On the transport property of Gaussian measures under Hamiltonian PDE dynamics

Tadahiro Oh

The University of Edinburgh

July 03, 2017

with

Nikolay Tzvetkov (Cergy-Pontoise) and Philippe Sosoe (Harvard)

Analyse asymptotique des équations d'évolution Centre International de Rencontres Mathématiques

Nonlinear Schrödinger equations (NLS):

$$i\partial_t u - \Delta u \pm |u|^{p-1} u = 0, \qquad x \in \mathbb{T}^d = (\mathbb{R}/\mathbb{Z})^d$$

• Hamiltonian: $H(u) = \frac{1}{2} \int_{\mathbb{T}^d} |\nabla u|^2 dx \pm \frac{1}{p+1} \int_{\mathbb{T}^d} |u|^{p+1} dx$

Nonlinear wave equations (NLW):

$$\partial_t^2 u + mu - \Delta u \pm |u|^{p-1} u = 0, \qquad m \ge 0, \quad x \in \mathbb{T}^d$$

Goal:

Study transport properties of (weighted) Gaussian measures on $\mathcal{D}'(\mathbb{T}^d)$ under Hamiltonian PDE dynamics

Gaussian measures on periodic functions on \mathbb{T}^d

Gaussian measures on " $H^s(\mathbb{T}^d)$ ":

$$\label{eq:delta_s} ``d\mu_s = Z_s^{-1} e^{-\frac{1}{2} \|u\|_{H^s}^2} du = Z_s^{-1} \prod_{n \in \mathbb{Z}^d} e^{-\frac{1}{2} \langle n \rangle^{2s} |\hat{u}_n|^2} d\hat{u}_n "$$
 where $\langle n \rangle = (1 + |n|^2)^{\frac{1}{2}}$

• μ_s is not a measure on $H^s(\mathbb{T}^d)$

 \implies We need to *enlarge the space* in order to make sense of μ_s

- μ_s is a Gaussian probability measure on $H^{\sigma}(\mathbb{T}^d)$ for $\sigma < s \frac{d}{2}$
- Under μ_s , a random function u is represented by the random Fourier series:

$$u(x) = \sum_{n \in \mathbb{Z}^d} \frac{g_n(\omega)}{\langle n \rangle^s} e^{2\pi i n \cdot x} \in H^{\sigma}(\mathbb{T}^d) \setminus H^{s - \frac{d}{2}}(\mathbb{T}^d), \text{ almost surely}$$

where $\{g_n(\omega)\}_{n\in\mathbb{Z}}$ = independent standard \mathbb{C} -valued Gaussian r.v.'s

• The triplet (H^s, H^{σ}, μ_s) forms an abstract Wiener space

- Also, $(H^s, W^{\sigma, p}, \mu_s)$ for any $p \leq \infty$
- When s = 1, μ_1 is basically the periodic Wiener measure (strictly speaking, corresponding to the OU process)

Gaussian measures on periodic functions on \mathbb{T}^d

Gaussian measures on " $H^s(\mathbb{T}^d)$ ":

$$``d\mu_s = Z_s^{-1} e^{-\frac{1}{2} \|u\|_{H^s}^2} du = Z_s^{-1} \prod_{n \in \mathbb{Z}^d} e^{-\frac{1}{2} \langle n \rangle^{2s} |\hat{u}_n|^2} d\hat{u}_n"$$
where $\langle n \rangle = (1 + |n|^2)^{\frac{1}{2}}$

- μ_s is not a measure on H^s(T^d)
 ⇒ We need to enlarge the space in order to make sense of μ_s
- μ_s is a Gaussian probability measure on $H^{\sigma}(\mathbb{T}^d)$ for $\sigma < s \frac{d}{2}$
- Under μ_s , a random function u is represented by the random Fourier series:

$$u(x) = \sum_{n \in \mathbb{Z}^d} \frac{g_n(\omega)}{\langle n \rangle^s} e^{2\pi i n \cdot x} \in H^{\sigma}(\mathbb{T}^d) \setminus H^{s - \frac{d}{2}}(\mathbb{T}^d), \text{ almost surely}$$

where $\{g_n(\omega)\}_{n\in\mathbb{Z}}$ = independent standard \mathbb{C} -valued Gaussian r.v.'s

• The triplet (H^s, H^{σ}, μ_s) forms an abstract Wiener space

- Also, $(H^s, W^{\sigma, p}, \mu_s)$ for any $p \leq \infty$
- When s = 1, μ_1 is basically the periodic *Wiener measure* (strictly speaking, corresponding to the OU process)

 (H, B, μ) , abstract Wiener space, H =Cameron-Martin space

Cameron-Martin Theorem: Consider the following translation map:

 $T_h: u \mapsto u + h$ for some $h \in B$

Q: What is the relation between the original Gaussian measure μ on B and the translated measure $\mu^{h}(\cdot) = (T_{h})_{*}\mu(\cdot) = \mu(\cdot - h)$?

- If $h \in H$, μ and μ^h are equivalent (= mutually absolutely continuous). Namely, μ is quasi-invariant under T_h
- Otherwise, they are mutually singular
- This allows us to take a derivative of μ in the direction of $h \in H$ (= *H*-derivative) \implies starting point of Malliavin calculus
- For μ_s on $\mathcal{D}'(\mathbb{T}^d)$, μ_s and μ_s^h are equivalent if and only if $h \in H^s(\mathbb{T}^d)$. Namely, h is $(\frac{d}{2} + \varepsilon)$ -smoother than typical elements $u \in H^{\sigma}(\mathbb{T}^d)$, $\sigma < s - \frac{d}{2}$

 (H, B, μ) , abstract Wiener space, H =Cameron-Martin space

Cameron-Martin Theorem: Consider the following translation map:

 $T_h: u \mapsto u + h$ for some $h \in B$

Q: What is the relation between the original Gaussian measure μ on B and the translated measure $\mu^h(\cdot) = (T_h)_*\mu(\cdot) = \mu(\cdot - h)$?

