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Nonlinear wave equations with bubbling off blow up solutions

Bubbling off blow up solutions

Consider a hamiltonian nonlinear wave equation of the form

�u = F (u,∇u)

admitting a scaling symmetry

u(t, x)→ uλ(t, x) := λαu(λt, λx), α ≥ 0

We call a solution of the form

u(t, x) ∼Wλ(t)(x)

with limt→T λ(t) = +∞ and W (x) of finite energy a bubbling
off singularity (blow up).

Many models display this form of blow up.
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Nonlinear wave equations with bubbling off blow up solutions

Models with bubbling off blow ups I

Experience has revealed that these types of blow ups occur for
energy critical models, i. e. such that the conserved energy is
invariant under the natural scaling.

Wave Maps u : R2+1 −→ S2 (energy critical), given by

�u = −(−|ut |2 + |∇xu|2)u

If W denotes for example the ground state harmonic map
W : R2 −→ S2, then bubbling off solutions of the form

u(t, x) ∼Wλ(t)(x)

with infinitely many different scaling laws λ(t) are known to
exist.
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Models with bubbling off blow ups II

Yang Mills equations in 4 + 1 dimensions (energy critical)
under a symmetry reduction, leading to a radial problem in
2 + 1-dimensions

�u =
2

r2
(1− u2), r = |x |

Here W (x) = 1−r2

1+r2
, and bubbling off solutions of the form

Wλ(t)(x) ∼ 1− λ2(t)r2

1 + λ2(t)r2

Again if one works in energy space, infinitely many different
λ(t)’s possible.
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Models with bubbling off blow ups II

The energy critical focussing NLW in R3+1 :

�u = −u5.

Here W (x) = 1

(1+ |x|
2

3
)
1
2

and there are infinitely many different

type two blow ups of the form

u(t, x) ∼Wλ(t)(x) = λ
1
2 (t)W (λ(t)x).

All of these solutions were obtained by implementing
symmetry reduction of the original problem. For example,
for critical Wave Maps, one obtains an equation of the form

−utt + urr +
1

r
ur =

sin(2u)

2r2
.
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Nonlinear wave equations with bubbling off blow up solutions

Significance of these solutions

For energy critical models with a positive hamiltonian, such as
Wave Maps or Yang Mills, these solutions as well as their
’superpositions’ are expected to be the only possible blow up
dynamics.

More precisely, say for Wave Maps R2+1 −→ S2, one expects
a type of soliton resolution result near a singularity of the form

u(t, x) =
N∑

i=1

Li [Wi (λi (t)(x−xi ))]+v(t, x), lim
t→T

λi (t) = +∞.

where Wi are harmonic maps and Li are Lorentz
transformations.

Such results along sequences of times have been proved by
Struwe for the harmonic map heat flow in the late eighties.
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Nonlinear wave equations with bubbling off blow up solutions

The issue of stability of these solutions

It appears that at this point in time, the full stability
properties of any of these solutions (i. e. outside the
symmetry reduction) are unknown.

Even within the restricted symmetry class, establishing
stability of these kinds of blow ups is a highly delicate issue.

As far as the models from before are concerned, there have
been developed two approaches to building such bubbling off
blow ups : one approach by Merle-Raphael and another by
K.-Schlag-Tataru.

The Merle-Raphael approach gives also stability of solutions
obtained, while this information was missing for the solutions
by K.-Schlag-Tataru. The latter do not have fixed blow up
rate, but a continuum of rates, while the former tend to come
with a fixed blow up rate. Also, the solutions differ in terms of
their smoothness.
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Nonlinear wave equations with bubbling off blow up solutions

Very rough outline of Merle-Raphael construction

Method consists of two steps : first, exhibit an approximate
profile (Qb) as an expansion in terms of a variable b, where
eventually b ∼ λt/λ

2. One may think of Qb as an approximate
profile around which one perturbs to find the exact solution.

Qb = Qλ +
∑

i

biTi

The functions Ti are found by solving suitable elliptic
equations.

Next, one complements this to an exact solution

u = Qb(λ(t)r) + ε(t, r).

