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Nonlinear dispersive Hamiltonian PDEs

Nonlinear Schrödinger equations (NLS):

i∂tu−∆u± |u|p−1u = 0, x ∈ Td = (R/Z)d

Hamiltonian: H(u) = 1
2

∫
Td |∇u|

2dx± 1
p+1

∫
Td |u|

p+1dx

Nonlinear wave equations (NLW):

∂2
t u+mu−∆u± |u|p−1u = 0, m ≥ 0, x ∈ Td

Goal:

Study transport properties of (weighted) Gaussian measures on D′(Td)
under Hamiltonian PDE dynamics
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Gaussian measures on periodic functions on Td

Gaussian measures on “Hs(Td)”:

“dµs = Z−1
s e−

1
2
‖u‖2Hs du = Z−1

s

∏
n∈Zd

e−
1
2
〈n〉2s|ûn|2dûn”

where 〈n〉 = (1 + |n|2)
1
2

µs is not a measure on Hs(Td)
=⇒ We need to enlarge the space in order to make sense of µs

µs is a Gaussian probability measure on Hσ(Td) for σ < s− d
2

Under µs, a random function u is represented by the random Fourier series:

u(x) =
∑
n∈Zd

gn(ω)

〈n〉s
e2πin·x ∈ Hσ(Td) \Hs− d

2 (Td), almost surely

where {gn(ω)}n∈Z = independent standard C-valued Gaussian r.v.’s

The triplet (Hs, Hσ, µs) forms an abstract Wiener space

Also, (Hs,Wσ,p, µs) for any p ≤ ∞
When s = 1, µ1 is basically the periodic Wiener measure
(strictly speaking, corresponding to the OU process)
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(H,B, µ), abstract Wiener space, H = Cameron-Martin space

Cameron-Martin Theorem: Consider the following translation map:

Th : u 7→ u+ h for some h ∈ B

Q: What is the relation between the original Gaussian measure µ on B and
the translated measure µh( · ) = (Th)∗µ( · ) = µ( · − h)?

Theorem: Cameron-Martin ’44

If h ∈ H, µ and µh are equivalent (= mutually absolutely continuous).

Namely, µ is quasi-invariant under Th

Otherwise, they are mutually singular

This allows us to take a derivative of µ in the direction of h ∈ H (= H-derivative)

=⇒ starting point of Malliavin calculus

For µs on D′(Td), µs and µhs are equivalent if and only if h ∈ Hs(Td).
Namely, h is ( d

2
+ ε)-smoother than typical elements u ∈ Hσ(Td), σ < s− d

2
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Ramer’s generalization of Cameron-Martin Theorem:

T : u 7→ u+ F (u)

We now allow the shift F (u) to depend on a random element u ∈ B

Theorem: Ramer ’74 (rough formulation)

µ is quasi-invariant under T if the H-derivative of F at u:

DF (u) : H → H

is a Hilbert-Schmidt map for every u ∈ B

For µs on D′(Td), (roughly speaking)

µs is quasi-invariant under T if F (u) is (d+ ε)-smoother than u ∈ Hσ(Td)
(More smoothing than Cameron-Martin Theorem, now that the shift is random)

There are also works on quasi-invariance of µ under flows generated by vector fields:

Cruzeiro ’83, Peters ’95, Bogachev and Mayer-Wolf ’99, Ambrosio-Figalli ’09, etc.
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Duhamel formulation (for NLS):

u(t) = Φ(t)u0 = S(t)u0 +

∫ t

0
S(t− t′)|u|p−1u(t′)dt′

= S(t)

{
u0 +

∫ t

0
S(−t′)|u|p−1u(t′)dt′︸ ︷︷ ︸

=F (u0)

}

Gaussian measure µs is invariant under the linear solution map S(t) = e−it∆

(by the rotational invariance of C-valued Gaussian r.v.’s)

=⇒ The solution map Φ(t) is of the form “u0 + F (u0)”