Theorem: Cameron-Martin '44

- If $h \in H$, μ and μ^h are equivalent (= mutually absolutely continuous). Namely, μ is quasi-invariant under T_h
- Otherwise, they are mutually singular
- This allows us to take a derivative of μ in the direction of $h \in H$ (= *H*-derivative) \implies starting point of Malliavin calculus
- For μ_s on $\mathcal{D}'(\mathbb{T}^d)$, μ_s and μ_s^h are equivalent if and only if $h \in H^s(\mathbb{T}^d)$. Namely, h is $(\frac{d}{2} + \varepsilon)$ -smoother than typical elements $u \in H^{\sigma}(\mathbb{T}^d)$, $\sigma < s - \frac{d}{2}$

Ramer's generalization of Cameron-Martin Theorem:

 $T: u \mapsto u + F(u)$

• We now allow the shift F(u) to depend on a random element $u \in B$

Theorem: Ramer '74 (rough formulation)

 μ is quasi-invariant under T if the H-derivative of F at u:

 $DF(u): H \to H$

is a Hilbert-Schmidt map for every $u \in B$

For μ_s on D'(T^d), (roughly speaking)
 μ_s is quasi-invariant under T if F(u) is (d + ε)-smoother than u ∈ H^σ(T^d)
 (More smoothing than Cameron-Martin Theorem, now that the shift is random)

There are also works on quasi-invariance of μ under flows generated by vector fields: Cruzeiro '83, Peters '95, Bogachev and Mayer-Wolf '99, Ambrosio-Figalli '09, etc. Duhamel formulation (for NLS):

$$u(t) = \Phi(t)u_0 = S(t)u_0 + \int_0^t S(t-t')|u|^{p-1}u(t')dt'$$

= $S(t)\left\{u_0 + \underbrace{\int_0^t S(-t')|u|^{p-1}u(t')dt'}_{=F(u_0)}\right\}$

• Gaussian measure μ_s is *invariant* under the linear solution map $S(t) = e^{-it\Delta}$ (by the rotational invariance of \mathbb{C} -valued Gaussian r.v.'s)

 \implies The solution map $\Phi(t)$ is of the form " $u_0 + F(u_0)$ "

Q: Can we study transport properties (such as invariance, quasi-invariance, singularity) of μ_s under nonlinear dispersive Hamiltonian PDEs?

Part 1

Invariant Gibbs measures for Hamiltonian PDEs

Invariant Gibbs measures

Finite dimensional Hamiltonian dynamics on \mathbb{R}^{2n} :

$$\dot{p}_j = rac{\partial H}{\partial q_j}, \qquad \dot{q}_j = -rac{\partial H}{\partial p_j}$$

with Hamiltonian $H(p,q) = H(p_1, \ldots, p_n, q_1, \ldots, q_n)$

- By Liouville's theorem, Lebesgue measure $dpdq = \prod_{j=1}^{n} dp_j dq_j$ is invariant
- Hamiltonian H(p(t), q(t)) is invariant under the flow

 \implies Gibbs measure: $d\rho = Z^{-1}e^{-H(p,q)}dpdq$ is invariant Namely,

$$\rho(\Phi(-t)A) = \rho(A) \quad \text{for all } t \in \mathbb{R}$$

• Moreover, if F(p,q) is a "nice" conserved quantity, then

$$d\mu_F = Z^{-1} \exp(-F(p,q)) \prod_{j=1}^n dp_j dq_j$$

is also invariant

NLS on \mathbb{T} : $i\partial_t u - \partial_x^2 u \pm |u|^{p-1} u = 0, \qquad x \in \mathbb{T}$

• NLS is a Hamiltonian PDE:

 $H(u) = \frac{1}{2} \int_{\mathbb{T}} |u_x|^2 dx \pm \frac{1}{p+1} \int_{\mathbb{T}} |u|^{p+1} dx, \quad M(u) = \int_{\mathbb{T}} |u|^2 dx,$

• H(u) is conserved under the NLS dynamics

Gibbs measure: " $d\rho = Z^{-1}e^{-H(u)}du$ " is "expected" to be *invariant*

• We actually consider

$$d\rho = Z^{-1} e^{\mp \frac{1}{p+1} \int_{\mathbb{T}} |u|^{p+1} dx} e^{-\frac{1}{2} \int_{\mathbb{T}} |ux|^2 dx - \frac{1}{2} \int_{\mathbb{T}} |u|^2 dx} du$$
$$= Z^{-1} e^{\mp \frac{1}{p+1} \int_{\mathbb{T}} |u|^{p+1} dx} \underbrace{e^{-\frac{1}{2} \|u\|_{H^1}^2} du}_{=d\mu_1}$$

 $\implies \rho$ is a probability measure on $H^{\sigma}(\mathbb{T}), \sigma < \frac{1}{2}$:

- defocusing case (- sign) : all p > 1
- focusing case (+ sign):

Lebowitz-Rose-Speer '88: $p \leq 5$ (with L^2 -cutoff)

- related to existence of finite time blowup solutions when $p \geq 5$

9/32

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣。

NLS on \mathbb{T} : $i\partial_t u - \partial_x^2 u \pm |u|^{p-1} u = 0, \qquad x \in \mathbb{T}$

• NLS is a Hamiltonian PDE:

 $H(u) = \frac{1}{2} \int_{\mathbb{T}} |u_x|^2 dx \pm \frac{1}{p+1} \int_{\mathbb{T}} |u|^{p+1} dx, \quad M(u) = \int_{\mathbb{T}} |u|^2 dx,$

• H(u) is conserved under the NLS dynamics

Gibbs measure: " $d\rho = Z^{-1}e^{-H(u)}du$ " is "expected" to be *invariant*

• We actually consider

$$d\rho = Z^{-1} e^{\mp \frac{1}{p+1} \int_{\mathbb{T}} |u|^{p+1} dx} e^{-\frac{1}{2} \int_{\mathbb{T}} |ux|^2 dx - \frac{1}{2} \int_{\mathbb{T}} |u|^2 dx} du$$
$$= Z^{-1} e^{\mp \frac{1}{p+1} \int_{\mathbb{T}} |u|^{p+1} dx} \underbrace{e^{-\frac{1}{2} ||u||^2_{H^1} du}}_{=d\mu_1}$$

 $\implies \rho$ is a probability measure on $H^{\sigma}(\mathbb{T}), \sigma < \frac{1}{2}$:

- defocusing case (- sign) : all p > 1
- focusing case (+ sign):

Lebowitz-Rose-Speer '88: $p \leq 5$ (with L^2 -cutoff)

- related to existence of finite time blowup solutions when $p \geq 5$

Difficulty: Construction of global-in-time dynamics on $\operatorname{supp}(\rho)$