To control ε, one foces a suitable vanishing condition on ε.
The problem then becomes controlling both the evolution of b
and that of ε.
In a nutshell, one uses virial type identifies obtained by
differentiating in time certain energy type functionals.
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Nonlinear wave equations with bubbling off blow up solutions

Very rough outline of KST construction I

The usefulness of these virial type identities depends on subtle
positivity properties which hinge on the monotonicity of λ
(sign of b).

The evolution of the quantities b, ε is studied simultaneously.

In KST method, one fixes λ(t) = t−1−ν (for Wave Maps and
critical NLW). Then one proceeds in two steps : construction
of an approximate solution of the form

ue(t, x) = Wλ(t)(x) +
N∑

i=1

vi

This ue is roughly analogous to the Qb of the Merle-Raphael
solution, but in fact here one may construct arbitrarily many
(but finitely many !) corrections vi , resulting in an error of size
O(tN).
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Nonlinear wave equations with bubbling off blow up solutions

Very rough outline of KST construction II

Completion of approximate solution to an exact solution

u(t, x) = ue(t, x) + ε(t, x),

where ε(t, x) is forced to vanish at blow up time. This can be
solved via parametrix methods, by exploiting the very rapid
decay of the source term (instead of a vanishing condition as
in Merle-Raphael).

This last fact seemed to suggest that the KST-solutions are
all very unstable compared to the ones obtained by the
Merle-Raphael method.

The point of this talk is to disprove this last point, and to
explain a novel way to think about the stability problem of
special bubbling off blow ups. We do this in the context of the
critical focussing NLW, which is somehow the simplest model
to analyse. Method should have much broader applicability.
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Nonlinear wave equations with bubbling off blow up solutions

The focussing critical NLW on R3+1.

Recall the equation

�u = −u5, (t, x) ∈ R3+1, � = −∂2t +4.

This model admits the explicit self-similar blow up solutions

u(t, x) =
c

(T − t)
1
2

These are known to be stable in a very strong sense (in the
radial class) by a recent result by R. Donninger (2015).

The static solution W (x) = 1

(1+ |x|
2

3
)
1
2

may be perturbed to

result in bubbling off blow up solutions of the form

u(t, x) = Wλ(t)(x) + ε(t, x), λ(t) = t−1−ν , ν > 0.

By contrast to s.s. blow up, this one has bounded H1-norm
(of type II) (KST ’09, KS ’12).
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Nonlinear wave equations with bubbling off blow up solutions

Remarks on blow up solutions by KST.

The solution corresponding to scaling parameter λ(t) = t−1−ν

has regularity H1+ ν
2
− and no better. This comes from the

approximate solution ue and more precisely the second
correction v2.

The method of Merle-Raphael has apparently not yet been
implemented for this model. However, there is a result due to
Hillairet-Raphael(’10) which produces solutions of the form

u(t, x) ∼Wλ(t)(x), λ(t) = t−1e
√
| log t|

for the 4 + 1-dimensional analogue, with C∞-data. They
assert that these are stable for data perturbations along a
co-dimension one Lipschitz manifold. This is natural as we
will explain shortly.
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Nonlinear wave equations with bubbling off blow up solutions

General Facts about stability of type II solutions

As noted before, all bubbling off solutions are type II. In
general, a solution of

�u = −u5

on R3+1 is called type II, provided we have

sup
t∈I
‖∇t,xu(t, ·)

∥∥
L2

x
<∞.

There is a complete classification of radial type II solutions
by Duyckaerts-Kenig-Merle(’09) :

u(t, x) =
N∑

i=1

κiWλi (t)(x) + v(t, x).

There is also a partial result on stability of type II solutions,
provided they have only one profile :
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General Facts about stability of type II solutions

(K.-Nakanishi-Schlag ’13) Let

u(t, x) = Wλ(t)(x) + v(t, x)

with supt∈I ‖∇t,xv‖L2
x
< δ0 � 1. Then there is a

co-dimension one Lipschitz manifold Σ of data perturbations
resulting in type II solutions. Data ’below’ Σ scatter to zero in
forward time, while data ’above’ blow up in finite time (but
unknown if of type I or type II).

