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Qutline: two energy-critical parabolic problems

1. 2D Landau-Lifshitz equations:
— no blow-up for equivariant solutions of higher degree

2. Energy-critical nonlinear heat equation:

— global, decaying solutions below threshold
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1: 2D Landau-Lifshitz equations
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2D Landau-Lifshitz: an energy-critical geometric PDE

@ time-dependent maps
i(-,t) : M (=R?) = N (=S?)
ie. d(x,t) € R3, |d(x,t)| =1 (magnetization)
e energy (exchange): E(d(-, 1)) := 1 [oo VT2 dx
so —grad&(i) = Projr.e AT = AT +|Vi]*d

@ some geometric/physical evolution PDE arising from &:
heat-flow (geometry): Uy = Ao+ |VL7‘2L7

“Schrodinger map”: r=0x AT (= J gradE(d))

I

Landau-Lifshitz (micromagnetics): a >0, b€ R

iy = a (Ad+ |Va?d) + b i x Ad
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Scaling, Criticality, Bubbling, Threshold

In 2 space dimensions, M = R?, these PDE are energy critical:

t
ui(x,t) = LT(X

E’?> — E(@°)(t) = E(@)(t/s%), s>0

Question: which initial data lead to globally smooth solutions,
and which lead to singularity formation ?

[Struwe 85],[Qing 95],[Harpes 03]...: “Struwe” weak solution has at
most finitely many singular points, at which non-constant
harmonic maps bubble: eg,

X — Xp

s(t)

d(x,t) ~ H < > . s(t) =0, H:R?— S? harmonic
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Equivariant Formulation of Landau-Lifshitz

The Landau-Lifshitz equation &y = a (Ad + |[Vdl?d) + b i x Ad
preserves the symmetry class of m-equivariant maps,
me {1,2,3,...}:

sin ¢(r, t) cos(mf + a(r, t))
u(x,t) = | sino(r,t)sin(md + a(r,t))
cos ¢(r, t)

where (r = |x|,0) are polar coordinates on R?.

For the heat-flow (b = 0), the further reduction a(r,t) =0
(co-rotational) results in a scalar PDE for ¢(r, t):

d)t = ¢rr + %d’r - % Sin(2¢)
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Equivariant Maps: Energy, Topology, BCs, Harmonic Maps

Within the class of m-equivariant maps, m € {1,2,3,...}:
e energy: E(0) = [;° { (T—; + a%) sin2(¢)} rdr
@ choose BC: u|,:o = —k, U0 = k (lr=0 =7, @|r=00 =0)
1
— degree(t) = — [ 010 (0% Ot =m
47 R2
@ ‘Bogomolnyi' energy lower bound:
Ea<r<p(t) > 2mm|i3(b) — t3(a)| = 2wm| cos ¢p(b) — cos ¢(a)
with equality <= ' is harmonic on [a, b]: 35 > 0, € R,
u(x) = A = e(m-+a)iex (sin Qm(r/s),0,cos Qm(r/s)),
r
Qn(r) = 7 =260 (™) (6() = @ (2))
(or a shift or inversion thereof)

e in particular: £() > £(Hn) = 47m  (above threshold)
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Slightly Above-Threshold Flow: Harmonic Map 'Stability’

Gy = a (AT+ |VaPd) + b d x AG
m — equivariant, ‘O <&(0)—4rm < 1‘

[G-Nakanishi-Tsai 10]:
em>3: & (17(-, t) — Ijl,(,f‘x”a‘x’)> — 0 as t — oo (scattering
sense if a =0).
°om=2b=0: 5(u( £) — A “(t”) 5 0as t — oo, but
s(t) — 0 is possible (‘infinite-time singularity’)

m = 1: finite-time blowup is possible

@ heat-flow (b = 0) [Chang-Ding-Ye 93], [vdBerg-Hulshof-King 03] (formal
asymptotics), [Raphaél-Schweyer 12]
] Schrbdinger map (a = 0): [Merle-Raphaél-Rodnianski 11], [Perelman 12]
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Above-Threshold Heat-Flow: Large Data Global Regularity

Consider now the purely dissipative (b = 0), m-equivariant
heat-flow, in the co-rotational setting:

{@ Ap — g’ sin(2¢)
¢(r,0) = go(r), ¢(0,t) =m, (o0, t)=0

Theorem [G. - Roxanas]: If m > 4 and E(gbo) < 35(Qm), the
solution is global and smooth with

o(r,t) = Qm(r/sx) (some sy >0) ast— oo

@ main point: for higher-degree maps, there is no singularity
formation, even though there is sufficient energy

e condition &(¢g) < 3E(Qm) allows only one bubble

@ [Grotowski-Shatah 07]: similar result on a disk, via max. principle
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Global Smooth Solution <+ No Bubbles