- Bourgain '94: use "formal invariance of ρ as a replacement of a conservation law"
 - \implies invariance of Gibbs measure ρ for NLS, KdV, mKdV, etc.
- Also, Friedlander '85 (NLW), McKean mid '90s, mid '00s~: Tzvetkov, Burq, Thomann, Oh, etc.
- As a consequence of invariance of (finite dimensional) Gibbs measure:
 Logarithmic growth bound: Let σ < 1/2. Then, we have

$$\|u(t)\|_{H^{\sigma}} \lesssim C(u_0^{\omega}) \left\{ \log(1+|t|) \right\}^{\frac{1}{2}} \text{ for any } t \in \mathbb{R}$$

almost surely

Remark: Such a logarithmic growth bound is *beyond* the usual deterministic polynomial growth bounds

Gibbs measures on \mathbb{T}^2

Consider defocusing NLS on \mathbb{T}^2 :

$$i\partial_t u - \Delta u + |u|^{p-1}u = 0, \qquad p \in 2\mathbb{N} + 1,$$

with the associated Gibbs measure: $d\rho = Z^{-1}e^{-\frac{1}{p+1}\int_{\mathbb{T}^2}|u|^{p+1}}d\mu_1$

Difficulty: Wiener measure μ_1 on \mathbb{T}^2 is support on $H^{\sigma}(\mathbb{T}^2) \setminus L^2(\mathbb{T}^2), \sigma < 0$. They are not even functions!! In particular, $\int_{\mathbb{T}^2} |u|^{p+1} = \infty$, a.s.

Two problems:

- Construction of the Gibbs measure: renormalization (Wick ordering)
 - Euclidean quantum field theory (70's \sim): Nelson, Simon, Glimm-Jaffe, \ldots
 - No Gibbs measure in the focusing case: Brydges-Slade $\rm `96$
- Well-posedness for defocusing Wick ordered NLS on \mathbb{T}^2 :

$$i\partial_t u - \Delta u + \underbrace{:|u|^{p-1}u:}_{\text{Wick ordered nonlinearity}} = 0$$

- Gibbs measure on $H^{\sigma}(\mathbb{T}^2), \, \sigma < 0$
- ill-posed for $\sigma < s_{\text{crit}} = 1 \frac{2}{p-1}$: $s_{\text{crit}} = 0$ if p = 3, $s_{\text{crit}} = \frac{1}{2}$ if p = 5, ...

Gibbs measures on \mathbb{T}^2

Consider defocusing NLS on \mathbb{T}^2 :

$$i\partial_t u - \Delta u + |u|^{p-1}u = 0, \qquad p \in 2\mathbb{N} + 1,$$

with the associated Gibbs measure: $d\rho = Z^{-1}e^{-\frac{1}{p+1}\int_{\mathbb{T}^2}|u|^{p+1}}d\mu_1$

Difficulty: Wiener measure μ_1 on \mathbb{T}^2 is support on $H^{\sigma}(\mathbb{T}^2) \setminus L^2(\mathbb{T}^2), \sigma < 0$. They are not even functions!! In particular, $\int_{\mathbb{T}^2} |u|^{p+1} = \infty$, a.s.

Two problems:

- Construction of the Gibbs measure: renormalization (Wick ordering)
 - Euclidean quantum field theory (70's \sim): Nelson, Simon, Glimm-Jaffe, ...
 - No Gibbs measure in the focusing case: Brydges-Slade '96
- \bullet Well-posedness for defocusing Wick ordered NLS on \mathbb{T}^2 :

$$i\partial_t u - \Delta u + \underbrace{:|u|^{p-1}u:}_{\text{Wick ordered nonlinearity}} = 0$$

- Gibbs measure on $H^{\sigma}(\mathbb{T}^2), \, \sigma < 0$
- ill-posed for $\sigma < s_{\text{crit}} = 1 \frac{2}{p-1}$: $s_{\text{crit}} = 0$ if p = 3, $s_{\text{crit}} = \frac{1}{2}$ if p = 5, ...

Main difficulty: local well-posedness on $\operatorname{supp}(\rho)$

(a) *Probabilistic* local well-posedness:

McKean '95, Bourgain '96, Burq-Tzvetkov '08, '14, Oh '11, Bourgain-Bulut '14

イロン 不良 とうほう 不良 とうほう

12/32

- Construct (local) solutions a.s. with respect to $u_0^\omega = \sum_{n \in \mathbb{Z}^d} \frac{g_n(\omega)}{\langle n \rangle} e^{2\pi i n \cdot x}$
- gain of integrability of linear solution under randomization:
- (b) "compactness" argument (via invariance of finite dim'l Gibbs measures)
 ⇒ a.s. global existence (without uniqueness): "energy solutions" and "invariance" of Gibbs measure

Burq-Thomann-Tzvetkov '14

Defocusing Wick ordered NLS on \mathbb{T}^2 : $i\partial_t u - \Delta u + :|u|^{p-1}u := 0$, $p \in 2\mathbb{N} + 1$

- p = 3: ε -gap between $\sigma < 0$ and $s_{crit} = 0$ Bourgain '96: probabilistic local well-posedness \implies almost sure global well-posedness and invariance of Gibbs measure
- $p \ge 5$: regularity gap $= s_{crit} + \varepsilon > \frac{1}{2}$ is too large

Oh-Thomann '15: (non-unique) global-in-time "energy solutions"

 \implies "invariance" of Gibbs measure

Defocusing Wick ordered NLW on \mathbb{T}^2 : $\partial_t^2 u + mu - \Delta u + : u^p := 0$, $p \in 2\mathbb{N} + 1$

• Oh-Thomann '17: probabilistic local well-posedness

 \implies a.s. GWP and invariance of Gibbs measure

Weak universality:

• WNLW appears as a *scaling limit* of NLW on a dilated torus $(\varepsilon^{-1}\mathbb{T})^2$:

$$\partial_t^2 v_{\varepsilon} - \Delta v_{\varepsilon} + m_{\varepsilon} v_{\varepsilon} + f(v_{\varepsilon}) = 0$$

and scaling v_{ε} back to the standard torus \mathbb{T}^2

On \mathbb{T}^3 ?