Q: Can we study transport properties (such as invariance, quasi-invariance,

singularity) of µs under nonlinear dispersive Hamiltonian PDEs?
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Part 1

Invariant Gibbs measures for Hamiltonian PDEs
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Invariant Gibbs measures

Finite dimensional Hamiltonian dynamics on R2n:

ṗj =
∂H

∂qj
, q̇j = −∂H

∂pj

with Hamiltonian H(p, q) = H(p1, . . . , pn, q1, . . . , qn)

By Liouville’s theorem, Lebesgue measure dpdq =
∏n
j=1 dpjdqj is invariant

Hamiltonian H(p(t), q(t)) is invariant under the flow

=⇒ Gibbs measure: dρ = Z−1e−H(p,q)dpdq is invariant

Namely,

ρ(Φ(−t)A) = ρ(A) for all t ∈ R

Moreover, if F (p, q) is a “nice” conserved quantity, then

dµF = Z−1 exp(−F (p, q))
n∏
j=1

dpjdqj

is also invariant

8 / 32



NLS on T: i∂tu− ∂2
xu± |u|p−1u = 0, x ∈ T

NLS is a Hamiltonian PDE:

H(u) = 1
2

∫
T |ux|

2dx± 1
p+1

∫
T |u|

p+1dx, M(u) =
∫
T |u|

2dx,

H(u) is conserved under the NLS dynamics

Gibbs measure: “dρ = Z−1e−H(u)du” is “expected” to be invariant

We actually consider

dρ = Z−1e
∓ 1
p+1

∫
T |u|

p+1dx
e−

1
2

∫
T |ux|

2dx− 1
2

∫
T |u|

2dxdu

= Z−1e
∓ 1
p+1

∫
T |u|

p+1dx
e−

1
2
‖u‖2

H1 du︸ ︷︷ ︸
=dµ1

=⇒ ρ is a probability measure on Hσ(T), σ < 1
2 :

defocusing case (− sign) : all p > 1

focusing case (+ sign):

Lebowitz-Rose-Speer ’88: p ≤ 5 (with L2-cutoff)

- related to existence of finite time blowup solutions when p ≥ 5
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Difficulty: Construction of global-in-time dynamics on supp(ρ)

Bourgain ’94: use “formal invariance of ρ as a replacement of a
conservation law”

=⇒ invariance of Gibbs measure ρ for NLS, KdV, mKdV, etc.

Also, Friedlander ’85 (NLW), McKean mid ’90s,
mid ’00s∼: Tzvetkov, Burq, Thomann, Oh, etc.

As a consequence of invariance of (finite dimensional) Gibbs measure:

Logarithmic growth bound: Let σ < 1
2
. Then, we have

‖u(t)‖Hσ . C(uω0 )
{

log(1 + |t|)
} 1

2 for any t ∈ R
almost surely

Remark: Such a logarithmic growth bound is beyond the usual deterministic

polynomial growth bounds
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Gibbs measures on T2

Consider defocusing NLS on T2:

i∂tu−∆u+ |u|p−1u = 0, p ∈ 2N + 1,

with the associated Gibbs measure: dρ = Z−1e
− 1
p+1

∫
T2 |u|p+1

dµ1

Difficulty: Wiener measure µ1 on T2 is support on Hσ(T2) \ L2(T2), σ < 0.

They are not even functions!! In particular,
∫
T2 |u|p+1 =∞, a.s.

Two problems:

Construction of the Gibbs measure: renormalization (Wick ordering)

- Euclidean quantum field theory (70’s ∼): Nelson, Simon, Glimm-Jaffe, ...