The main point is to exclude (single) bubbling:

ti—> T, E(¢(. 1)~ Qmu(-/s5) — (- T)) =0
E(( 1)) = (-, T)) + E(Qm)

e if T = oo, then ¢(r,00) is harmonic, and ‘below threshold’

(E(P(-,00)) < 2E(Qm), #(0,00) = ¢(00,00) = 0), hence
¢(r7 OO) =0, 5((/5(7 t)) - S(Qm),

and infinite-time blow-up is ruled out by [G.-Nakanishi-Tsai]
@ it remains to rule out finite time blow-up: 7 <

@ can exclude concentration at infinity (s; — co) by (localized)
energy dissipation relation: hence s; — 0.
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Key Ingredient: Approximate Solution

At time t = tg < T close to the singular time, we have:
r
o(r. 1) = Qm (0> Lo T) 46 <l &) <1

Let ¢(r, t) be the solution for t > to with data o(r, t0) = ¢(r, T).
Since this is ‘below-threshold’, ¢ is global, smooth and decays to 0.
Idea: since s < 1 and <}5 decays,
Qm(r/s) + ¢(r,t) is a (global) approximate solution.
More precisely, with Eqn(¢) := ¢¢ — [A¢ + 15 sin(26)],
1Ean[Qm(-/5) + &Il 2ty me) i1y — 0 s s — 0.

So we may hope to express the (nearby) true solution as

¢(r7 t) = Qm(r/s)"i_(g(ra t)+€(r? t),

and control &(r, t) beyond the time of singularity.
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Key Ingredient: Linearized Evolution and Modulation

The equation for the error has the form:
¢ 4 Hsé = Eqn[Qm(-/s) + ¢] + Ve(d)€ + nonlinear terms

where the linearized operator about harmonic map Qpn(r/s) is

m2
Hs =—-A + — (1 —2(hp, )2), b5, (r) = sin Qu(r/s)
_ (LS)*LS’ _ hs d, hT -0, — (i;fz)r

Note h, € ker Hs (scale invariance), so linearized solutions do not
decay. We must modulate the scale, s = s(t), to impose £ L h3:

€+ Ha(€ = EqnQm(-/5) + ] — mgh @
+ Vi()¢

+ nonlinear terms.
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Key Ingredient: Linearized Decay Estimates

Linearized problem:
&+ (L)L =F, E 1L h;, € kerl®
[G.-Nakanishi-Tsai]: apply L®: n := L°¢,
ne+ L°(L7)'n = L°F,
Now L°(L%)* > —A+ 712 and so heat-equation estimates hold, eg:
10l oo 22000 < lImolliz + 1L F |l 2241201

Finally, recover £ from 1 = L°¢ by solving an ODE, eg:

£
§Lhn = &l + 11l S linfe.
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Complete the Argument

o(r.t) = Qm(r/s(t)) + &(r.t) +£(r, 1), € LA,
€ + Hiof = EqnlQn(:/s) + 8]~ m>h (1)

+ Vs(9)¢

+ nonlinear terms.

Using that Qu(-/s) + ¢ is an approximate solution (as above),
along with the linearized decay estimates, we find

1€ ]l Lo 2200010, 1) S €(€0) < 1,

S 2
liog (55 ) = izt < (€0 <1
for ty sufficiently close to T, contradicting the bubbling.
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Remark: alternate approach to estimates for heat-flow

o ¢ = Ad — M sin(2¢) = (8, + 1 — ™ cos(¢))(or + T sin(¢))

°© = qi=¢r+ % Sin(<b) qr + Hyq = %Sin(¢)q2
H¢:_A+w+2%7(l—cos(¢)) > —A+(mr_721)2

o for p = Q(-/s) + d+&, _
51=q—q, G:=(Q(-/s) + §)r + 2 sin(Q(-/s) + &)

2..,
- - - 1 "
a1, GetHod = * ST 47 sin(@+d)(@+aa)+ -

o can estimate [|q|[ /22,0 < 1, and then recover estimates
for £ by g ~ L°¢ as above
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Remark: extension to equivariant Landau-Lifshitz

0 -1 0
For equivariant maps i(x, t) = e™Ry(r,t), R= [ 1 0 0 ]
0 0 O

the Landau-Lifshitz equation reads
o m>?
v = (aP7 + bV ) <A + 2R2) V.
r

Generalized Hasimoto transform [Chang-Shatah-Uhlenbeck 00]:
Vi — TPk = qre+ qa(vV xe), D/e=0. Forq(r,t) = g1 + iqo:

(gc+(a+ib)LL g =—iSq| L=0,+ v,

and S, = Re (a+ mpVk . (6 — iV x a)) (ia— b)L*q.
By working with this equation for g as in the previous slide, we
expect to prove:
Conjecture: there is no (single) bubbling in the m > 4 equiv-
ariant Landau-Lifshitz flow.
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2: Energy-critical nonlinear heat equation
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Energy-critical NLH

ur = Au + u3, u(X,O) = UO(X) € HI(R4)

energy d|SS|pat|on E(u) = fR4( |Vu|2 1 4)
E(u( +fofuthd5—E( up)

e critical scaling: uy(x,t) = Au(Ax,A%t), E(uy) = E(u)
[2-relation: 21 [u? =~ [(|Vuf? — u*) = —K(u)

static solutions: W(x) = (1 + %)*1, AW+ W3 =0

sharp Sobolev: [u* < (f W4)_1 (f |Vu|2)2
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Global, decaying solutions below threshold

ur = Au+u3,  u(x,0) = up(x) € Hl(R4)

Theorem: E(up) < E(W), ||Vuwllp <|VW|p =
3! global, smooth solution with ||Vu(t)||;2 — 0, t — o

@ energy diss. 4+ Sobolev = sup||Vu(t)|2 < [[VW]|2
t

@ » u= W non-decaying solution
> ug € HY, E(ug) < E(W), |[Vuwll2 > [VW|2 = blow-up
(variant of [Levine 73])
> [Schweyer 12]: E(ug) = E(W) + € blow-up constructions
o c.f. recent work (blow—up/classification): Cortazer-delPino-Musso,
delPino-Musso-Wei, Collot-Merle-Raphaél, Matano-Merle

@ motivation: apply non-classically parabolic methods as in
[Kenig-Merle 06] for NLS, [Kenig-Koch 11] for N-S
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Local existence theory

Step 1: Local theory for

ur = Au+u3,  u(x,0) = u(x) € Hl(R4)

via standard spacetime estimates for 2 and fixed-point argument:
3! (maximal-lifespan) solution
u€e CH N LS, N L2HA(R* x [0, Tmax(uo)))
with, eg,
0 Tmax <0 = HUHLQ’t(R‘*x[O,TmaX)) =0
o [Vuwll2 <eo = Thmax = o0,
u € L5 4([0,00)), Vu€ L3 ([0, 00))
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Decay of below-threshold global solutions

Step 2: Global solutions decay (as [Gallagher-Iftimie-Planchon 02] for NS)

Tmax = oo and Sup; ”Vu(t)”g < HVWHQ
= ue Lg,t([O, o0)) and |[|[Vu(t)|l2 — 0

1. ue Lgyt[O, OO) - HVu(t)Hg — 0 (split Duhamel integral)

2. ifupel? & [uP=-2K(u)S—[|Vu = Vuel?,
= dt “VU(?)“Q <egy = uUc Lgyt([O,oo)) (small-data theory)
3. > Uy = Wy + Vp, ||VWOH2 <1l e H!

» w e L9,[0,00) solution from small data wo
> same [ argument for v(t) =u—w = v e L ([0, 00))
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Existence of critical element

Step 3: Minimal blow-up solution
JE. € (0,||VW||2] maximal s.t.
SUP£E[0, Tpay) I VU(E)I3 < Ec = Timax = 00, u € L ([0, 00))

3 sol. uc, sup  ||[Vue(t)|3 = Ee, [uell L6 ([0, Tmar) = O©
tE[O Tmax) ’

{ﬁuc (X)i( t) t) | t €0, Tmax)} H!-precompact

@ proof follows [Kenig-Merle 06], [Killip-Visan 10], based on profile
decomposition ([Bahouri-Gérard 99],[Keraani 01]...) associated to ef®

e goal: E. = ||[VW|3

o if E. < |[VW/|3, then T = Tax(uc) < 0o (and hence
A(t) = oo, t — T), and so it remains to exclude compact,
finite-time blow-up.
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Bounded centre of compactness

Step 4: |X(t)| 4 oo (by cut-off energy dissipation relation)
@ E:= inf E(uc(t)) > 0 (via (cut-off) L2-relation,
t<T
K(u) =2E(u) — % u*)
o tg < T, e(to) :== [ (3|Vue(to)|* — Luc(to)*) X|x|>Ry < iE
> 3E
4

o if tp, = T, |x(t,)| — oo, then e(t;) > 3E, some t; € (to, T)

* Ee (t) = — [((ue)e) 2x — J(ue)eVue - Vx S [ Vuell2]|(ue)ell2

@ by compactness and energy-dissipation,

t:
0 < 3E< [} &e(t) S I Vuellgoell(ue)ell 22/ T — 10 — 0
astg — T
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Parabolic tools

Step 5: local small energy regularity:

: k
€= [ull oo (prrpay(Byx(—10)) S €0 = _ max |D"u| < cke
B%X[7§70]

(can prove via successive cut-offs and energy estimates).

Step 6: backward uniqueness and unique continuation:

as in [Escuariaza-Seregin-Sverak 02] for N-S

to conclude that since u. is regular and — 0 away from the origin
as t — T, we must have u. = 0.
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