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The problem

We consider the following Cauchy problem:
(KG)

∂2
t u − ∂2

xu + u = P(u, ∂t∂xu, ∂
2
xu; ∂tu, ∂xu)

u(t = 1) = εu0(x)

∂tu(t = 1) = εu1(x)

t ≥ 1, x ∈ R

P homogeneous polynomial of degree 3, affine in (∂t∂xu, ∂
2
xu)

(quasi-linear problem); ε� 1 small parameter, u0, u1 smooth
functions, mildly decaying in space (O(|x |−1), for |x | → +∞).

Recall
Energy of u :
E (t, u) :=

∫ (
|∂tu(t, x)|2 + |∂xu(t, x)|2 + |u(t, x)|2

)
dx ;

Linear Dispersive Effect : ‖u(t, ·)‖L∞ ≤ C (1 + t)−1/2.



Global Existence d ≥ 2:
d ≥ 3, Klainerman (’85), Shatah (’85) : (KG) with quadratic
nonlinearity, smooth compactly-supported initial data;
d = 2, Ozawa, Tsutaya, Tsutsumi (’96) (semi-linear case
P(u, ∂u)), et (’97) (quasi-linear case P(u, ∂u, ∂2u));

Results in d = 1:
Moriyama, Tonegawa, Tsutsumi (’97) : maximal time of
existence Tε ≥ ec/ε

2
, for a cubic nonlinearity, or a semi-linear

one. Exemples of blow-up : Yordanov, Keel-Tao (’99);
Delort (’01): structure condition on P that ensures the global
existence, when initial data are compactly supported;
Hayashi, Naumkin : (’12) quadratic semi-linear problem.
Guo, Han, Zhang: (’17) Euler-Poisson system.

Aim
To prove global existence for (KG) when initial data are not
compactly supported, combining the Klainerman vector fields’
method with a semiclassical microlocal analysis.
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Theorem

Under a structure condition on nonlinearity P (null condition), ∃s ∈ N
sufficiently large, ε0 ∈]0, 1], such that, for any real initial data
(u0, u1) ∈ Hs+1(R)× Hs(R)

‖u0‖Hs+1 + ‖u1‖Hs + ‖xu0‖H1 + ‖xu1‖L2 ≤ 1

and for any 0 < ε < ε0, (KG) has a unique solution
u(t, x) ∈ C 0([1,+∞[,Hs+1(R)) ∩ C 1([1,+∞[;Hs(R)). We have the
asymptotic development

u(t, x) = <
[
ε√
t
aε
(x
t

)
exp

[
itϕ
(x
t

)
+ iε2

∣∣∣aε (x
t

)∣∣∣2 Φ1

(x
t

)
log t

]]
+

ε

t
1
2+σ

r(t, x) ,

with aε compactly supported in [−1, 1] ϕ(x) =
√
1− x2, Φ1(x) real

function obtained from P, and r(t, x) remainder term.

Null condition : Automatically satisfied by Hamiltonian nonlinearities.
Examples of nonlinearities that do not satisfy this condition and for which
we don’t have global existence.
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Some ideas of the proof : a toy model

We consider the following model:

(KGmod)

{ (
Dt −

√
1 + D2

x

)
u = α|u|2u

u|t=1 = εu0(x)
t ≥ 1, x ∈ R

with D := 1
i ∂, u0(x) smooth function, xu0(x) ∈ L2, α ∈ R (null

condition on this example).
If we consider the Klainerman vector field Z = t∂x + x∂t , then(

Dt −
√

1 + D2
x

)
Zu = α|u|2(Zu) + ...

hence the energy inequality :

‖Zu(t, ·)‖L2 . ‖Zu(1, ·)‖L2 +

∫ t

1
‖u(τ, ·)‖2L∞‖Zu(τ, ·)‖L2dτ



Bootstrap Argument
We look for constants A,B > 0 sufficiently large, and ε0 > 0
sufficiently small, such that, ∀ 0 < ε < ε0, if u is solution of
(KGmod) in [1,T ] and satisfies

‖u(t, ·)‖L∞ ≤ Aεt−
1
2(1a)

‖u(t, ·)‖L2 + ‖Zu(t, ·)‖L2 ≤ Bεtσ(1b)

for every t ∈ [1,T ], and for a small σ > 0, then it satisfies also

‖u(t, ·)‖L∞ ≤
A

2
εt−

1
2(2a)

‖u(t, ·)‖L2 + ‖Zu(t, ·)‖L2 ≤
B

2
εtσ(2b)

Remark : Energy is not uniformly bounded in time.