- Gibbs measure on \mathbb{T}^3 is renormalizable only for p = 3 & defocusing
 - Wick ordering is not enough (need second order correction)
 - very rough $\sim H^{-\frac{1}{2}-}(\mathbb{T}^3)$
- Stochastic quantization equation:

$$\partial_t u = \Delta u - u^3 + \infty \cdot u + \underbrace{\xi}_{\text{space-time white noise}}$$

- formally preserves the Gibbs measure
- "local well-posedness": Hairer '14 (regularity structure), Kupiainen '16 (RG method), Catellier-Chouk '16 (paracontrolled distribution introduced by Gubinelli-Imkeller-Perkowski '15)
- invariance of Gibbs measure: Hairer-Matetski '15
- global well-posedness: Mourrat-Weber '16
- (renormalized) defocusing cubic NLS/NLW on T³? Completely open

イロト イヨト イヨト イヨト ヨー ク

Remarks & comments

This recent development also lead to

- **Probabilistic well-posedness** beyond deterministic analysis:
- **2** Singular stochastic dispersive PDEs: space-time white noise forcing
 - stochastic KdV on T: LWP (Oh '09), global dynamics (Oh-Quastel-Sosoe '17)
 - stochastic NLW on T²: LWP (Gubinelli-Koch-Oh '17) GWP (Gubinelli-Koch-Oh-Tolomeo '17) time-dependent renormalization
 - stochastic cubic NLS on T: *completely open* important in fiber optics

Dynamical properties?

- Recurrence property: Poincaré, Furstenberg '77
- **2** Ergodicity and 'asymptotic stability' of ρ ?
 - Completely open
 - These questions have been answered for some stochastic PDEs. This is mainly due to *uniqueness* of invariant measures. However, for Hamiltonian PDEs, there are more than one (formally) invariant measures and such questions are out of reach at this point...

Part 2

Quasi-invariant measures for Hamiltonian PDEs

◆□ → ◆□ → ◆ ■ → ◆ ■ → へ ○ 16 / 32 **Goal:** Investigate transport properties of Gaussian measure μ_s :

$$d\mu_s = Z_s^{-1} e^{-\frac{1}{2} \|u\|_{H^s}^2} du$$
 on $H^{\sigma}(\mathbb{T}^d), \ \sigma < s - \frac{d}{2}$

• s = 0: White noise on \mathbb{T} : very rough

$$u(x) = \sum_{n \in \mathbb{Z}} g_n(\omega) e^{inx} \in H^{\sigma}(\mathbb{T}) \setminus H^{\frac{1}{2}}(\mathbb{T}), \quad \sigma < -\frac{1}{2}$$

Invariance of white noise

- KdV: Quastel-Valkó '08, Oh '09, Oh-Quastel-Valkó '12
- (renormalized) cubic fourth order NLS (4NLS): Oh-Tzvetkov-Wang '17

Q: Is white noise μ_0 invariant under (renormalized) cubic NLS on \mathbb{T} ?

- Very difficult
- μ_0 is a limit of invariant measures for cubic NLS (Oh-Quastel-Valkó '12) but no well-posedness...

Q: Can we study transport properties of μ_s for general (non-small) s?

• When s is large, this question is not about rough solutions

Goal: Investigate transport properties of Gaussian measure μ_s :

$$d\mu_s = Z_s^{-1} e^{-\frac{1}{2} \|u\|_{H^s}^2} du$$
 on $H^{\sigma}(\mathbb{T}^d), \ \sigma < s - \frac{d}{2}$

• s = 0: White noise on \mathbb{T} : very rough

$$u(x) = \sum_{n \in \mathbb{Z}} g_n(\omega) e^{inx} \in H^{\sigma}(\mathbb{T}) \setminus H^{\frac{1}{2}}(\mathbb{T}), \quad \sigma < -\frac{1}{2}$$

Invariance of white noise

- KdV: Quastel-Valkó '08, Oh '09, Oh-Quastel-Valkó '12
- (renormalized) cubic fourth order NLS (4NLS): Oh-Tzvetkov-Wang '17

Q: Is white noise μ_0 invariant under (renormalized) cubic NLS on \mathbb{T} ?

- Very difficult
- μ_0 is a limit of invariant measures for cubic NLS (Oh-Quastel-Valkó '12) but no well-posedness...

Q: Can we study transport properties of μ_s for general (non-small) s?

• When s is large, this question is not about rough solutions

Goal: Investigate transport properties of Gaussian measure μ_s :

$$d\mu_s = Z_s^{-1} e^{-\frac{1}{2} \|u\|_{H^s}^2} du$$
 on $H^{\sigma}(\mathbb{T}^d), \ \sigma < s - \frac{d}{2}$

• s = 0: White noise on \mathbb{T} : very rough

$$u(x) = \sum_{n \in \mathbb{Z}} g_n(\omega) e^{inx} \in H^{\sigma}(\mathbb{T}) \setminus H^{\frac{1}{2}}(\mathbb{T}), \quad \sigma < -\frac{1}{2}$$

Invariance of white noise

- KdV: Quastel-Valkó '08, Oh '09, Oh-Quastel-Valkó '12
- (renormalized) cubic fourth order NLS (4NLS): Oh-Tzvetkov-Wang '17

Q: Is white noise μ_0 invariant under (renormalized) cubic NLS on \mathbb{T} ?

- Very difficult
- μ_0 is a limit of invariant measures for cubic NLS (Oh-Quastel-Valkó '12) but no well-posedness...

Q: Can we study transport properties of μ_s for general (non-small) s?

• When s is large, this question is not about rough solutions

Quasi-invariance of Gaussian measures μ_s

- (s = 0) white noise μ_0 on \mathbb{T} : KdV and (Wick ordered) 4NLS invariance \implies quasi-invariance
- (s = 1) invariant Gibbs measure (= Gaussian measure μ_1 with weight) $\implies \mu_1$ is quasi-invariant
- completely integrable PDEs with infinitely many conservation laws
 - \implies invariant measures ρ_k (= μ_k with weight) for every integer $k \ge 2$
 - cubic NLS on T, KdV on T, Benjamin-Ono equation on T (Zhidkov '01, Tzvetkov-Visciglia '14-15, Deng-Tz-V '15)
 - derivative NLS on T: open (only construction)
- **Q:** Gel'fand '96: Can we directly prove quasi-invariance of μ_s (at least for *s* large) for (non-integrable) PDEs?

Remark:

- Gibbs measure problem: study of rough solutions
- When s is large, this question is not about rough solutions

Quasi-invariance of Gaussian measures μ_s

- (s = 0) white noise μ_0 on \mathbb{T} : KdV and (Wick ordered) 4NLS invariance \implies quasi-invariance
- (s = 1) invariant Gibbs measure (= Gaussian measure μ_1 with weight) $\implies \mu_1$ is quasi-invariant
- completely integrable PDEs with infinitely many conservation laws
 - \implies invariant measures ρ_k (= μ_k with weight) for every integer $k \ge 2$
 - cubic NLS on T, KdV on T, Benjamin-Ono equation on T (Zhidkov '01, Tzvetkov-Visciglia '14-15, Deng-Tz-V '15)
 - derivative NLS on T: open (only construction)
- **Q:** Gel'fand '96: Can we directly prove quasi-invariance of μ_s (at least for *s* large) for (non-integrable) PDEs?