- No Gibbs measure in the focusing case: Brydges-Slade ’96

Well-posedness for defocusing Wick ordered NLS on T2:

i∂tu−∆u+ : |u|p−1u :︸ ︷︷ ︸
Wick ordered nonlinearity

= 0

Gibbs measure on Hσ(T2), σ < 0

ill-posed for σ < scrit = 1− 2
p−1

: scrit = 0 if p = 3, scrit = 1
2 if p = 5, ...
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Main difficulty: local well-posedness on supp(ρ)

(a) Probabilistic local well-posedness:

McKean ’95, Bourgain ’96, Burq-Tzvetkov ’08, ’14, Oh ’11, Bourgain-Bulut ’14

Construct (local) solutions a.s. with respect to uω0 =
∑
n∈Zd

gn(ω)

〈n〉
e2πin·x

gain of integrability of linear solution under randomization:

(b) “compactness” argument (via invariance of finite dim’l Gibbs measures)

=⇒ a.s. global existence (without uniqueness): “energy solutions”

and “invariance” of Gibbs measure

Burq-Thomann-Tzvetkov ’14
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Defocusing Wick ordered NLS on T2: i∂tu−∆u+ : |u|p−1u : = 0, p ∈ 2N + 1

p = 3: ε-gap between σ < 0 and scrit = 0

Bourgain ’96: probabilistic local well-posedness

=⇒ almost sure global well-posedness and invariance of Gibbs measure

p ≥ 5: regularity gap = scrit + ε> 1
2

is too large

Oh-Thomann ’15: (non-unique) global-in-time “energy solutions”

=⇒ “invariance” of Gibbs measure

Defocusing Wick ordered NLW on T2: ∂2
t u+mu−∆u+ :up : = 0, p ∈ 2N + 1

Oh-Thomann ’17: probabilistic local well-posedness

=⇒ a.s. GWP and invariance of Gibbs measure

Weak universality:

WNLW appears as a scaling limit of NLW on a dilated torus (ε−1T)2:

∂2
t vε −∆vε +mεvε + f(vε) = 0

and scaling vε back to the standard torus T2
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On T3?

Gibbs measure on T3 is renormalizable only for p = 3 & defocusing

Wick ordering is not enough (need second order correction)

very rough ∼ H−
1
2
−(T3)

Stochastic quantization equation:

∂tu = ∆u− u3 +∞ · u+ ξ︸︷︷︸
space-time white noise

formally preserves the Gibbs measure

“local well-posedness”: Hairer ’14 (regularity structure),

Kupiainen ’16 (RG method), Catellier-Chouk ’16 (paracontrolled distribution

introduced by Gubinelli-Imkeller-Perkowski ’15)

invariance of Gibbs measure: Hairer-Matetski ’15

global well-posedness: Mourrat-Weber ’16

(renormalized) defocusing cubic NLS/NLW on T3?

Completely open
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Remarks & comments

This recent development also lead to

1 Probabilistic well-posedness beyond deterministic analysis:

2 Singular stochastic dispersive PDEs: space-time white noise forcing

stochastic KdV on T: LWP (Oh ’09), global dynamics (Oh-Quastel-Sosoe ’17)

stochastic NLW on T2: LWP (Gubinelli-Koch-Oh ’17)
GWP (Gubinelli-Koch-Oh-Tolomeo ’17)
time-dependent renormalization

stochastic cubic NLS on T: completely open
important in fiber optics

Dynamical properties?

1 Recurrence property: Poincaré, Furstenberg ’77

2 Ergodicity and ‘asymptotic stability’ of ρ?

Completely open

These questions have been answered for some stochastic PDEs. This is
mainly due to uniqueness of invariant measures. However, for Hamiltonian
PDEs, there are more than one (formally) invariant measures and such
questions are out of reach at this point...
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Part 2

Quasi-invariant measures for Hamiltonian PDEs
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Goal: Investigate transport properties of Gaussian measure µs:

dµs = Z−1
s e−

1
2‖u‖

2
Hsdu on Hσ(Td), σ < s− d

2

• s = 0: White noise on T: very rough

u(x) =
∑
n∈Z

gn(ω)einx ∈ Hσ(T) \H
1
2 (T), σ < − 1

2

Invariance of white noise

KdV: Quastel-Valkó ’08, Oh ’09, Oh-Quastel-Valkó ’12

(renormalized) cubic fourth order NLS (4NLS): Oh-Tzvetkov-Wang ’17

Q: Is white noise µ0 invariant under (renormalized) cubic NLS on T?