After the energy inequality for u and Zu, (1a) + (1b)⇒ (2b).
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Propagation of the L∞ estimate

Difficulty : From the Klein-Gordon equation (as for the wave
equation) we are not able to deduce "directly" the wished L∞

estimates for u. Moreover, a Klainerman-Sobolev inequality

‖u(t, ·)‖L∞ ≤ Ct−
1
2E (t, ∂αZu)

1
2

doesn’t give the optimal decay t−1/2.

In literature : When initial data are compactly supported, the
solution remains localised in the light cone (finite speed of
propagation) ⇒ Hyperbolic coordinates.

New Idea: Deduce from PDE (KGmod) an ODE, using semiclassical
pseudo-differential calculus.



Semiclassical Coordinates

We introduce v(t, x) =
√
tu(t, tx), h := 1

t semiclassical parameter
(h→ 0). Function v is solution of the equation:

(KGsc) Dtv − Opwh (λh(x , ξ))v = hα|v |2v

with λh(x , ξ) = xξ +
√

1 + ξ2.

Semiclassical Weyl quantization of a symbol a(x , ξ) acting on w(x)

Opwh (a(x , ξ))w(x) :=
1

2πh

∫
R

∫
R
e

i
h
(x−y)ξa(

x + y

2
, ξ)w(y) dydξ.

We want to develop λh(x , ξ) in order to transform Opwh (λh(x , ξ))
into a product by a real function ω(x), modulo some integrable
remainder.



Let Λ = {(x , ξ)|∂ξλh = 0} = {(x , ξ)|ξ = dϕ(x)}, ϕ(x) =
√
1− x2.

Λ for Klein-Gordon equation



Let Λ = {(x , ξ)|∂ξλh = 0} = {(x , ξ)|ξ = dϕ(x)}, ϕ(x) =
√
1− x2.

We localize λh(x , ξ) is a neighbourhood of Λ of size O(
√
h)

through an operator Γ = Opwh
(∂ξλh√

h

)
("wave packets" method by

Ifrim-Tataru).
Consequence: ‖Γ‖L(L2;L∞) = O(h−1/4), better than semiclassical
Sobolev injection (loss in O(h−1/2)).
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We write λh(x , ξ) = λh(x , dϕ(x)) + O((ξ − dϕ(x))2), and hence
we deduce Opwh (λh(x , ξ)) = λh(x , dϕ(x))︸ ︷︷ ︸

ω(x)

+O((hDx − dϕ)2).

(hDx − dϕ)v can be expressed in terms of hZu;
(ξ − dϕ)2 = O(

√
h(ξ − dϕ)) on the support of the truncation.
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we deduce Opwh (λh(x , ξ)) = λh(x , dϕ(x))︸ ︷︷ ︸

ω(x)

+O((hDx − dϕ)2).

(hDx − dϕ)v can be expressed in terms of hZu;
(ξ − dϕ)2 = O(

√
h(ξ − dϕ)) on the support of the truncation.

Then ‖(hDx − dϕ(x))2Γv‖L∞ .
√
hh h−1/4‖Zu‖L2 = O(h5/4−σ),

after (1b).



We obtain

Dtv − ω(x)v − α

t
|v |2v︸ ︷︷ ︸

ODE

= OL∞(t−5/4+σ)︸ ︷︷ ︸
integrable remainder

We deduce an uniform estimate for ‖v(t, ·)‖L∞ and its asymptotic
behaviour, which gives us the optimal estimate of ‖u(t, ·)‖L∞ in
t−1/2 (hence (2a)), and the asymptotic behaviour of u.

Remark : For a general non-linearity P , other cubic terms appear in
the non-linearity (v3, |v |2v̄ , v̄3), and they can be eliminated by a
normal form argument for ODEs. The Null Condition on P is the
necessary and sufficient condition for the coefficient α of |v |2v to
be real.

(A.S.) A. Stingo, Global existence and asymptotics for quasi-linear
one-dimensional Klein-Gordon equations with mildly decaying
Cauchy data, to appear in Bulletin de la SMF.



New Perspectives

We want to study a coupled wave/Klein-Gordon system in d = 2 :

(W-KG)

{
�u = P(∂u, ∂v ; ∂2u, ∂2v)

�v + v = Q(∂u, ∂v ; ∂2u, ∂2v)
t ≥ 1, x ∈ R2

with small initial data (of size ε), decaying at infinity. P,Q
homogeneous polynomials of degree 2.
This system represents a model for the nonlinear interaction
between a non-massif field u and a massif field v
The aim :

To prove the global existence of the solution of (W-KG) ;
To find general structure conditions on P,Q that ensure the
global existence ;
To adapt our method to this problem.



Thank you for your attention !