This result makes no assertion of the character of the solution
with perturbed data along Σ, other than that it’s type II. This
is necessarily so, as the energy topology is too crude to
distinguish between finite time blow ups or globally existing
solutions.

The co-dimension one results from an unstable mode for the
linear operator L = −4− 5W 4 arising upon linearising
around W .
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Nonlinear wave equations with bubbling off blow up solutions

Stability of the KST blow up solutions

Our goal was to develop methods which allow us to analyse
the stability properties of the KST blow up solutions
constructed for

�u = −u5, (t, x) ∈ R3+1.

More precisely, rather than trying to follow the method by
Merle-Raphael, we tried to build on the tools introduced in
the work by KST.

Theorem(Burzio-K. ’17) Let ν > 0 be sufficiently small. Then
the KST blow up solutions

u(t, x) = Wλ(t)(x) + ε(t, x), λ(t) = t−1−ν

are stable along a co-dimension one Lipschitz hyper surface of
radial data perturbations in a suitable topology.
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Nonlinear wave equations with bubbling off blow up solutions

Remarks on result

This result is optimal in light of K.-Nakanishi-Schlag
theorem(’13), and analogous to the assertion by
Hillairet-Raphael on stability obtained by Merle-Raphael
method.

The same method can be used to obtain conditional stability
results for larger ν, which then involve higher co-dimension.

Conclusion is that optimal stability properties (i. e.
co-dimension one stability) do not imply a fixed blow up rate.
However, it is reasonably to conjecture that imposing
C∞-smooth data does force a quantised set of possible blow
up speeds.

This is in stark contrast to parabolic problems, such as heat
flow for harmonic maps, where it seems that there is only one
stable blow up rate. Shows that the finite time blow ups by
KST are a truly hyperbolic phenomenon.
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Nonlinear wave equations with bubbling off blow up solutions

General strategy for Burzio-K. stability result

Start with a blow up solution

uspecific (t, x) = Wλ(t) + v

Keep the λ(t) fixed and try to analyse the stability of this
under as general perturbations as possible :

uspecific −→ uspecific + ε.

Do this by working with the linear operator

−∂2t +4+ 5W 4
λ(t)

and developing a parametrix for it. This will use the
monotonicity of λ.

Solve the nonlinear perturbation problem. This is where
proximity of λ(t) to t−1, i. e. smallness of ν, comes in.
The preceding will result in a certain vanishing condition for
data. Then use the freedom in ’modulating’ λ(t) to satisfy the
vanishing condition.
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Nonlinear wave equations with bubbling off blow up solutions

Key issue

There appears no general method for proving estimates let
along constructing a global parametrix for operators of the
form

−∂2t +4+ V (t, x)

The closest general technique for proving Strichartz estimates
for the corresponding wave equation was announced by
Beceanu in ’14. However, does not seem to allow resonances
or eigenvalue at zero.

We develop a parametrix construction in case
V = λ2(t)W (λ(t)x). Method only requires good spectral
representation as well as monotonicity properties of λ(t).
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Nonlinear wave equations with bubbling off blow up solutions

Main technical ingredient : spectral representation

Linearization L = −∂2R − 5W 4 admits one unstable
eigenmode φd

Lφd = −k2dφd

as well as a resonance at zero φ(R, 0) = R
1−R2

3

(1+R2

3
)
3
2

, satisfying

Lφ(R, 0) = 0.

For general f we have the representation

f (R) = xdφd (R) +

∫ ∞
0

x(ξ)φ(R, ξ)ρ(ξ) dξ

with xd = 〈f , φd〉L2(R), x(ξ) = 〈φ(R, ξ), f 〉L2(R).

φ(R, ξ) = φ(R, 0) + O(R2ξ).
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Nonlinear wave equations with bubbling off blow up solutions

Translation of problem to distorted Fourier side

Start by replacing perturbation ε by ε̃ = Rε. Work with new
variables

R = λ(t)r , τ =

∫ ∞
t

λ(s) ds, λ(t) = t−1−ν .