Very difficult

µ0 is a limit of invariant measures for cubic NLS (Oh-Quastel-Valkó ’12)

but no well-posedness...

Q: Can we study transport properties of µs for general (non-small) s?

When s is large, this question is not about rough solutions
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Quasi-invariance of Gaussian measures µs

(s = 0) white noise µ0 on T: KdV and (Wick ordered) 4NLS

invariance =⇒ quasi-invariance

(s = 1) invariant Gibbs measure (= Gaussian measure µ1 with weight)

=⇒ µ1 is quasi-invariant

completely integrable PDEs with infinitely many conservation laws

=⇒ invariant measures ρk (= µk with weight) for every integer k ≥ 2

cubic NLS on T, KdV on T, Benjamin-Ono equation on T
(Zhidkov ’01, Tzvetkov-Visciglia ’14-15, Deng-Tz-V ’15)

derivative NLS on T: open (only construction)

Q: Gel’fand ’96: Can we directly prove quasi-invariance of µs (at least for s large)

for (non-integrable) PDEs?

Remark:

Gibbs measure problem: study of rough solutions

When s is large, this question is not about rough solutions
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Benjamin-Bona-Mahony equation (BBM) on T: small amplitude long surface waves

∂tu+ ∂xu− ∂t∂2
xu+ ∂x(u2) = 0

=⇒ ∂tu+ (1− ∂2
x)−1∂xu+ (1− ∂2

x)−1∂x(u2) = 0

Ramer’s result: µs on D′(T) is quasi-invariant under the map

T : u0 7→ u0 + F (u0)

if F (u0) is (d+ ε)-smoothing =⇒ not sufficient for BBM

Tzvetkov ’15: For s ∈ N, µs is quasi-invariant under BBM

A similar result holds for generalized BBM model with less smoothing

introduced a new method to establish quasi-invariance of µs beyond Ramer

uses the explicit smoothing in the nonlinearity but not dispersive effect

Q: Can we find a good model to prove quasi-invariance via dispersive effect?
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Cubic fourth order NLS (4NLS) on T:

i∂tu− ∂4
xu = |u|2u

Globally well-posed in Hσ(T), σ ≥ 0

Strongly ill-posed for σ < 0 (Oh-Wang ’17: non-existence in negative Sobolev spaces)

Theorem: Oh-Tzvetkov ’16, Oh-Sosoe-Tzvetkov ’17

Let s > 1
2 . Then, the Gaussian measure µs is quasi-invariant under 4NLS

This theorem is optimal: µs is supported on Hσ(T), σ < s− 1
2

Unlike BBM, there is no apparent smoothing in 4NLS. We exhibit
smoothing effects via dispersion after using some gauge transform and
normal form reductions

The proof consists of local & global analysis (in the phase space Hσ(T))

local PDE analysis (normal form reductions, energy estimates)

global phase space analysis (gauge transform, a change-of-variable formula)
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Key role of dispersion

Q: Is dispersion essential for quasi-invariance of µs?

Yes. Consider the dispersionless model on T:

i∂tu = |u|2u

Explicit solution formula u(t, x) = e−it|u(0,x)|2u(0, x)

Globally well-posed in Hσ(T), σ > 1
2

Note: our random data u is a.s. continous for s > 1
2

=⇒ σ > 0

Theorem: Oh-Sosoe-Tzvetkov ’17

Let s > 1
2 . Then, µs is not quasi-invariant under the dispersionless model

The proof uses law of iterated logarithms, a fine criterion to measure the
regularity of a typical function w.r.t. µs (= fractional Brownian loop). This
property regularity property is destroyed by the flow of the dispersionless model
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Rough idea

Goal : Compute d
dt
µs(Φ(t)(A))

1 Energy estimate (local analysis): d
dt
‖Φ(t)(u)‖2Hs ≤ C(‖u‖L2)︸ ︷︷ ︸

conserved

‖u‖2−θ
H
s− 1

2
−ε︸ ︷︷ ︸

supp(µs)

