On Mixing for Circular Flows

Christian Zillinger

University of Southern California

2017-07-03

Christian Zillinger

1 Setting and motivation

2 Strategy

3 Boundary layer

Christian Zillinger

Circular flows

2D Euler equations:

$$\partial_t \omega + \mathbf{v} \cdot \nabla \omega = \mathbf{0},$$

 $\mathbf{v} = \nabla^\perp \Delta^{-1} \omega.$

Stationary solutions:

$$\begin{split} \omega(x,y) &= \omega(r), \\ v(x,y) &= (\partial_r \psi) e_\theta = \begin{pmatrix} -y \\ x \end{pmatrix} \frac{\psi'(r)}{r}, \\ \psi''(r) &+ \frac{1}{r} \psi'(r) = \omega(r). \end{split}$$

Christian Zillinger

Linearized Euler equations:

$$egin{aligned} \partial_t f + U(r) \partial_ heta f &= b(r) \partial_ heta \phi, \ \Delta_{r, heta} \phi &= f, \ \partial_ heta \phi|_{r=r_1,r_2} &= 0, \ (t, heta,r) \in \mathbb{R} imes \mathbb{T} imes [r_1,r_2], \end{aligned}$$

Stability of

$$W(t, \theta, r) := f(t, \theta - tU(r), r),$$

where

$$U(r) = \frac{\psi'(r)}{r},$$

$$b(r) = -\frac{1}{r}\partial_r(\partial_r^2\psi(r) + \frac{1}{r}\partial_r\psi(r)).$$

Christian Zillinger

Linearized Euler equations:

$$egin{aligned} \partial_t f + U(r) \partial_ heta f &= b(r) \partial_ heta \phi, \ \Delta_{r, heta} \phi &= f, \ \partial_ heta \phi|_{r=r_1,r_2} &= 0, \ (t, heta,r) \in \mathbb{R} imes \mathbb{T} imes [r_1,r_2], \end{aligned}$$

Stability of

 $W(t, \theta, r) := f(t, \theta - tU(r), r),$

Linear inviscid damping:

$$\mathbf{v} = \nabla^{\perp} \phi \to \mathbf{v}_{\infty}$$

with sharp algebraic decay rates,

where

$$U(r) = \frac{\psi'(r)}{r},$$

$$b(r) = -\frac{1}{r}\partial_r(\partial_r^2\psi(r) + \frac{1}{r}\partial_r\psi(r)).$$

Linearized Euler equations:

$$egin{aligned} \partial_t f + U(r) \partial_ heta f &= b(r) \partial_ heta \phi, \ \Delta_{r, heta} \phi &= f, \ \partial_ heta \phi|_{r=r_1,r_2} &= 0, \ (t, heta,r) \in \mathbb{R} imes \mathbb{T} imes [r_1,r_2], \end{aligned}$$

where

$$U(r) = \frac{\psi'(r)}{r},$$

$$b(r) = -\frac{1}{r}\partial_r(\partial_r^2\psi(r) + \frac{1}{r}\partial_r\psi(r)).$$

Stability of

$$W(t, \theta, r) := f(t, \theta - tU(r), r),$$

Linear inviscid damping:

$$\mathbf{v} = \nabla^{\perp} \phi o \mathbf{v}_{\infty}$$

with sharp algebraic decay rates,

 Explicit boundary layer and blow-up.

Linearized Euler equations:

$$egin{aligned} \partial_t f + U(r) \partial_ heta f &= b(r) \partial_ heta \phi, \ \Delta_{r, heta} \phi &= f, \ \partial_ heta \phi|_{r=r_1,r_2} &= 0, \ (t, heta,r) \in \mathbb{R} imes \mathbb{T} imes [r_1,r_2], \end{aligned}$$

where

$$U(r) = \frac{\psi'(r)}{r},$$

$$b(r) = -\frac{1}{r}\partial_r(\partial_r^2\psi(r) + \frac{1}{r}\partial_r\psi(r)).$$

Stability of

$$W(t, \theta, r) := f(t, \theta - tU(r), r),$$

Linear inviscid damping:

$$\mathbf{v} = \nabla^{\perp} \phi o \mathbf{v}_{\infty}$$

with sharp algebraic decay rates,

- Explicit boundary layer and blow-up.
- Higher regularity.