Remark:

- Gibbs measure problem: study of rough solutions
- When s is large, this question is not about rough solutions

Benjamin-Bona-Mahony equation (BBM) on T: small amplitude long surface waves

$$\partial_t u + \partial_x u - \partial_t \partial_x^2 u + \partial_x (u^2) = 0$$

$$\implies \partial_t u + (1 - \partial_x^2)^{-1} \partial_x u + (1 - \partial_x^2)^{-1} \partial_x (u^2) = 0$$

• Ramer's result: μ_s on $\mathcal{D}'(\mathbb{T})$ is quasi-invariant under the map

 $T: u_0 \mapsto u_0 + F(u_0)$

if $F(u_0)$ is $(d + \varepsilon)$ -smoothing \implies not sufficient for BBM

Tzvetkov '15: For $s \in \mathbb{N}$, μ_s is quasi-invariant under BBM

• A similar result holds for generalized BBM model with less smoothing

- introduced a new method to establish quasi-invariance of μ_s beyond Ramer
- uses the explicit smoothing in the nonlinearity but not dispersive effect

Q: Can we find a good model to prove quasi-invariance via *dispersive effect*?

Benjamin-Bona-Mahony equation (BBM) on T: small amplitude long surface waves

$$\partial_t u + \partial_x u - \partial_t \partial_x^2 u + \partial_x (u^2) = 0$$

$$\implies \partial_t u + (1 - \partial_x^2)^{-1} \partial_x u + (1 - \partial_x^2)^{-1} \partial_x (u^2) = 0$$

• Ramer's result: μ_s on $\mathcal{D}'(\mathbb{T})$ is quasi-invariant under the map

$$T: u_0 \mapsto u_0 + F(u_0)$$

if $F(u_0)$ is $(d + \varepsilon)$ -smoothing \implies not sufficient for BBM

Tzvetkov '15: For $s \in \mathbb{N}$, μ_s is quasi-invariant under BBM

- A similar result holds for generalized BBM model with less smoothing
- introduced a new method to establish quasi-invariance of μ_s beyond Ramer
- uses the explicit smoothing in the nonlinearity but *not* dispersive effect

Q: Can we find a good model to prove quasi-invariance via *dispersive effect*?

Cubic fourth order NLS (4NLS) on \mathbb{T} :

 $i\partial_t u - \partial_x^4 u = |u|^2 u$

- Globally well-posed in $H^{\sigma}(\mathbb{T}), \sigma \geq 0$
- Strongly ill-posed for $\sigma < 0$ (Oh-Wang '17: non-existence in negative Sobolev spaces)

Theorem: Oh-Tzvetkov '16, Oh-Sosoe-Tzvetkov '17

Let $s > \frac{1}{2}$. Then, the Gaussian measure μ_s is quasi-invariant under 4NLS

- This theorem is *optimal*: μ_s is supported on $H^{\sigma}(\mathbb{T}), \sigma < s \frac{1}{2}$
- Unlike BBM, there is *no* apparent smoothing in 4NLS. We exhibit smoothing effects *via dispersion* after using some *gauge transform* and *normal form reductions*
- The proof consists of *local & global analysis* (in the phase space $H^{\sigma}(\mathbb{T})$)
 - local PDE analysis (normal form reductions, energy estimates)
 - global phase space analysis (gauge transform, a change-of-variable formula)

Key role of dispersion

Q: Is dispersion essential for quasi-invariance of μ_s ?

Yes. Consider the dispersionless model on \mathbb{T} :

$$i\partial_t u = |u|^2 u$$

- Explicit solution formula $u(t,x) = e^{-it|u(0,x)|^2}u(0,x)$
- Globally well-posed in H^σ(T), σ > ¹/₂
 Note: our random data u is a.s. continous for s > ¹/₂ ⇒ σ > 0

Theorem: Oh-Sosoe-Tzvetkov '17

Let $s > \frac{1}{2}$. Then, μ_s is not quasi-invariant under the dispersionless model

• The proof uses law of iterated logarithms, a fine criterion to measure the regularity of a typical function w.r.t. μ_s (= fractional Brownian loop). This property regularity property is destroyed by the flow of the dispersionless model

Key role of dispersion

Q: Is dispersion essential for quasi-invariance of μ_s ? **Yes.** Consider the dispersionless model on \mathbb{T} :

$$i\partial_t u = |u|^2 u$$

- Explicit solution formula $u(t,x) = e^{-it|u(0,x)|^2}u(0,x)$
- Globally well-posed in $H^{\sigma}(\mathbb{T}), \sigma > \frac{1}{2}$ Note: our random data u is a.s. continous for $s > \frac{1}{2} \implies \sigma > 0$

Theorem: Oh-Sosoe-Tzvetkov '17

Let $s > \frac{1}{2}$. Then, μ_s is not quasi-invariant under the dispersionless model

• The proof uses law of iterated logarithms, a fine criterion to measure the regularity of a typical function w.r.t. μ_s (= fractional Brownian loop). This property regularity property is destroyed by the flow of the dispersionless model

Rough idea

Goal : Compute $\frac{d}{dt}\mu_s(\Phi(t)(A))$

• Energy estimate (local analysis): $\frac{d}{dt} \|\Phi(t)(u)\|_{H^s}^2 \leq \underbrace{C(\|u\|_{L^2})}_{\text{conserved}} \underbrace{\|u\|_{H^{s-\frac{1}{2}-\varepsilon}}^2}_{H^{s-\frac{1}{2}-\varepsilon}}$

A change-of-variable formula (global analysis):

$$\mu_s(\Phi(t)(A)) = Z_s^{-1} \int_{\Phi(t)A} e^{-\frac{1}{2} \|u\|_{H^s}^2} du \quad "= " Z_s^{-1} \int_A e^{-\frac{1}{2} \|\Phi(t)(u)\|_{H^s}^2} du$$

 $\implies (\text{Yudovich}) \text{ Given } t \in \mathbb{R} \text{ and } \delta > 0, \text{ there exists } C = C(t, \delta) > 0 \text{ such that}$ $\mu_s(\Phi(t)(A)) \leq C(t, \delta) \{\mu_s(A)\}^{1-\delta}$

\Rightarrow quasi-invariance!!