Equation in terms of new coordinates

(∂τ + λ̇λ−1R∂R)2ε̃− βν(τ)(∂τ + λ̇λ−1R∂R)ε̃+ Lε̃
= λ−2(τ)RN(ε) + ∂τ (λ̇λ−1)ε̃; βν(τ) = λ̇(τ)λ−1(τ),

(1)

This is translated to Fourier side. Complication since

R∂Rφ(R, ξ) 6= ξ∂ξφ(R, ξ).

This leads to certain nonlocal linear source terms for equation
on Fourier side which are somewat complicated to deal with.
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Nonlinear wave equations with bubbling off blow up solutions

Translation of problem to distorted Fourier side

In terms of x(τ, ξ) = F(ε̃(τ, ·))(ξ), get the equation

(D2
τ + βν(τ)Dτ + ξ)x(τ, ξ) = R(τ, x) + f (τ, ξ)

where

Dτ = ∂τ − βν(τ)(2ξ∂ξ +
5

2
+
ρ′(ξ)ξ

ρ(ξ)
)

The term R(τ, x) represents certain non-local operators of the
form

βν(τ)

∫ ∞
0

F (ξ, η)ρ(η)

ξ − η
Dτx(τ, η) dη

β2ν(τ)

∫ ∞
0

F (ξ, η)ρ(η)

ξ − η
x(τ, η) dη

where the kernel satisfies suitable vanishing properties.
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Nonlinear wave equations with bubbling off blow up solutions

Translation of problem to distorted Fourier side

The terms R(τ, x) are in some term borderline, in that one
does not gain smallness for them. Iterating them away
requires a kind of Volterra iteration, which takes decisive
advantage of the monotonicity properties of λ.

The other source term f (τ, ξ) stands for the Fourier transform
of all the nonlinear interaction terms. Dealing with it will
require λ(t) to be close enough to t−1, i. e. ν to be small
enough.

The idea is to solve the x-equation via a suitable iteration
scheme, obtaining convergence by imposing suitable vanishing
conditions on the initial data(

x(τ0),Dτx(τ0)
)
.
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Nonlinear wave equations with bubbling off blow up solutions

The iteration scheme ; zeroth iterate

To begin with, we start with the zeroth iterate, which solves
the free transport equation

(D2
τ + βν(τ)Dτ + ξ)x(τ, ξ) = 0.

This equation can be solved completely explicitly for the
continuous spectral part :

λ
5
2 (τ)

λ
5
2 (τ0)

ρ
1
2 ( λ

2(τ)
λ2(τ0)

ξ)

ρ
1
2 (ξ)

cos
[
λ(τ)ξ

1
2

∫ τ

τ0

λ−1(u) du
]
x0
( λ2(τ)

λ2(τ0)
ξ
)

+
λ

3
2 (τ)

λ
3
2 (τ0)

ρ
1
2 ( λ

2(τ)
λ2(τ0)

ξ)

ρ
1
2 (ξ)

sin
[
λ(τ)ξ

1
2

∫ τ
τ0
λ−1(u) du

]
ξ

1
2

x1
( λ2(τ)

λ2(τ0)
ξ
)

Here λ(τ) ∼ τ1+ν−1
, and τ →∞ as t → 0.
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Nonlinear wave equations with bubbling off blow up solutions

Analysis of the zeroth iterate

The issue becomes how the function

ε̃(τ,R) = xd (τ)φd (R) +

∫ ∞
0

x(τ, ξ)φ(R, ξ)ρ(ξ) dξ

grows as τ → +∞ when substituting the preceding
parametrix.

The key is the relation

φ(R, ξ) = φ(R, 0) + O(R2ξ).

It allows one to infer a relation

ε̃(τ,R) = c(τ)φ(R.0) + ε̃good (τ,R)

It turns out that imposing simple vanishing relations on x0, x1,
one can achieve only linear growth on c(τ).
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Nonlinear wave equations with bubbling off blow up solutions

Analysis of the zeroth iterate

Precisely, the following result obtains :
Lemma Assume that we have∫ ∞

0

ρ
1
2 (ξ)x0(ξ)

ξ
1
4

cos[ντ0ξ
1
2 ] dξ = 0

∫ ∞
0

ρ
1
2 (ξ)x1(ξ)

ξ
3
4

sin[ντ0ξ
1
2 ] dξ = 0.