Velocity formulation:

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} = \nabla \mathbf{p}, \qquad \mathbf{I} \| \mathbf{v} \|_{L^2}^2 \equiv \text{const.}$$
$$\nabla \cdot \mathbf{v} = \mathbf{0}.$$

Vorticity formulation:

$$egin{aligned} \partial_t \omega + \mathbf{v} \cdot
abla \omega &= \mathbf{0}, \ \omega &=
abla imes \mathbf{v}, \ \mathbf{v} &=
abla^{\perp} \Delta^{-1} \omega. \end{aligned}$$

Christian Zillinger

Velocity formulation:

$$\begin{array}{l} \partial_t v + v \cdot \nabla v = \nabla p, \\ \nabla \cdot v = 0. \end{array} \quad \bullet \quad \|v\|_{L^2}^2 \equiv \text{const.} \\ \bullet \quad \|\omega\|_{L^2}^2 \equiv \text{const.} \end{array}$$

Vorticity formulation:

$$egin{aligned} \partial_t \omega + \mathbf{v} \cdot
abla \omega &= \mathbf{0}, \ \omega &=
abla imes \mathbf{v}, \ \mathbf{v} &=
abla^{\perp} \Delta^{-1} \omega. \end{aligned}$$

Christian Zillinger

Velocity formulation:

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} = \nabla \mathbf{p},$$

 $\nabla \cdot \mathbf{v} = \mathbf{0}.$

Vorticity formulation:

$$\begin{split} \partial_t \omega + \mathbf{v} \cdot \nabla \omega &= \mathbf{0}, \\ \omega &= \nabla \times \mathbf{v}, \\ \mathbf{v} &= \nabla^\perp \Delta^{-1} \omega. \end{split}$$

$$\|v\|_{L^2}^2 \equiv \text{const.} \|\omega\|_{L^2}^2 \equiv \text{const.} \omega = \omega_0 \circ X.$$

Christian Zillinger

Velocity formulation:

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} = \nabla \mathbf{p},$$

 $\nabla \cdot \mathbf{v} = \mathbf{0}.$

Vorticity formulation:

$$\begin{split} \partial_t \omega + \mathbf{v} \cdot \nabla \omega &= \mathbf{0}, \\ \omega &= \nabla \times \mathbf{v}, \\ \mathbf{v} &= \nabla^\perp \Delta^{-1} \omega. \end{split}$$

$$||v||_{L^2}^2 \equiv \text{const.}$$

$$||\omega||_{L^2}^2 \equiv \text{const.}$$

•
$$\omega = \omega_0 \circ X$$
.

Hamiltonian system.

Christian Zillinger

Velocity formulation:

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} = \nabla \mathbf{p},$$

 $\nabla \cdot \mathbf{v} = \mathbf{0}.$

Vorticity formulation:

$$egin{aligned} \partial_t \omega + \mathbf{v} \cdot
abla \omega &= \mathbf{0}, \ \omega &=
abla imes \mathbf{v}, \ \mathbf{v} &=
abla^{\perp} \Delta^{-1} \omega. \end{aligned}$$

•
$$\|v\|_{L^2}^2 \equiv \text{const.}$$

$$||\omega||_{L^2}^2 \equiv \text{const.}$$

•
$$\omega = \omega_0 \circ X$$
.

- Hamiltonian system.
- No dissipation, no entropy increase. → Damping mechanism?

Christian Zillinger

Taylor-Couette

$$\frac{\psi'(r)}{r}=A+\frac{B}{r^2},\ B=0.$$

Christian Zillinger

Taylor-Couette

$$\frac{\psi'(r)}{r} = A + \frac{B}{r^2}.$$

Christian Zillinger

Taylor-Couette: mixing

$$\frac{\psi'(r)}{r} = A + \frac{B}{r^2}.$$

Christian Zillinger

2D Euler equations: periodic channel

$$\partial_t f + U(r)\partial_\theta f = b(r)\partial_\theta \phi,$$

 $(\partial_r^2 + \frac{1}{r}\partial_r + \frac{1}{r^2}\partial_\theta^2)\phi = f.$

$$\partial_t \overline{\omega} + U(y) \partial_x \overline{\omega} = U''(y) \overline{\phi},$$

 $(\partial_x^2 + \partial_y^2) \overline{\phi} = \overline{\omega}.$

Christian Zillinger

Motivation and related results

■ Linear results for Couette, U(y) = y, on T × R are classical and explicit

$$\partial_t \overline{\omega} + \begin{pmatrix} y \\ 0 \end{pmatrix} \cdot \nabla \overline{\omega} = 0.$$