2 A change-of-variable formula (global analysis):

µs(Φ(t)(A)) = Z−1
s

∫
Φ(t)A

e−
1
2
‖u‖2Hs du “ = ” Z−1

s

∫
A
e−

1
2
‖Φ(t)(u)‖2Hs du

=⇒ (Yudovich) Given t ∈ R and δ > 0, there exists C = C(t, δ) > 0 such that

µs(Φ(t)(A)) ≤ C(t, δ){µs(A)}1−δ

=⇒ quasi-invariance!!

In Step 1, we need to apply two transformations on the phase space. Then,
perform (an infinite iteration of) normal form reductions to prove the energy
estimate on a modified energy E = ‖u‖2Hs +R

In Step 2, we need to insert the frequency truncation P≤N . Moreover, we need
to consider a modified measure associated to the modified energy
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In Step 1, we need to apply two transformations on the phase space. Then,
perform (an infinite iteration of) normal form reductions to prove the energy
estimate on a modified energy E = ‖u‖2Hs +R

In Step 2, we need to insert the frequency truncation P≤N . Moreover, we need
to consider a modified measure associated to the modified energy
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Global analysis, Part 1

Decomposition of solution map:

Φ(t) = G−t ◦ S(t) ◦Ψ(t)

1 Gauge transform: Given t ∈ R, define Gt on L2(T) by setting

Gt[f ] := eit
∫
T |f |

2

f

2 Interaction representation: v(t) = S(−t)Gt[u(t)], where S(t) = e−it∂
4
x

Φ(t) = solution map of the original 4NLS

Ψ(t) = solution map of v(0) 7→ v(t) = S(−t)Gt[u(t)]

Proposition

Let s > 1
2
. For every t ∈ R, the Gaussian measure µs is invariant under S(−t) and Gt

=⇒ Suffices to prove quasi-invariance of µs under Ψ(t)

23 / 32



Local analysis: modified energy and energy estimate

v = S(−t) ◦ Gt[u(t)] satisfies

∂tv̂n = −i
∑

{φ(n̄)6=0}
e−iφ(n̄)tv̂n1 v̂n2 v̂n3 + i|v̂n|2v̂n

On Γ(n)
def
= {φ(n̄) 6= 0}, we have |φ(n̄)| & n2

max ⇐= rapid oscillation

Modified energy: E(v) = ‖v‖2Hs +R(v) ←− correction term

Proposition: energy estimate with smoothing

Let s > 3
4
. Then, for any small ε > 0, there exist θ > 0 and C > 0 such that∣∣∣∣ ddtE(P≤Nv)

∣∣∣∣ ≤ C(‖v‖L2 )︸ ︷︷ ︸
conserved

‖v‖2−θ
H
s− 1

2
−ε︸ ︷︷ ︸

supp(µs)

(Infinite iteration of) normal form reductions −→ correction term R

Standard (deterministic) PDE analysis

The proof relies on elementary number theory (divisor counting argument)
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By normal form reduction (IBP in time), we have

d

dt
‖v(t)‖2Hs = −2 Re i

∑
n∈Z

∑
Γ(n)

e
−iφ(n̄)t〈n〉2svn1

vn2
vn3

vn

= −2iRe
d

dt

[∑
n∈Z

∑
Γ(n)

e−iφ(n̄)t

φ(n̄)
〈n〉2svn1

vn2
vn3

vn

︸ ︷︷ ︸
=:−R(v)

]

+ 2iRe
∑
n∈Z

∑
Γ(n)

e−iφ(n̄)t

φ(n̄)
〈n〉2s ∂t(vn1

vn2
vn3

vn)︸ ︷︷ ︸
=6-linear

When s ∈ ( 1
2
, 3

4
], iterate this process infinitely many times:

d

dt
‖v(t)‖2Hs =

d

dt

[ ∞∑
j=2

N (j)
0 (v)

︸ ︷︷ ︸
=:−R(v)