- In Step 1, we need to apply two transformations on the phase space. Then, perform (an infinite iteration of) normal form reductions to prove the energy estimate on a *modified* energy $E = ||u||_{H^s}^2 + R$
- In Step 2, we need to insert the frequency truncation $\mathbf{P}_{\leq N}$. Moreover, we need to consider a *modified* measure associated to the modified energy

 $supp(\mu_s)$

Rough idea

Goal : Compute $\frac{d}{dt}\mu_s(\Phi(t)(A))$

• Energy estimate (local analysis): $\frac{d}{dt} \|\Phi(t)(u)\|_{H^s}^2 \leq \underbrace{C(\|u\|_{L^2})}_{\text{conserved}} \underbrace{\|u\|_{H^{s-\frac{1}{2}-\varepsilon}}^2}_{H^{s-\frac{1}{2}-\varepsilon}}$

A change-of-variable formula (global analysis):

$$\mu_s(\Phi(t)(A)) = Z_s^{-1} \int_{\Phi(t)A} e^{-\frac{1}{2} \|u\|_{H^s}^2} du \quad "= " Z_s^{-1} \int_A e^{-\frac{1}{2} \|\Phi(t)(u)\|_{H^s}^2} du$$

 $\implies (\text{Yudovich) Given } t \in \mathbb{R} \text{ and } \delta > 0, \text{ there exists } C = C(t, \delta) > 0 \text{ such that}$ $\mu_s(\Phi(t)(A)) \le C(t, \delta) \{\mu_s(A)\}^{1-\delta}$

\implies quasi-invariance!!

- In Step 1, we need to apply two transformations on the phase space. Then, perform (an infinite iteration of) normal form reductions to prove the energy estimate on a *modified* energy $E = ||u||_{H^s}^2 + R$
- In Step 2, we need to insert the frequency truncation $\mathbf{P}_{\leq N}$. Moreover, we need to consider a *modified* measure associated to the modified energy

 $supp(\mu_s)$

Decomposition of solution map:

$$\Phi(t) = \mathcal{G}_{-t} \circ S(t) \circ \Psi(t)$$

• Gauge transform: Given $t \in \mathbb{R}$, define \mathcal{G}_t on $L^2(\mathbb{T})$ by setting $\mathcal{G}_t[f] := e^{it \int_{\mathbb{T}} |f|^2} f$

- **2** Interaction representation: $v(t) = S(-t)\mathcal{G}_t[u(t)]$, where $S(t) = e^{-it\partial_x^4}$
 - $\Phi(t) =$ solution map of the original 4NLS
 - $\Psi(t)$ = solution map of $v(0) \mapsto v(t) = S(-t)\mathcal{G}_t[u(t)]$

Proposition

Let $s > \frac{1}{2}$. For every $t \in \mathbb{R}$, the Gaussian measure μ_s is invariant under S(-t) and \mathcal{G}_t

 \implies Suffices to prove quasi-invariance of μ_s under $\Psi(t)$

Local analysis: modified energy and energy estimate

• $v = S(-t) \circ \mathcal{G}_t[u(t)]$ satisfies

$$\partial_t \widehat{v}_n = -i \sum_{\{\phi(\overline{n}) \neq 0\}} e^{-i\phi(\overline{n})t} \widehat{v}_{n_1} \overline{\widehat{v}_{n_2}} \widehat{v}_{n_3} + i |\widehat{v}_n|^2 \widehat{v}_n$$

On $\Gamma(n) \stackrel{\text{def}}{=} \{\phi(\bar{n}) \neq 0\}$, we have $|\phi(\bar{n})| \gtrsim n_{\max}^2$ \iff rapid oscillation

• Modified energy: $E(v) = ||v||_{H^s}^2 + R(v) \leftarrow$ correction term

Proposition: energy estimate with smoothing

Let $s > \frac{3}{4}$. Then, for any small $\varepsilon > 0$, there exist $\theta > 0$ and C > 0 such that $\left| \frac{d}{dt} E(\mathbf{P}_{\leq N} v) \right| \leq \underbrace{C(\|v\|_{L^2})}_{\text{conserved}} \underbrace{\|v\|_{H^{s-\frac{1}{2}-\varepsilon}}^{2-\varepsilon}}_{\text{supp}(\mu_s)}$

- (Infinite iteration of) normal form reductions \longrightarrow correction term R
- Standard (deterministic) PDE analysis
- The proof relies on elementary number theory (divisor counting argument)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

By normal form reduction (IBP in time), we have

$$\begin{split} \frac{d}{dt} \|v(t)\|_{H^{S}}^{2} &= -2\operatorname{Re} i \sum_{n \in \mathbb{Z}} \sum_{\Gamma(n)} e^{-i\phi(\bar{n})t} \langle n \rangle^{2s} v_{n_{1}} \overline{v_{n_{2}}} v_{n_{3}} \overline{v_{n}} \\ &= -2i\operatorname{Re} \frac{d}{dt} \bigg[\underbrace{\sum_{n \in \mathbb{Z}} \sum_{\Gamma(n)} \frac{e^{-i\phi(\bar{n})t}}{\phi(\bar{n})} \langle n \rangle^{2s} v_{n_{1}} \overline{v_{n_{2}}} v_{n_{3}} \overline{v_{n}}} \bigg] \\ &= -2i\operatorname{Re} \frac{d}{dt} \bigg[\underbrace{\sum_{n \in \mathbb{Z}} \sum_{\Gamma(n)} \frac{e^{-i\phi(\bar{n})t}}{\phi(\bar{n})} \langle n \rangle^{2s}}_{=:-R(v)} \underbrace{\frac{\partial_{t} (v_{n_{1}} \overline{v_{n_{2}}} v_{n_{3}} \overline{v_{n}})}_{=:-\operatorname{Re}}}_{=6-\operatorname{linear}} \bigg] \end{split}$$

When $s \in (\frac{1}{2}, \frac{3}{4}]$, iterate this process *infinitely many times*:

$$\begin{split} \frac{d}{dt} \|v(t)\|_{H^s}^2 &= \frac{d}{dt} \left[\sum_{j=2}^{\infty} \mathcal{N}_0^{(j)}(v)\right] + \sum_{j=2}^{\infty} \mathcal{N}_1^{(j)}(v) + \sum_{j=2}^{\infty} \mathcal{R}^{(j)}(v) \\ &= = -R(v) \end{split}$$
$$\implies \left| \frac{d}{dt} E(\mathbf{P}_{\leq N} v) \right| \leq C(\|v\|_{L^2}), \quad \text{where } E(v) = \|v\|_{H^s}^2 + R(v) \end{split}$$

