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Circular flows

r1r2
2D Euler equations:

∂tω + v · ∇ω = 0,
v = ∇⊥∆−1ω.

Stationary solutions:

ω(x , y) = ω(r),

v(x , y) = (∂rψ)eθ =
(
−y
x

)
ψ′(r)
r ,

ψ′′(r) + 1
r ψ
′(r) = ω(r).
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Setting and Goals

Linearized Euler equations:

∂t f + U(r)∂θf = b(r)∂θφ,
∆r ,θφ = f ,

∂θφ|r=r1,r2 = 0,
(t, θ, r) ∈ R× T× [r1, r2],

where

U(r) = ψ′(r)
r ,

b(r) = −1
r ∂r (∂2r ψ(r) + 1

r ∂rψ(r)).

Stability of

W (t, θ, r) := f (t, θ − tU(r), r),

Linear inviscid damping:

v = ∇⊥φ→ v∞

with sharp algebraic decay rates,
Explicit boundary layer and
blow-up.
Higher regularity.
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Conserved Quanities and Structure

Velocity formulation:

∂tv + v · ∇v = ∇p,
∇ · v = 0.

Vorticity formulation:

∂tω + v · ∇ω = 0,
ω = ∇× v ,
v = ∇⊥∆−1ω.

‖v‖2L2 ≡ const.

‖ω‖2L2 ≡ const.
ω = ω0 ◦ X .
Hamiltonian system.
No dissipation, no entropy increase.
; Damping mechanism?
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Taylor-Couette

t = 2

t = 0

t = 4

ψ′(r)
r = A + B

r2 , B = 0.

t = 0 t = 2 t = 4
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Taylor-Couette

t = 0

t = 2

t = 4

ψ′(r)
r = A + B

r2 .

t = 0 t = 2 t = 4
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Taylor-Couette: mixing

t = 30 ψ′(r)
r = A + B

r2 .

t = 30
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2D Euler equations: periodic channel

t = 0

t = 2

t = 4

∂t f + U(r)∂θf = b(r)∂θφ,

(∂2r + 1
r ∂r + 1

r2∂
2
θ )φ = f .

y

x ∈ T

(
U(y)
0

)

∂tω + U(y)∂xω = U ′′(y)φ,
(∂2x + ∂2y )φ = ω.
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Motivation and related results

Linear results for Couette, U(y) = y , on T× R are classical
and explicit

∂tω +
(
y
0

)
· ∇ω = 0.

Nonlinear results of Bedrossian, Germain, Masmoudi, Vicol,
Wang on Couette flow on T× R and also for 3D and
Navier-Stokes.
Villani and Mouhot’s results on Landau damping

∂t f +
(

y
F (t, x)

)
· ∇f = 0,

‖F (t, x)‖ = O(e−λt).
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Linear inviscid damping

v → (U(y), 0) as t →∞.
Periodic perturbations x ∈ T ;

Low-frequency cut-off.
y ∈ R: Fourier methods, no
boundary conditions [Zil14].
y ∈ [0, 1]: Boundary effects,
blow-up in H3/2+ [Zil16a].
Wei, Zhang, Zhao: Can allow some
blow-up (Hardy’s inequality);
Spectral methods.

y

x ∈ T

(
U(y)
0

)
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Damping & scattering

Theorem (Damping)

For regular, strictly monotone U

‖v‖L2
x,y

= O(t−1)‖W (t)‖H−1x H1
y
,

‖v2‖L2
x,y

= O(t−2)‖W (t)‖H−1x H2
y
,

‖(y − a)(y − b)∂2yW (t)‖H−1L2 .

Theorem (Scattering)

Suppose ‖v2(t)‖L2 = O(t−1−ε),
then ∃W∞:

W (t) L2
−−−→
t→∞

W∞.

Core problem:
Regularity/Stability
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Sketch

‖v − 〈v〉‖L2 = ‖ω‖Ḣ−1 = sup
φ∈H1,‖φ‖H1≤1

x
ωφ

=
∑
k 6=0

∫
φ̂Ŵ 1

iktU ′∂yeiktU .

‖v2‖2L2 =
x

∂xω∆−1v2 =
∑∫

ikeiktUŴF(∆−1v2).

W (T ) = ω0 +
∫ T

0
U ′′v2(t, x − tU(y), y)dy .
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Strategy

Sobolev
regularity

Damping Scattering
trade for Duhamel

adapted energy estimates
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Prototype: linearized Couette flow U(y) = y

y

x

∂tω + U(y)∂xω = U ′′(y)v2,
; ∂tω + y∂xω = 0.

Free transport.
Explicitly solvable.
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Dynamics
y

x

y

x

y

x
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Fourier dynamics

∂tω + y∂xω = 0 ; ∂t ω̃ − k∂ηω̃ = 0k

η
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Linearized Couette flow

Explicit solution:

ω(t, x , y) =ω0(x − ty , y),
ω̃(t, k, η) =ω̃0(k, η + kt).

Velocity field:

~v = ∇⊥∆−1ω ;

(
iη
−ik

)
1

k2 + η2
ω̃0(k, η + kt).