Assume a further co-dimension one condition to prevent
exponential growth from unstable mode φd . Then we have∥∥ ε̃(τ, ·)

R

∥∥
L∞dR
. τ.

This growth turns out to be manageable in the nonlinear
terms, provided ν > 0 is sufficiently small.
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Nonlinear wave equations with bubbling off blow up solutions

Analysis of the first iterate

This comes from the fact that in the τ,R-variables, the
nonlinear term

λ−2(τ)RN(ε) = λ−2(τ)RN(
ε̃

R
)

comes with the weight λ−2(τ) ∼ τ−2(1+ν−1).

The first iterate then solves

(D2
τ + βν(τ)Dτ + ξ)x (1)(τ, ξ) = R(τ, x (0)) + f (0)(τ, ξ)

Leads to the Duhamel term∫ τ

τ0

λ
3
2 (τ)

λ
3
2 (σ)

ρ
1
2 (λ

2(τ)
λ2(σ)

ξ)

ρ
1
2 (ξ)

sin[λ(τ)ξ
1
2

∫ σ
τ λ
−1(u) du]

ξ
1
2

R(σ, x (0))(
λ2(τ)

λ2(σ)
ξ) dσ
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Nonlinear wave equations with bubbling off blow up solutions

Analysis of the first iterate

This is ’well-behaved’ for ξ > 1, but one again runs into
difficulties for ξ < 1.

Use the decomposition∫ τ

τ0

. . . =

∫ ∞
τ0

. . .−
∫ ∞
τ

. . .

Then the first integral on right is solution of free transport
equation, and second integral is well-behaved since

λ(τ)

λ(σ)
≤ 1, σ ≥ τ.

The free term ∫ ∞
τ0

. . .

no longer satisfies the vanishing conditions like for zeroth
iterate.
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Nonlinear wave equations with bubbling off blow up solutions

Analysis of the first iterate

Thus we are forced to add a small correction to achieve the
required vanishing conditions. This means replacing the pure
Duhamel term∫ τ

τ0

λ
3
2 (τ)

λ
3
2 (σ)

ρ
1
2 (λ

2(τ)
λ2(σ)

ξ)

ρ
1
2 (ξ)

sin[λ(τ)ξ
1
2

∫ σ
τ λ
−1(u) du]

ξ
1
2

R(σ, x (0))(
λ2(τ)

λ2(σ)
ξ) dσ

by a modified one :

∫ τ

τ0

λ
3
2 (τ)

λ
3
2 (σ)

ρ
1
2 (λ

2(τ)
λ2(σ)

ξ)

ρ
1
2 (ξ)

sin[λ(τ)ξ
1
2

∫ σ
τ λ
−1(u) du]

ξ
1
2

R(σ, x (0))(
λ2(τ)

λ2(σ)
ξ) dσ

+ S(τ)(4˜̃x
(1)
0 ,4˜̃x

(1)
1 )

Here the data 4˜̃x
(1)
0 ,4˜̃x

(1)
1 are the Fourier transforms of

suitable multiples of truncated resonance.
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Nonlinear wave equations with bubbling off blow up solutions

Analysis of the first and higher iterates

What makes things work is that the special structure of R
implies that with respect to a suitable norm, the corrections

4˜̃x
(1)
0 ,4˜̃x

(1)
1

are smaller than original perturbation x0, x1 by a factor τ−1+0 .

One then proceeds similarly for higher iterates : one shows
that for ξ < 1, one can always split

x (i)(τ, ξ) = x (i)(τ, ξ)good + S(τ)(4˜̃x
(i)
0 ,4˜̃x

(i)
1 )

where x (i)(τ, ξ)good satisfies good bounds, while the free term
has data satisfying the required vanishing conditions.