]
+
∞∑
j=2

N (j)
1 (v) +

∞∑
j=2

R(j)
(v)

=⇒
∣∣∣∣ ddtE(P≤Nv)

∣∣∣∣ ≤ C(‖v‖L2 ), where E(v) = ‖v‖2Hs + R(v)

Guo-Kwon-Oh ’13: infinite iteration of NF reductions for cubic NLS on T
(i.e. on the equation) in the context of low regularity uniqueness problem
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Global analysis, Part2

1 Weighted Gaussian measures: E(v) = ‖v‖2Hs +R(v)

Construct a weighted Gaussian measure ρs,N,r of the form:

dρs,N,r = Z−1
s,N,r1{‖v‖L2≤r}e

− 1
2
E(P≤Nv)dv

= Z−1
s,N,r1{‖v‖L2≤r}e

− 1
2
R(P≤Nv) e−

1
2
‖v‖2Hs dv︸ ︷︷ ︸
dµs

2 A change-of-variable formula:

ρs,N,r(ΨN (t)(A)) = Ẑ−1
s,N,r

∫
A

1{‖v‖
L2≤r}e

− 1
2
E(P≤NΨN (t)(v))d(P≤Nv)⊗ dµ⊥s,N

3 Study measure evolution & take limits (N →∞, then r →∞)

compute time derivative (energy estimate)

=⇒ quasi-invariance of ρs,N,r under ΨN (t)
N→∞
=⇒ quasi-invariance of ρs,r (and µs,r) under Ψ(t)
r→∞
=⇒ quasi-invariance of µs under Ψ(t)!!
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Nonlinear wave equation: Duhamel part enjoys 1-smoothing:

u(t) = S(t)(u0, u1) +

∫ t

0

sin((t− t′)
√
−∆)√

−∆
|u|p−1u(t′)dt′

Gaussian measure on (u, ∂tu): −→µ s+1(u, ∂tu) = µs+1 ⊗ µs(u, ∂tu)

d = 1: Tzvetkov ’15 (implicit in a remark)

Theorem: Oh-Tzvetkov ’17 (d = 2, defocusing cubic NLW)

Let s ≥ 2 be an even integer. Then, −→µ s+1 is quasi-invariant under the

defocusing cubic NLW on T2

A typical element (u, v) under −→µ s+1 lives in Hσ = Hσ ×Hσ−1, σ < s.

Given a fixed (h1, h2) ∈ Hσ+1, consider Th : (u, v) 7→ (u, v) + (h1, h2)

Cameron-Martin =⇒ −→µ s+1 and its transported measure are singular

Given (u0, u1) ∈ Hσ, we only have the nonlinear part for NLW in Hσ+1
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Main difficulty: energy estimate: ∂t‖(u, ∂tu)‖2Hs+1

renormalized energy (but no renormalization for the equation)

⇐= We achieve this by introducing a simultaneous renormalization

on both the Hs+1-energy functional and its time derivative

We establish a renormalized energy estimate in the probabilistic setting

In the following, we consider defocusing NLKG (for simplicity):

∂2
t u+ (1−∆)u = −u3

with Hamiltonian E(u) = 1
2

∫
(∂tu)2 + 1

2

∫
(Ju)2 + 1

4

∫
u4, J =

√
1−∆
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Goal: Define a renormalized energy Es,∞ ∼ ‖(u, ∂tu)‖2Hs+1

with a good ∂t-estimate

Ans: Es,∞ = 1
2

∫
(Js∂tu)2 + 1

2

∫
(Js+1u)2 + 3

2

∫
(Jsu)2u2︸ ︷︷ ︸

=∞, a.s.

− 3
2∞

∫
u2

⇐= Both Es,∞ and ∂tEs,∞ behave “well”

Define σN by

σN = E−→µ s+1

[ ∫
(JsP≤Nu)2

]
=
∑
n∈Z2

|n|≤N

1

1 + |n|2 ∼ logN −→∞

=⇒ For each p <∞, we have

XN (ω) :=

∫
(JsP≤Nu)2 − σN︸ ︷︷ ︸
→ “∞−∞”

=
∑
n∈Z2

|n|≤N

|gn|2 − 1

1 + |n|2 ∈ L
p(Ω)

with uniform bounds in N ∈ N.