Shift in η:(
i(η − kt)
−ik

)
1

k2 + (η − kt)2 ω̃0(k, η).
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Fourier multiplier 1
k2+(η−kt)2

1/(1+(η	-t)2)
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Non-uniform decay.
η ≈ kt is worst case.
Penalize with
regularity

1
(k2 + (η − kt)2)(1 + η2) .

Uniform decay.
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Model equation

∂tω + U(y)∂xω = U ′′∂xφ,

∆φ = ω.
(LE)

∂t f + y∂x f = c∂xψ,

∆ψ = f ,
c ∈ C.

(CC)

Introduce Λ(t, k, y) = Fx f (t, · − ty , y):

∂tΛ = ikcΨ,
(−k2 + (∂y − ikt)2)Ψ = Λ.
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Explicit solution

∂tΛ =ikcΨ,
(−k2 + (∂y − ikt)2)Ψ =Λ,

; ∂tFΛ =− ic
k

1
1 + ( ηk − t)2FΛ.

Λ = F−1 exp
(
ic
k

∫ t

0

1
1 + ( ηk − τ)2 dτ

)
FΛ0.
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Approaches

Pseudodifferential or semiclassical calculus.

Cancellation and conserved quantities.
Duhamel, fixed point.
Weighted energy anticipating possible growth.
(Shifted) elliptic regularity.
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Energy estimate

Decreasing Fourier weight:

A(t) : Λ 7→ F−1 exp
(

arctan
(
η

k − t
))
FΛ.

d
dt 〈Λ,A(t)Λ〉 =−

∫ earctan( ηk−t)

1 + ( ηk − t)2 |FΛ|2dη

+ 2Re〈Λ̇,AΛ〉.

〈Λ̇,AΛ〉 = 〈ikcΨ,AΛ〉 = 〈 ick
1

1+( ηk−t)2FΛ, earctan( ηk−t)FΛ〉.
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L2 stability

Theorem
Let U be strictly monotone, then for ‖U ′′‖W 1,∞L sufficiently small,

〈W ,AW 〉

is non-increasing. In particular,

‖W (t)‖2L2 . 〈W ,AW 〉 ≤ 〈ω0,A(0)ω0〉 . ‖ω0‖2L2 .
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Higher Sobolev norms

∂t∂
j
y Λ =ick∂j

y Ψ,
(−k2 + (∂y − ikt)2)∂j

y Ψ =∂j
y Λ.

∑
j′≤j
〈∂j′

y Λ,A∂j′
y Λ〉 ≈ ‖Λ‖2H j

Commutator terms in the general case.
Inductive proof yields stability in any Sobolev space.
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Strategy

Sobolev
regularity

Damping Scattering
trade for Duhamel

adapted energy estimates
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Boundary setting

No Fourier transform.

Define 〈·,A·〉.

Even model problem is non-trivial.

Boundary ; Corrections to Ψ, blow-up.
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Boundary layer

Consider U(y) = y , ω0(x , y) = 2 cos(x).

W (t, 1, y) ≡ 1,
(−1 + (∂y − it)2)Φ = 1,

Φ|y=0,1 = 0.

Take a y derivative:

∂yW ≡ 0,
(−1 + (∂y − it)2)∂y Φ = 0,

∂y Φ|y=0,1 = 1
it +O(t−2).
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Blow-up

In general:

∂y Φ|y=0,1 = 1
t

i
(U ′)2ω0

∣∣∣∣
y=0,1

+O(t−2)‖W (t)‖H2 .

Evolution of ∂yW |y=0,1:

∂t∂yW |y=0,1 = ∂y (U ′′ikΦ)|y=0,1 = U ′′ik∂y Φ|y=0,1,

;
∣∣∣∂yW |y=0,1

∣∣∣ & log(t).
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Boundary layer

∂tW = b∂θΦ = bLtW ,

EtLtW = W ,

LtW |y=a,b = 0

∂t∂yW = bLt∂yW + b′LtW + bLt [Et , ∂y ]LtW + H(1),

H(1) = ∂y Φ(a, t)eikt(U(y)−U(a))u1
+ ∂y Φ(b, t)eikt(U(y)−U(b))u2
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Boundary layer

∂y Φ(a, t) = 〈W , eikt(U(y)−U(a))ũ1〉 = L̃t∂yW + c ω0(a)
iktU ′(a)

Separate boundary layer

∂tβ + bLtβ + L̃tβ = c ω0(a)
iktU ′(a)e

ikt(U(y)−U(a))u1,

β|t=0 = 0.

The remainder ∂yW − β has higher regularity.
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Duhamel

Let S(t, τ) be the solution map W (τ) 7→W (t),

ν(T ) =
∫ T

0
S(T , t)c ω0(a)

iktU ′(a)e
ikt(U(y)−U(a))u1dt.

Boundary blow-up at y = a.

(U(y)− U(a))ν(T ) =
∫ T

0
c ω0(a)
iktU ′(a)(U(y)− U(a))

eikt(U(y)−U(a))S(T − t, 0)u1dt
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Summary

Linear inviscid damping with optimal decay rates holds.
The boundary layer β is stable in weighted spaces.
It depends only on the Dirichlet data of ω0.
The remainder ∂yW − β is stable in unweighted H2.
Only need smallness assumption for L2 estimate.
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