• Guo-Kwon-Oh '13: infinite iteration of NF reductions for cubic NLS on T (i.e. on the equation) in the context of low regularity uniqueness problem

Global analysis, Part2

- **(**) Weighted Gaussian measures: $E(v) = ||v||_{H^s}^2 + R(v)$
 - Construct a weighted Gaussian measure $\rho_{s,N,r}$ of the form:

$$d\rho_{s,N,r} = Z_{s,N,r}^{-1} \mathbf{1}_{\{\|v\|_{L^{2}} \le r\}} e^{-\frac{1}{2}E(\mathbf{P}_{\le N}v)} dv$$
$$= Z_{s,N,r}^{-1} \mathbf{1}_{\{\|v\|_{L^{2}} \le r\}} e^{-\frac{1}{2}R(\mathbf{P}_{\le N}v)} \underbrace{e^{-\frac{1}{2}\|v\|_{H^{s}}^{2}} dv}_{d\mu_{s}}$$

A change-of-variable formula:

$$\rho_{s,N,r}(\Psi_N(t)(A)) = \hat{Z}_{s,N,r}^{-1} \int_A \mathbf{1}_{\{\|v\|_{L^2} \le r\}} e^{-\frac{1}{2}E(\mathbf{P}_{\le N}\Psi_N(t)(v))} d(\mathbf{P}_{\le N}v) \otimes d\mu_{s,N}^{\perp}$$

- Study measure evolution & take limits $(N \to \infty, \text{ then } r \to \infty)$
 - compute time derivative (energy estimate)

$$\begin{array}{l} \Longrightarrow \text{ quasi-invariance of } \rho_{s,N,r} \text{ under } \Psi_N(t) \\ \stackrel{N \to \infty}{\Longrightarrow} \text{ quasi-invariance of } \rho_{s,r} \text{ (and } \mu_{s,r}) \text{ under } \Psi(t) \\ \stackrel{r \to \infty}{\Longrightarrow} \text{ quasi-invariance of } \mu_s \text{ under } \Psi(t)!! \\ \end{array}$$

26/32

Nonlinear wave equation: Duhamel part enjoys 1-smoothing:

$$u(t) = S(t)(u_0, u_1) + \int_0^t \frac{\sin((t - t')\sqrt{-\Delta})}{\sqrt{-\Delta}} |u|^{p-1} u(t') dt'$$

Gaussian measure on $(u, \partial_t u)$: $\overrightarrow{\mu}_{s+1}(u, \partial_t u) = \mu_{s+1} \otimes \mu_s(u, \partial_t u)$

• d = 1: Tzvetkov '15 (implicit in a remark)

Theorem: Oh-Tzvetkov '17 (d = 2, defocusing cubic NLW)

Let $s \ge 2$ be an even integer. Then, $\overrightarrow{\mu}_{s+1}$ is quasi-invariant under the defocusing cubic NLW on \mathbb{T}^2

- A typical element (u, v) under μ
 _{s+1} lives in H^σ = H^σ × H^{σ-1}, σ < s. Given a fixed (h₁, h₂) ∈ H^{σ+1}, consider T_h : (u, v) ↦ (u, v) + (h₁, h₂) Cameron-Martin ⇒ μ
 _{s+1} and its transported measure are singular
- Given $(u_0, u_1) \in \mathcal{H}^{\sigma}$, we only have the nonlinear part for NLW in $\mathcal{H}^{\sigma+1}$

Main difficulty: energy estimate: $\partial_t ||(u, \partial_t u)||^2_{\mathcal{H}^{s+1}}$

- *renormalized* energy (but *no* renormalization for the equation)
- - We establish a renormalized energy estimate in the *probabilistic* setting

In the following, we consider defocusing NLKG (for simplicity):

$$\partial_t^2 u + (1 - \Delta)u = -u^3$$

オロト オ部ト オヨト オヨト 三日 三名

28/32

with Hamiltonian $E(u) = \frac{1}{2} \int (\partial_t u)^2 + \frac{1}{2} \int (Ju)^2 + \frac{1}{4} \int u^4$, $J = \sqrt{1 - \Delta}$

Goal: Define a renormalized energy $E_{s,\infty} \sim ||(u, \partial_t u)||^2_{\mathcal{H}^{s+1}}$ with a good ∂_t -estimate

Ans:
$$E_{s,\infty} = \frac{1}{2} \int (J^s \partial_t u)^2 + \frac{1}{2} \int (J^{s+1} u)^2 + \underbrace{\frac{3}{2} \int (J^s u)^2 u^2}_{=\infty, \text{ a.s.}} - \frac{3}{2} \infty \int u^2$$

 \Leftarrow Both $E_{s,\infty}$ and $\partial_t E_{s,\infty}$ behave "well"

Define σ_N by

$$\sigma_N = \mathbb{E}_{\overrightarrow{\mu}_{s+1}} \left[\int (J^s \mathbf{P}_{\leq N} u)^2 \right] = \sum_{\substack{n \in \mathbb{Z}^2 \\ |n| \leq N}} \frac{1}{1 + |n|^2} \sim \log N \longrightarrow \infty$$

 \implies For each $p < \infty$, we have

$$X_N(\omega) := \underbrace{\int (J^s \mathbf{P}_{\leq N} u)^2 - \sigma_N}_{\rightarrow \quad "\infty - \infty"} = \sum_{\substack{n \in \mathbb{Z}^2 \\ |n| \leq N}} \frac{|g_n|^2 - 1}{1 + |n|^2} \in L^p(\Omega)$$

with uniform bounds in $N \in \mathbb{N}$.