=⇒ XN converges to X∞ in Lp(Ω) for any p <∞, allowing us to define

X∞(ω) =

∫
(Jsu)2 − σ∞ := lim

N→∞

{∫
(JsP≤Nu)2 − σN

}
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1

2
∂t‖(u, ∂tu)‖2Hs+1 = −3

∫
(∂tJ

su)Jsu · u2 + l.o.t.

IBP
= −3

2
∂t

[ ∫
(Jsu)2u2

]
+ 3

∫
(Jsu)2∂tu · u+ l.o.t.

= −3

2
∂t

[ ∫
P 6=0[(Jsu)2] ·P 6=0[u2]

]
+ 3

∫
P 6=0[(Jsu)2] ·P 6=0[∂tu · u] + l.o.t.

− 3

2
∂t

[ ∫
(Jsu)2

∫
u2

]
︸ ︷︷ ︸

=∞

+ 3

∫
(Jsu)2

∫
∂tu · u︸ ︷︷ ︸

=∞

With σN , we have

−3

2
∂t

[ ∫
(Jsu)2

∫
u2

]
+ 3

∫
(Jsu)2

∫
∂tu · u

= −3

2
∂t

[(∫
(Jsu)2 − σN︸ ︷︷ ︸

=XN

)∫
u2

]
+ 3

(∫
(Jsu)2 − σN︸ ︷︷ ︸

=XN

)∫
∂tu · u.
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Define the renormalized energy Es,N (u, ∂tu) by

Es,N (u, ∂tu) =
1

2

∫
(Js∂tu)2 +

1

2

∫
(Js+1u)2 +

3

2

∫
(Jsu)2u2 − 3

2
σN

∫
u2

=
1

2

∫
(Js∂tu)2 +

1

2

∫
(Js+1u)2 +

3

2

∫
P 6=0[(Jsu)2] ·P 6=0[u2]

+
3

2

(∫
(Jsu)2 − σN

)∫
u2

=⇒ ∂tEs,N (u) = 3

∫
P 6=0[(Jsu)2] ·P 6=0[∂tu · u] + 3

(∫
(Jsu)2 − σN

)∫
∂tu · u+ l.o.t.

Probabilistic renormalized energy estimate:{∫
{E(P≤Nu,P≤Nv)≤r}

∣∣∣∂tEs,N (πNΦN (t)(u, v))|t=0

∣∣∣pdµs(u, v)

} 1
p

. p

=⇒ Es,N → Es,∞ = 1
2

∫
(Js∂tu)2 + 1

2

∫
(Js+1u)2 + 3

2

∫
(Jsu)2u2 − 3

2∞
∫
u2, a.s.

and Es,∞ satisfies the same ∂t-bound
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Remarks

We showed mutual absolute continuity of the transported measure Φ(t)∗µs and
the original Gaussian measure µs. Our argument, however, does not tell us
much about the time-dependent Radon-Nikodym derivative (in L1(µs)) of
Φ(t)∗µs with respect to µs. It would be interesting to study more about the
resulting Radon-Nikodym derivatives

higher integrability in Lp(µs), p > 1?

compactness in time? property of its time average?

By an argument analogous to that for invariant measure, we can obtain

‖u(t)‖Hσ . C(uω0 )(1 + |t|)α(s) for any t ∈ R,

where α(s)→∞, as s→∞. It is very far from the logarithmic bound for
invariant measures and may be obtained by deterministic techniques.

Q: Can we establish quantitative versions of quasi-invariance and prove new
growth bounds on higher Sobolev norms of solutions in a probabilistic manner?

Our current understanding of the corresponding question for the (more
complicated) NLS is very poor (except for 1-d cubic NLS)...
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