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The problem

We consider the following Cauchy problem:

(KG)
0?u — 02u + u = P(u, 0:0xu, d2u; Oru, Oxu)
u(t =1) = eup(x) t>1,xeR
Oru(t =1) = cui(x)

P homogeneous polynomial of degree 3, affine in (9:0xu, 92u)
(quasi-linear problem); ¢ < 1 small parameter, up, u; smooth
functions, mildly decaying in space (O(|x|™1), for |x| — +o0).

@ Energy of u :
E(t,u) == [ (|0:u(t,x)|* + [Oxu(t, x)|? + |u(t, x)|?) dx ;
e Linear Dispersive Effect : ||u(t, )|z < C(1 4 t)~1/2,




Global Existence d > 2:
e d > 3, Klainerman ('85), Shatah ('85) : (KG) with quadratic
nonlinearity, smooth compactly-supported initial data;
e d =2, Ozawa, Tsutaya, Tsutsumi ('96) (semi-linear case
P(u,du)), et ('97) (quasi-linear case P(u,du, 9%u));
Results in d = 1:

e Moriyama, Tonegawa, Tsutsumi ('97) : maximal time of
existence T. > e/=*, for a cubic nonlinearity, or a semi-linear
one. Exemples of blow-up : Yordanov, Keel-Tao ('99);

@ Delort ('01): structure condition on P that ensures the global
existence, when initial data are compactly supported;

e Hayashi, Naumkin : ('12) quadratic semi-linear problem.
e Guo, Han, Zhang: ('17) Euler-Poisson system.
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To prove global existence for (KG) when initial data are not
compactly supported, combining the Klainerman vector fields’'
method with a semiclassical microlocal analysis.




Theorem

Under a structure condition on nonlinearity P (null condition), 3s € N
sufficiently large, eq €]0, 1], such that, for any real initial data
(UO, Ul) S H5+1(R) X HS(R)

luo | s+ + lluall s + [Ixuollpe + [[xur]|2 <1

and for any 0 < € < €g, (KG) has a unique solution
u(t,x) € CO([L, +oof, H**1(R)) N CY([1, +oo[; HS(R)). We have the

asymptotic development
X\ |2 X
)01 (3) e
% (t)‘ 1\t) "8

u(t,x) =% [\235 (%) exp {itgp (%) + ig?
= r(t,x),

tito

+

with a. compactly supported in [—1,1] ¢(x) = V1 — x2, ®1(x) real
function obtained from P, and r(t,x) remainder term.
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Null condition : Automatically satisfied by Hamiltonian nonlinearities.
Examples of nonlinearities that do not satisfy this condition and for which
we don't have global existence.



Some ideas of the proof : a toy model

We consider the following model:

(Dt - \/@) u=alul?u

t>1,xeR
u‘tzl = EUQ(X)

(KGmod) {

with D := 19, ug(x) smooth function, xup(x) € L2, o € R (null
condition on this example).
If we consider the Klainerman vector field Z = t0, + x0;, then

<Dt —4/1+ D)%) Zu = o|u*(Zu) + ...

hence the energy inequality :

t
[Zu(t, )l 2 < 1 Zu(l )2 +/1 lu(r, YIZeo 1 Zu(r, ) 2d T



Bootstrap Argument

We look for constants A, B > 0 sufficiently large, and g9 > 0
sufficiently small, such that, V0 < & < &g, if u is solution of
(KGmog) in [1, T] and satisfies

(1a) lut, Yl < Act™z
(1b) lu(t, )2 + (| Zu(t; )2 < Bet?

for every t € [1, T], and for a small o > 0, then it satisfies also

A 1
(2a) (e, Yo < Ger?

B
(2b) luCt, Mz + 11 2u(t, )z < Set”

Remark : Energy is not uniformly bounded in time.
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Propagation of the L estimate

Difficulty : From the Klein-Gordon equation (as for the wave
equation) we are not able to deduce "directly" the wished L>
estimates for u. Moreover, a Klainerman-Sobolev inequality

lu(t, )| < CE™2E(t,0%Zu)>

doesn't give the optimal decay t—1/2.

In literature : When initial data are compactly supported, the
solution remains localised in the light cone (finite speed of
propagation) = Hyperbolic coordinates.

New Idea: Deduce from PDE (KGp,04) an ODE, using semiclassical
pseudo-differential calculus.




Semiclassical Coordinates

We introduce v(t,x) = Vtu(t, tx), h:= ? semiclassical parameter

(h — 0). Function v is solution of the equation:
(KGsc) Div — Opl(An(x,€))v = ha|v[*v
with Ap(x, &) = x& + /14 &2

Semiclassical Weyl quantization of a symbol a(x, &) acting on w(x)

Opt(alx, Ow(x) = 5z [ [ b 5al 2L ) e

We want to develop Ay(x, &) in order to transform Op}’(Ap(x,€))
into a product by a real function w(x), modulo some integrable
remainder.
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We obtain

Div — w(x)v — %|v|2v = Op(t75/4F7)
, N———

ODE integrable remainder

We deduce an uniform estimate for ||v(t, )|/, and its asymptotic
behaviour, which gives us the optimal estimate of ||u(t, )|/ >~ in
t=1/2 (hence (2a)), and the asymptotic behaviour of u.

Remark : For a general non-linearity P, other cubic terms appear in
the non-linearity (v3,|v|27, #3), and they can be eliminated by a
normal form argument for ODEs. The Null Condition on P is the
necessary and sufficient condition for the coefficient o of |v|?v to
be real.

(as) A. Stingo, Global existence and asymptotics for quasi-linear
one-dimensional Klein-Gordon equations with mildly decaying
Cauchy data, to appear in Bulletin de la SMF.



New Perspectives

We want to study a coupled wave/Klein-Gordon system in d =2 :

Ou = P(Qu, dv; 0u, 9%v)

t>1xeR?
Ov +v = Q(du,dv; ?u, 82v)

(W-KG) {

with small initial data (of size €), decaying at infinity. P, Q
homogeneous polynomials of degree 2.
This system represents a model for the nonlinear interaction
between a non-massif field u and a massif field v
The aim :

@ To prove the global existence of the solution of (W-KG) ;

@ To find general structure conditions on P, @ that ensure the
global existence ;

@ To adapt our method to this problem.



Thank you for your attention |



