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The Operator

e O = iHY ; H=Ho+V , ¢ =1t , Vi

hermitian
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af + Ba =10
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o If z € R3 then ¢ = ( i ), $, x € C? (spinors).
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® o = ( O/O\. %7 ) j=1,2,3 , 0, Pauli matrices
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General Questions

(a) Self-adjointness.

(b) Spectrum: Characterization of the ground state by the “right
inequality”.

Similar questions for a non linear V always assume some
smallness condition on V.

(c) What is a small/big perturbation of Hy?



Coulomb Potential

A
.Ho—m

(a) Self-adjointness: Rellich ’53, Schminke 72, Wust ’75,
Nenciu ’76, Kato 80— ’83 (Kato—Nenciu inequality)

Final answer: |A| < 1.

(b) “Ground state” (A > 0) Minimization process (Dolbeault,
Esteban, Séré ’00):

— Variational inequality for ¢ (w = ( ;’z ))

— Hardy-Kato—Nenciu type inequalities (Dolbeault,
Duoandikoetxea, Esteban, Loss, V. ’00).



Electrostatic Shell Interactions:

) ¢ R3 bounded smooth domain
o = surface measure on 09X

N = outward unit normal vector field on 9f2

Electrostatic shell potential V) = Adsq:

A
A €ER, Va(p) = 5 (p+ +¢-)

¢+ = non-tangential boundary values of ¢ : R3 — C4
when approaching from Q or R°\

Electrostatic shell interaction for H: H + V)



(a) Self-Adjointess

IfA#+2 = H+YV, isself-adjoint on D(H + Vj).

[Arrizabalaga, Mas, V., 2014],
more general [Posilicano, 2008]
2 ball — [Dittrich, Exner, Seba, 1989]

a € (—m,m)
o—VmI—a? |z|

47 ||

¢ (z) = [a +mB + (1 —V/m? — a2 |:1:|) ia - #1

= fundamental solution of H — a

D(H+V,) = {cp . o=@ (Gdz + gdo), G € L2((R)3)* g € L?(69Q)4,

A(9° % (Gda))| g = — (1+AC80) 9)

where C3q(g)(z) = lim ¢“(z —y)g(y)do(y) , = € Q.
e—0 I-’c—y|>6



(b) Point Spectrum on (—m,m) for H + V)

Birman—Schwinger principle: a € (—m,m), XeR\{0},

() ker(H+Vy—a)#0 <= ker(%-l—CgQ);éO

(problem in R3) (problem in 0Q)

Properties of C5,, a € [—-m,m|:

(a) C%, bounded self-adjoint operator in L2(9Q).
1 & ltiplicati
. 2 T A7 multiplication
(b) [CBQ(Q’ ' N)] - _ZId' a-N= Z; a;iN; operator
J=

(a)
1 > <
ker (_ +an) 20 { > W2 N0 >0 and (D) <2
A = A < A (09) < 00 and A, (092) > 2

Therefore, ker(H +Vy, —a) #0 = |A| € [A(02), A (092)]



Main result:

Question:  How small can [A;(052), A, (0Q)] be?

(Isoperimetric-type statement w.r.t. €2)
(Find optimizers)

Examples:  C R3 bounded smooth domain

1
e Isoperimetric inequality: Vol (2)? < 26 Area (09)°.

e Pdlya—Szego inequality:

—1 v probability
Cap (Q) = (mf / / ) Borel measure
4’/T|.’B—y‘ suppv C )

1/3

Cap () > 2(67*Vol (Q)) <— [Pdlya, Szegd, 1951]

In both cases, = holds <= () is a ball.



Theorem [AMV2016].— Q C R3 bounded smooth domain. If

Area(00) 1

m — > ]
Cap(Q) ~ 4v2

then
sup {|A| : ker(H + Vy —a) # 0 for some a € (—m,m)}

Area(09Q) Area(0Q)? 1
>4 m ——> + 4/ m? —— + -
Cap(€2) Cap(Q)2 4
inf {|A| : ker(H + V), — a) # 0 for some a € (—m,m)}
Area(99) Area(00)? 1
< 4| — - 2 - —
- ( " Cap(Q2) * \/m Cap(2)? T 4

In both cases, = holds <= (2 is a ball.

and




Ingredients of the proof:

1

(1) The monotonicity of A(a) in ker (— + ng) reduces the

(2)

(3)

Aa)
study of (x) to a = £m.

The quadratic form inequality relates
sup{|A| : ker(H + V) —a)) #0 for some a € (—m,m)}

in (%) with the optimal constant of an inequality involving
the single layer potential K and a SIO. (Here appears the

1/44/2)

Isoperimetric type statement for K in terms of Area (0€2) \
Cap (92).



Proof:

1

(1) ker (m +ng) £0) —

CgQ — (H — a)_l

—

—

1
Céada = O Igall = 1
1 1 )
Aa)  Aa) (92> 9a) = (CdaYas Ja)

;a (/\(la)) ~((H —a)""9a, 9a) = |(H — @) ga|l* > 0

(assume g, independent of a)



[W—



1 - - 1
ker(X+CBQ)7éO — Cang=xg 9=(Z)
2mKu+Wh = —;p
—
Wup = —lh
Fo= 7
L 3f € L*(092)*, f # 0 such that (—8TmK+1—i—§W2)f=0

Multiply by f and integrate on 9:

- 4\° 8m -
decreasing =x W12 + 2 Kf.f—= 2
(on/\>0) (,\) /BQI f‘ + A\ /39 f-f 6Q|f‘