 $\implies X_N$ converges to X_∞ in $L^p(\Omega)$ for any $p < \infty$, allowing us to define

$$X_{\infty}(\omega) = \int (J^{s}u)^{2} - \sigma_{\infty} := \lim_{N \to \infty} \left\{ \int (J^{s}\mathbf{P}_{\leq N}u)^{2} - \sigma_{N} \right\}$$

29/32

Goal: Define a renormalized energy $E_{s,\infty} \sim ||(u, \partial_t u)||^2_{\mathcal{H}^{s+1}}$ with a good ∂_t -estimate

Ans:
$$E_{s,\infty} = \frac{1}{2} \int (J^s \partial_t u)^2 + \frac{1}{2} \int (J^{s+1} u)^2 + \underbrace{\frac{3}{2} \int (J^s u)^2 u^2}_{=\infty, \text{ a.s.}} - \frac{3}{2} \infty \int u^2$$

 \Leftarrow Both $E_{s,\infty}$ and $\partial_t E_{s,\infty}$ behave "well"

Define σ_N by

$$\sigma_N = \mathbb{E}_{\overrightarrow{\mu}_{s+1}} \left[\int (J^s \mathbf{P}_{\leq N} u)^2 \right] = \sum_{\substack{n \in \mathbb{Z}^2 \\ |n| \leq N}} \frac{1}{1+|n|^2} \sim \log N \longrightarrow \infty$$

 \implies For each $p < \infty$, we have

$$X_{N}(\omega) := \underbrace{\int (J^{s} \mathbf{P}_{\leq N} u)^{2} - \sigma_{N}}_{\to "\infty - \infty"} = \sum_{\substack{n \in \mathbb{Z}^{2} \\ |n| \leq N}} \frac{|g_{n}|^{2} - 1}{1 + |n|^{2}} \in L^{p}(\Omega)$$

with uniform bounds in $N \in \mathbb{N}$.

 $\implies X_N$ converges to X_∞ in $L^p(\Omega)$ for any $p < \infty$, allowing us to define

$$X_{\infty}(\omega) = \int (J^{s}u)^{2} - \sigma_{\infty} := \lim_{N \to \infty} \left\{ \int (J^{s}\mathbf{P}_{\leq N}u)^{2} - \sigma_{N} \right\}$$

29/32

$$\begin{split} \frac{1}{2}\partial_t \| (u,\partial_t u) \|_{\mathcal{H}^{s+1}}^2 &= -3\int (\partial_t J^s u) J^s u \cdot u^2 + \text{l.o.t.} \\ \stackrel{\text{IBP}}{=} -\frac{3}{2}\partial_t \left[\int (J^s u)^2 u^2 \right] + 3\int (J^s u)^2 \partial_t u \cdot u + \text{l.o.t.} \\ &= -\frac{3}{2}\partial_t \left[\int \mathbf{P}_{\neq 0}[(J^s u)^2] \cdot \mathbf{P}_{\neq 0}[u^2] \right] + 3\int \mathbf{P}_{\neq 0}[(J^s u)^2] \cdot \mathbf{P}_{\neq 0}[\partial_t u \cdot u] + \text{l.o.t.} \\ &- \underbrace{\frac{3}{2}\partial_t \left[\int (J^s u)^2 \int u^2 \right]}_{=\infty} + \underbrace{3\int (J^s u)^2 \int \partial_t u \cdot u}_{=\infty} \end{split}$$

With σ_N , we have

$$-\frac{3}{2}\partial_t \left[\int (J^s u)^2 \int u^2 \right] + 3 \int (J^s u)^2 \int \partial_t u \cdot u$$
$$= -\frac{3}{2}\partial_t \left[\left(\underbrace{\int (J^s u)^2 - \sigma_N}_{=X_N} \right) \int u^2 \right] + 3 \left(\underbrace{\int (J^s u)^2 - \sigma_N}_{=X_N} \right) \int \partial_t u \cdot u.$$

Define the renormalized energy $E_{s,N}(u, \partial_t u)$ by

$$E_{s,N}(u,\partial_t u) = \frac{1}{2} \int (J^s \partial_t u)^2 + \frac{1}{2} \int (J^{s+1} u)^2 + \frac{3}{2} \int (J^s u)^2 u^2 - \frac{3}{2} \sigma_N \int u^2$$

$$= \frac{1}{2} \int (J^s \partial_t u)^2 + \frac{1}{2} \int (J^{s+1} u)^2 + \frac{3}{2} \int \mathbf{P}_{\neq 0}[(J^s u)^2] \cdot \mathbf{P}_{\neq 0}[u^2]$$

$$+ \frac{3}{2} \left(\int (J^s u)^2 - \sigma_N \right) \int u^2$$

$$\implies \partial_t E_{s,N}(u) = 3 \int \mathbf{P}_{\neq 0}[(J^s u)^2] \cdot \mathbf{P}_{\neq 0}[\partial_t u \cdot u] + 3\left(\int (J^s u)^2 - \sigma_N\right) \int \partial_t u \cdot u + \text{l.o.t.}$$

Probabilistic renormalized energy estimate:

$$\left\{\int_{\{E(\mathbf{P}_{\leq N}u,\mathbf{P}_{\leq N}v)\leq r\}}\left|\partial_{t}E_{s,N}(\pi_{N}\Phi_{N}(t)(u,v))|_{t=0}\right|^{p}d\mu_{s}(u,v)\right\}^{\frac{1}{p}} \lesssim p$$

 $\implies E_{s,N} \to E_{s,\infty} = \frac{1}{2} \int (J^s \partial_t u)^2 + \frac{1}{2} \int (J^{s+1}u)^2 + \frac{3}{2} \int (J^s u)^2 u^2 - \frac{3}{2} \infty \int u^2, \text{ a.s.}$ and $E_{s,\infty}$ satisfies the same ∂_t -bound

Remarks

- We showed mutual absolute continuity of the transported measure $\Phi(t)_*\mu_s$ and the original Gaussian measure μ_s . Our argument, however, does not tell us much about the *time-dependent* Radon-Nikodym derivative (in $L^1(\mu_s)$) of $\Phi(t)_*\mu_s$ with respect to μ_s . It would be interesting to study more about the resulting Radon-Nikodym derivatives
 - higher integrability in $L^p(\mu_s), p > 1$?
 - compactness in time? property of its time average?

• By an argument analogous to that for invariant measure, we can obtain

$$||u(t)||_{H^{\sigma}} \lesssim C(u_0^{\omega})(1+|t|)^{\alpha(s)} \text{ for any } t \in \mathbb{R},$$

where $\alpha(s) \to \infty$, as $s \to \infty$. It is very far from the logarithmic bound for invariant measures and may be obtained by deterministic techniques.

Q: Can we establish *quantitative* versions of quasi-invariance and prove new growth bounds on higher Sobolev norms of solutions in a probabilistic manner?

• Our current understanding of the corresponding question for the (more complicated) NLS is very poor (except for 1-d cubic NLS)...