- \blacksquare Nonlinear results of Bedrossian, Germain, Masmoudi, Vicol, Wang on Couette flow on $\mathbb{T}\times\mathbb{R}$ and also for 3D and Navier-Stokes.
- Villani and Mouhot's results on Landau damping

$$\partial_t f + \begin{pmatrix} y \\ F(t,x) \end{pmatrix} \cdot \nabla f = 0,$$

 $\|F(t,x)\| = \mathcal{O}(e^{-\lambda t}).$

Christian Zillinger

Linear inviscid damping

- $\overline{v} \to (\overline{U}(y), 0)$ as $t \to \infty$.
- Periodic perturbations x ∈ T ~→ Low-frequency cut-off.
- y ∈ ℝ: Fourier methods, no boundary conditions [Zil14].
- *y* ∈ [0, 1]: Boundary effects, blow-up in *H*^{3/2+} [Zil16a].
- Wei, Zhang, Zhao: Can allow some blow-up (Hardy's inequality);
 Spectral methods.

Damping & scattering

Theorem (Damping)

For regular, strictly monotone U

$$\begin{split} \|v\|_{L^2_{x,y}} &= \mathcal{O}(t^{-1}) \|W(t)\|_{H^{-1}_{x}H^1_{y}}, \\ \|v_2\|_{L^2_{x,y}} &= \mathcal{O}(t^{-2}) \|W(t)\|_{H^{-1}_{x}H^2_{y}}, \\ \|(y-a)(y-b)\partial_y^2 W(t)\|_{H^{-1}L^2}. \end{split}$$

Theorem (Scattering)

Suppose $||v_2(t)||_{L^2} = \mathcal{O}(t^{-1-\epsilon})$, then $\exists W^{\infty}$:

$$W(t) \xrightarrow[t \to \infty]{l^2} W^{\infty}.$$

 Core problem: Regularity/Stability

Christian Zillinger

Sketch

$$\begin{split} \| \mathbf{v} - \langle \mathbf{v} \rangle \|_{L^2} &= \| \omega \|_{\dot{H}^{-1}} = \sup_{\phi \in H^1, \| \phi \|_{H^1} \le 1} \iint \omega \phi \\ &= \sum_{k \neq 0} \int \hat{\phi} \hat{W} \frac{1}{iktU'} \partial_y e^{iktU}. \end{split}$$

$$\|v_2\|_{L^2}^2 = \iint \partial_x \omega \Delta^{-1} v_2 = \sum \int ike^{iktU} \hat{W} \mathcal{F}(\Delta^{-1} v_2).$$

$$W(T) = \omega_0 + \int_0^T U'' v_2(t, x - tU(y), y) dy.$$

Christian Zillinger

Christian Zillinger

Prototype: linearized Couette flow U(y) = y

Explicitly solvable.

 $\partial_t \omega + U(y) \partial_x \omega = U''(y) v_2,$ $\Rightarrow \partial_t \omega + y \partial_x \omega = 0.$

Dynamics

Christian Zillinger

Fourier dynamics

Christian Zillinger

Linearized Couette flow

Explicit solution:

$$\begin{split} &\omega(t,x,y) = \omega_0(x-ty,y), \\ &\tilde{\omega}(t,k,\eta) = \tilde{\omega}_0(k,\eta+kt). \end{split}$$

Velocity field:

$$ec{v} =
abla^{\perp} \Delta^{-1} \omega \rightsquigarrow egin{pmatrix} i\eta \ -ik \end{pmatrix} rac{1}{k^2 + \eta^2} ilde{\omega}_0(k,\eta+kt).$$

Shift in η :

$$egin{pmatrix} i(\eta-kt) \ -ik \end{pmatrix} rac{1}{k^2+(\eta-kt)^2} ilde{\omega}_0(k,\eta). \end{split}$$

Christian Zillinger

Fourier multiplier $\frac{1}{k^2 + (\eta - kt)^2}$

- Non-uniform decay.
- $\eta \approx kt$ is worst case.
- Penalize with regularity

$$\frac{1}{(k^2 + (\eta - kt)^2)(1 + \eta^2)}$$

Uniform decay.