>0

Quadratic form inequality:

s (4 2 o , 8m 7 2 2 2
,\Q_mf{,\>o.(x) /BQ|Wf|+T Kf-fg/m|f| erL(an)}

o012

[Esteban,Séré, 1997]



1
(3) Q ball = |W|3q=-

4
( | Khavinson, Putinar, ] \
Shapiro, 2007
“oe B
| Hofmann, Marmolejo—Olea, Mitrea,
\ | Pérez—Esteva, Taylor, 2009 ]

— o =4(m|Klloa + vVm?[KTBq + [WI3e)

() general,

do(y) da(m) Area (012)
K —
P ||f||aQ/aQ 172 [[ o Yioton) 2 Cap ()

|Kloe = sup

(“ =7 <= is a ball: Gruber’s conjecture [Reichel, 1996, 1997] )



Coulomb Potential again

Recall Birman—Schwinger principle:

dciz (A(la)) ~ ((H — a)"*ga, 9a) = [|(H — a) " ga[|* > 0

(assume g, independent of a)

This suggests another way of obtaining the ground state for the

Coulomb potential V(z) = ——:

m? — a? |"wb|2 f'(%a.V+m5+a)¢

m? 2| =

2
|

(Arrizabalaga, Duoandikoetxea, V. ’13; Cassano,
Pizzichilo, V. ’17)

The inequality is optimal and it is achieved for a > 0 by the ground
m? —a? 1
m? x|

state of V,(z) = —



The proof is a consequence of the “uncertainty principle”.
o 2Re (SY, AY) = ((SA — AS)Y, ) if §* =8 and A* = —A.

e 2R (Al’t,b,Ag’t,M = —((AlAz -4~ A2A1)'¢,’l,b) if AT = —Al and
A = —As.
In our case the right choice is:

oRe (o V +i(mB +a)) ¥, (1+0-L)la- 1(35“)).

x| \m”
! L
A1 S A2




A2 =4

Joint work with T. Ourmieres-Bonafos.
Recent work by
e Benguria, Fournais, Stockmeyer, Van den Bosch.

e Behrndt, Exner, Holzmann, Lotoreichik. (A2 =4c¢? ; ¢ — )

e Behrndt, Holzmann.

e Mas, Pizzichilo. (A% small)



For A € R, we introduce the matrix valued function:

A

For (u4,u_) € HY(Q,)* x H*(Q_)* we define the following trans-
mission condition in H/2(6)*

(*) Pitaguy + Pitoou— =0, on 0€.

Alternativaley, as P, is invertible, we can see the transmission con-
dition as
1 A2

A2/4+1(1—Z+A(ia-n)).

tou4+ = Ratagu—, with Ry =



Definition.— Let A € R and m € R. The Dirac operator coupled
with an electrostatic d—shell interaction of strength A is the opera-

tor (’H A(m),dom (Hy (m))), acting on L?(R3)% and defined on the

domain

dom (’H,\(m)) = {('u,+,u_) e H'(Q4)*xH' (Q_)* : (uy,u_) satisfies (*)}

It acts in the sense of distributions as Hy(m)u =

(H(m)u+, ’H(m)u_) where we identify an element of
L2(Q4)* x L?(Q_)* with an element of L?(R3).



Theorem.— Let m € R. The following holds:

(i) If A # +£2, the operator (’Hx(m),dom (’Hk(m))) is self-
adjoint.

(ii) If A = 42, the operator (?{ A(m), dom (H., (m))) is essentially
self-adjoint and we have

dom (Hx(m)) € dom (Hx(m)) =
{(u+,u_) € H(a,4) X H(a,Q_) : (uy,u_) satisfies (*)},

where the transmission condition holds in H~1/2(6)%.



{ H0®) - {ne o e py) -

{u c L2(Q)%: (a-D)u ¢ L2(Q)4},

Let e = +1 and A = 2¢. Let u = (u4,u_) € dom (Hr(m)), uy

_ (ull o2

can be rewritten u+ u.y',uy ) and, for z € 0L, the transmission

condition reads

1] : 1]
u () _ 0 —igo - n(x) u ()
( uE](m) ) ( —ieo - n(z) 0 ) ( u[_2](a:) )

B —ieo - nul? (x)
—ieo - nu!! () |



The Calderén projectors are the bounded linear operators from
H~2(00)* onto itself defined as:

C+ ==+iCi(a-n).

As 00 is C?, the multiplication by a-n is a bounded linear operator
from H~1/2(00Q)* onto itself. Thus the definition makes sense.

Their formal adjoints are:

CiL = Fi(a - n)Cx.

By definition, C% is a linear bounded operator from H~!/2(9Q)*
onto itself.



Note that the Calderén projectors satisfy:
C+ —CL = 1iA,

where A does not depend on the sign £. Roughly speaking, A
measures the defect of self-adjointness of the Calderén projectors.

Proposition.— The operator A extends into a bounded operator
from H~1/2(6Q)* to H/2(69Q)* and it is compact.




This system rewrites as:

% —ia - n C+(toqu+)
(Yo ¢ % C—(taqu-)
B X _io-n Cy(tau_) (a-n)A(tgqus —taqu_)
N ( i -2n -3 ) ( Ci(tggu+) ) * ( —(a-n).A(g:Q?L_ —?gﬂu—) )

The right-hand side is in H'/2(0w)® and the matrix in the left-
hand side is invertible in H/2(00Q)8 as long as A # +2. Thus
toqus € HY2(0Q)* and dom (Hx(m)*) C dom (Hx(m)). The

reciprocal inclusion is similar.