The corrections (4˜̃x
(i)
0 ,4˜̃x

(i)
1 converge exponentially fast to

an overall correction much smaller than the original
perturbation.
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Nonlinear wave equations with bubbling off blow up solutions

Some technical remarks

To control the x (i), one works with norms which penalise both

large and small frequencies, implying a regularity of H
3
2
+ on

physical side.

sup
τ≥τ0

(
τ

τ0
)−κ‖ξ−0−〈ξ〉1+x (i)(τ, ξ)‖L2

dξ

This needs to be complemented with a square-sum norm over
dyadic scales for the time derivatives( ∑

τ∼N&τ0

N dyadic

(
τ

τ0
)κ‖ξ−0−〈ξ〉

1
2
+Dτx (i)(τ, ξ)‖2L2

dξ

) 1
2 .

The fact that this iteration scheme actually converges relies
on a somewhat delicate re-iteration procedure, exploiting
eventual gains over many repetitions of the iterative step.
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Nonlinear wave equations with bubbling off blow up solutions

Intermediate stability result

The preceding scheme can be shown to converge in suitable
norm topology, leading to
Intermediate theorem : there is a co-dimension two
Lipschitz manifold of initial data perturbations (ε0, ε1) such
that the perturbed data

uspecific [t0] + (ε0, ε1)

lead to a solution blowing up in (0, 0) of the form

uspecific(t, x) + ε(t, x),

where we recall

uspecific(t, x) = Wλ(t)(x) + v(t, x)

is the original type II blow up as in KST ’09, KS’12 that we
perturb around.
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Nonlinear wave equations with bubbling off blow up solutions

From intermediate to optimal stability

Up until now the method did not use much of the specific
structure of the KST blow up solutions. In the next step, the
detailed structure of these solutions will become important.

The issue now becomes how to get rid of the vanishing
condition on the data perturbation which prevents the growth
of resonance. Once this is achieved, the desired optimal
co-dimension one stability result ensues.

Typically, this involves ’modulation’, i. .e exploitation of the
symmetries of the equation. Since we are working radially,
only scaling and time translation are possible candidates.

However, this does not work here, due to the precise structure
of the KST solutions, and more precisely, their ’shock
behaviour’ across the light cone.
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Nonlinear wave equations with bubbling off blow up solutions

Detailed structure of the KST solutions

As mentioned earlier, the KST solutions are obtained by first
constructing an approximate solution ue of the form

ue(t, x) = Wλ(t)(x) +
N∑

i=1

vi

and then adding a final correction via solving a suitable wave
equation. The corrections vi are solving suitable elliptic
problems.

Specifically, the v2k solve certain ODEs in the self-similar
variable a = r

t . This reduction hinges on the precise structure
of λ(t) = t−1−ν , namely being an exact power law, as well as
making a suitable ansatz for v2k .

Roughly speaking we have v2k (t, r) = λ
1
2 R

(λt)2k (1− a)(k−
1
2
)ν+ 1

2
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Nonlinear wave equations with bubbling off blow up solutions

Detailed structure of the KST solutions

Rescaling or time-translating ue then changes it by an amount
which is infinite with respect to the norm of admissible data

perturbations. These need to be of regularity H
3
2
+.

A more subtle way to modulate is required : replace
λ(t) = t−1−ν by (for N � 1).

λγ1,γ2(t) = (1 + γ1
tN

〈tN〉
+ γ2 log t

tN

〈tN〉
)t−1−ν , ν > 0.

It turns out that the exact same procedure that gave rise to
the KST ’09 solutions can be applied to build solutions of the
form

uγ1,γ2(t, x) = Wλγ1,γ2 (t)
(x) + v(t, x).

The u0,0(t, x) coincides with the original KST ’09, KS’ 12
solutions.
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Nonlinear wave equations with bubbling off blow up solutions

Detailed structure of the KST solutions

Modulation step :
Lemma (Burzio -K.) Given a pair of data perturbations
(ε1, ε2) small enough in a suitable norm, there exist unique
γ1, γ2, such that we have

u0,0[t0] + (ε1, ε2) = uγ1,γ2 [t0] + (ε̄1, ε̄2),

where (ε̄1, ε̄2) satisfy the vanishing conditions required to
bound resonance growth with respect to the new scaling
parameter λγ1,γ2 .

At this point, one can re-iterate the whole process leading to
the intermediate stability result, replacing λ(t) by λγ1,γ2(t), to
infer the optimal co-dimension one stability result.
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