \leq k-1 \}$$

Fourier term with correlations in oder to handle blocks of length > 1:

$$G_{\lambda}^{l}(h,d) = \frac{1}{2^{\lambda}} \sum_{0 \leq u < 2^{\lambda}} e\left(\frac{1}{2} \sum_{\ell=0}^{k-1} \alpha_{\ell} s_{2,\lambda}(u+\ell d+i_{\ell}) - hu2^{-\lambda}\right),$$

where $\alpha_0, ..., \alpha_{k-1} \in \{0, 1\}$ and $I = (i_0, ..., i_{k-1} \in I_k$:

$$\mathcal{I}_k := \{ I = (i_0, \dots, i_{k-1}) : i_0 = 0, i_{\ell-1} \leq i_\ell \leq i_{\ell-1} + 1, 1 \leq \ell \leq k-1 \}$$

Uniform upper bounds.

$$\max_{I \in \mathcal{I}_k} \left| G_{\lambda}^{I}(h, d) \right| \ll 2^{-\eta m} \max_{J \in \mathcal{I}_k} \left| G_{\lambda-m}^{J}(h, \lfloor d/2^m \rfloor) \right|$$

(for some constant $\eta > 0$ and odd $K = \alpha_0 + \cdots + \alpha_{k-1}$).

Proposition

Suppose that $G_{\lambda}^{I}(h, d)$ satisfies the property

$$\max_{l \in \mathcal{I}_k} \left| G_{\lambda}^{l}(h,d) \right| \ll 2^{-\eta m} \max_{J \in \mathcal{I}_k} \left| G_{\lambda-m}^{J}(h, \lfloor d/2^m \rfloor) \right|$$

(for some $\eta > 0$ and odd K). Then it follows that

$$\sum_{n < N} e\left(\frac{1}{2} \sum_{\ell=0}^{k-1} \alpha_{\ell} s_2((n+\ell)^2)\right) \ll N^{1-\eta'}$$

for some constant $\eta' > 0$ and odd *K*, where $\alpha_0, \ldots, \alpha_{k-1} \in \{0, 1\}$.

Proposition

Suppose that $G_{\lambda}^{l}(h, d)$ satisfies the property

$$\max_{l \in \mathcal{I}_k} \left| G_{\lambda}^{l}(h,d) \right| \ll 2^{-\eta m} \max_{J \in \mathcal{I}_k} \left| G_{\lambda-m}^{J}(h, \lfloor d/2^m \rfloor) \right|$$

(for some $\eta > 0$ and odd K). Then it follows that

$$\sum_{n < N} e\left(\frac{1}{2} \sum_{\ell=0}^{k-1} \alpha_{\ell} s_2((n+\ell)^2)\right) \ll N^{1-\eta'}$$

for some constant $\eta' > 0$ and odd *K*, where $\alpha_0, \ldots, \alpha_{k-1} \in \{0, 1\}$.

For even K a corresponding property holds and so we get

$$\# \{ 0 \leq n < N : t_{n^2} = b_0, \ldots, t_{(n+k-1)^2} = b_{k-1} \} \sim \frac{N}{2^k}.$$

★ Representation of automatic sequences

Combination of invertible and synchronizing automata:

Proposition (Müllner)

Suppose that A is an automaton such that the input 0 maps the initial state of A to itself and let $\mathbf{u} = (u_n)_{n \ge 0}$ be the corresponding automatic sequence.

Then there exists a synchronizing automaton A' and permutation matrices M_0, \ldots, M_{q-1} such that

$$u_n=f(u'_n,S(n)),$$

where u'_n is the automatic sequence related to \mathcal{A}' ,

$$S(n) = M_{\varepsilon_0(n)}M_{\varepsilon_1(n)}\cdots M_{\varepsilon_{\ell-1(n)}}$$

and f is a properly chosen function.
★ Synchronizing automatic sequences

Definition

An automaton A is called **synchronizing** if there exists a **synchronizing word** w_0 on the input alphabet such that w_0 applied to all initial states terminates always in the same state of A.

★ Synchronizing automatic sequences

Definition

An automaton A is called **synchronizing** if there exists a **synchronizing word** w_0 on the input alphabet such that w_0 applied to all initial states terminates always in the same state of A.

synchronizing word = 00

Thank you!