Christian Zillinger

Model equation

,

Introduce
$$\Lambda(t, k, y) = \mathcal{F}_x f(t, \cdot - ty, y)$$
:
 $\partial_t \Lambda = ikc \Psi$
 $(-k^2 + (\partial_y - ikt)^2)\Psi = \Lambda.$

Christian Zillinger

Explicit solution

$$\partial_t \Lambda = ikc\Psi,$$

$$(-k^2 + (\partial_y - ikt)^2)\Psi = \Lambda,$$

$$\rightsquigarrow \partial_t \mathcal{F}\Lambda = -\frac{ic}{k}\frac{1}{1 + (\frac{\eta}{k} - t)^2}\mathcal{F}\Lambda.$$

Christian Zillinger

Explicit solution

$$\partial_t \Lambda = ikc\Psi,$$

$$(-k^2 + (\partial_y - ikt)^2)\Psi = \Lambda,$$

$$\rightsquigarrow \partial_t \mathcal{F}\Lambda = -\frac{ic}{k}\frac{1}{1 + (\frac{\eta}{k} - t)^2}\mathcal{F}\Lambda.$$

$$\Lambda = \mathcal{F}^{-1} \exp\left(\frac{ic}{k} \int_0^t \frac{1}{1 + (\frac{\eta}{k} - \tau)^2} d\tau\right) \mathcal{F} \Lambda_0.$$

Christian Zillinger

Pseudodifferential or semiclassical calculus.

Christian Zillinger

- Pseudodifferential or semiclassical calculus.
- Cancellation and conserved quantities.

Christian Zillinger

- Pseudodifferential or semiclassical calculus.
- Cancellation and conserved quantities.
- Duhamel, fixed point.

Christian Zillinger

- Pseudodifferential or semiclassical calculus.
- Cancellation and conserved quantities.
- Duhamel, fixed point.
- Weighted energy anticipating possible growth.

Christian Zillinger

- Pseudodifferential or semiclassical calculus.
- Cancellation and conserved quantities.
- Duhamel, fixed point.
- Weighted energy anticipating possible growth.
- (Shifted) elliptic regularity.

Energy estimate

Decreasing Fourier weight:

$$\mathcal{A}(t): \Lambda \mapsto \mathcal{F}^{-1} \exp\left(\arctan\left(rac{\eta}{k} - t
ight)
ight) \mathcal{F} \Lambda.$$

$$rac{d}{dt}\langle \Lambda, A(t)\Lambda
angle = -\int rac{e^{{
m arctan}(rac{\eta}{k}-t)}}{1+(rac{\eta}{k}-t)^2}|\mathcal{F}\Lambda|^2d\eta
onumber\ +2{
m Re}\langle\dot{\Lambda},A\Lambda
angle.$$

$$\langle \dot{\Lambda}, A\Lambda \rangle = \langle ikc\Psi, A\Lambda \rangle = \langle \frac{ic}{k} \frac{1}{1 + (\frac{\eta}{k} - t)^2} \mathcal{F}\Lambda, e^{\arctan(\frac{\eta}{k} - t)} \mathcal{F}\Lambda \rangle.$$

Christian Zillinger

L^2 stability

Theorem

Let U be strictly monotone, then for $\|U''\|_{W^{1,\infty}}L$ sufficiently small,

 $\langle W, AW \rangle$

is non-increasing. In particular,

 $\|W(t)\|_{L^2}^2 \lesssim \langle W, AW
angle \leq \langle \omega_0, A(0)\omega_0
angle \lesssim \|\omega_0\|_{L^2}^2.$

Christian Zillinger

Higher Sobolev norms

$$\partial_t \partial_y^j \Lambda = ick \partial_y^j \Psi,$$
$$(-k^2 + (\partial_y - ikt)^2) \partial_y^j \Psi = \partial_y^j \Lambda.$$

$$\sum_{j' \leq j} \langle \partial_y^{j'} \Lambda, A \partial_y^{j'} \Lambda \rangle \approx \|\Lambda\|_{H^j}^2$$

- Commutator terms in the general case.
- Inductive proof yields stability in any Sobolev space.

Christia	n Zillinger
Circular flows	

Christian Zillinger

No Fourier transform.

Christian Zillinger

• No Fourier transform.

• Define $\langle \cdot, A \cdot \rangle$.

Christian Zillinger

- No Fourier transform.
- Define $\langle \cdot, A \cdot \rangle$.
- Even model problem is non-trivial.

Christian Zillinger

- No Fourier transform.
- Define $\langle \cdot, A \cdot \rangle$.
- Even model problem is non-trivial.
- **Boundary** \rightsquigarrow Corrections to Ψ , blow-up.

Boundary layer

Consider
$$U(y) = y, \omega_0(x, y) = 2\cos(x)$$
.

$$W(t, 1, y) \equiv 1,$$

 $(-1 + (\partial_y - it)^2)\Phi = 1,$
 $\Phi|_{y=0,1} = 0.$

Take a y derivative:

$$\partial_y W \equiv 0,$$

$$(-1 + (\partial_y - it)^2) \partial_y \Phi = 0,$$

$$\partial_y \Phi|_{y=0,1} = \frac{1}{it} + \mathcal{O}(t^{-2}).$$

Christian Zillinger

Blow-up

In general:

$$\partial_{y}\Phi|_{y=0,1} = rac{1}{t} \left. rac{i}{(U')^{2}} \omega_{0} \right|_{y=0,1} + \mathcal{O}(t^{-2}) \|W(t)\|_{H^{2}}.$$

• Evolution of $\partial_y W|_{y=0,1}$:

$$\partial_t \partial_y W|_{y=0,1} = \partial_y (U'' i k \Phi)|_{y=0,1} = U'' i k \partial_y \Phi|_{y=0,1},$$

$$\rightsquigarrow \left| \partial_y W|_{y=0,1} \right| \gtrsim \log(t).$$

Christian Zillinger

Boundary layer

$$\partial_t W = b \partial_\theta \Phi = b L_t W,$$

 $E_t L_t W = W,$
 $L_t W|_{y=a,b} = 0$

$$\begin{aligned} \partial_t \partial_y W &= bL_t \partial_y W + b'L_t W + bL_t [E_t, \partial_y] L_t W + H^{(1)}, \\ H^{(1)} &= \partial_y \Phi(a, t) e^{ikt(U(y) - U(a))} u_1 \\ &+ \partial_y \Phi(b, t) e^{ikt(U(y) - U(b))} u_2 \end{aligned}$$

Christian Zillinger

Boundary layer

$$\partial_y \Phi(a,t) = \langle W, e^{ikt(U(y) - U(a))} \tilde{u}_1 \rangle = \tilde{L}_t \partial_y W + c \frac{\omega_0(a)}{iktU'(a)}$$

Separate boundary layer

$$\partial_t \beta + bL_t \beta + \tilde{L}_t \beta = c \frac{\omega_0(a)}{iktU'(a)} e^{ikt(U(y) - U(a))} u_1,$$

 $\beta|_{t=0} = 0.$

The remainder $\partial_{y}W - \beta$ has higher regularity.

Christian Zillinger

Duhamel

Let $S(t,\tau)$ be the solution map $W(\tau) \mapsto W(t)$,

$$\nu(T) = \int_0^T S(T,t) c \frac{\omega_0(a)}{iktU'(a)} e^{ikt(U(y)-U(a))} u_1 dt.$$

Boundary blow-up at y = a.

$$(U(y) - U(a))\nu(T) = \int_0^T c \frac{\omega_0(a)}{iktU'(a)} (U(y) - U(a))$$
$$e^{ikt(U(y) - U(a))} S(T - t, 0) u_1 dt$$

Christian Zillinger

Summary

- Linear inviscid damping with optimal decay rates holds.
- The boundary layer β is stable in weighted spaces.
- It depends only on the Dirichlet data of ω_0 .
- The remainder $\partial_{y}W \beta$ is stable in *unweighted* H^{2} .
- Only need smallness assumption for L^2 estimate.

Christian Zillinger.

Linear inviscid damping for monotone shear flows. arXiv:1410.7341, to appear in Transactions of the AMS, 2014.

Christian Zillinger.

Linear inviscid damping for monotone shear flows, boundary effects and sharp Sobolev regularity. PhD thesis, University of Bonn, 2015.

Christian Zillinger.

Linear inviscid damping for monotone shear flows in a finite periodic channel, boundary effects, blow-up and critical Sobolev regularity.

Archive for Rational Mechanics and Analysis, pages 1–61, 2016.

Christian Zillinger.

On circular flows: linear stability and damping.

arXiv preprint arXiv:1605.05959, 2016.

Christian Zillinger