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Cubic Dirac equation

−iγµ∂µψ +Mψ = (ψψ)ψ

ψ(0) = f

}
on (t, x) ∈ R× Rn.

• M > 0, and ψ(t, x) : R1+n → CN with N =

{
2 n = 1, 2

4 n = 3.

• Repeated Greek indices are summed over µ = 0, ..., n, and ∂0 = ∂t,
∂j = ∂xj (j > 1).

• γµ are (constant) N ×N complex matrices such that

γµγν + γνγµ = 2gµνIN×N , (γ0)† = γ0, (γj)† = −γj

and gµν = diag(1,−1,−1,−1). In particular,

(−iγµ∂µ +M)†(−iγµ∂µ +M) = ∂2t −∆ +M2 = �+M2.
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Cubic Dirac equation

−iγµ∂µψ +Mψ = (ψψ)ψ

ψ(0) = f

}
on (t, x) ∈ R× Rn.

• If n = 3, one choice is

γ0 =

(
I2×2 0

0 −I2×2

)
, γj =

(
0 σj

−σj 0

)
where the Pauli matrices σj are defined as

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

• If n = 1, 2, we take

γ0 = σ3, γ1 = iσ2, γ2 = −iσ1.
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Cubic Dirac equation

−iγµ∂µψ +Mψ = (ψψ)ψ

ψ(0) = f

}
on (t, x) ∈ R× Rn.

• Dirac adjoint ψ = ψ†γ0 (implies ψψ ∈ R).

• Two main models

(ψψ)ψ Soler Model [SOLER’70]

(ψγµψ)γµψ Thirring Model [THIRRING’58]

• Squaring the Dirac equation leads to an equation of the form

�ψ +M2ψ = Mψ3 + ψ2∂ψ.
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Cubic Dirac equation

−iγµ∂µψ +Mψ = (ψψ)ψ

ψ(0) = f

}
on (t, x) ∈ R× Rn.

• Basic conserved quantities are the Charge

Q[ψ] = ‖ψ‖L2
x(Rn)

and the Energy

E[ψ] =

∫
Rn

i

2

(
ψγ0∂tψ − ∂tψγ0ψ

)
+

1

2

(
ψψ
)2
dx.

Can decompose ψ = ψ+ + ψ−

E[ψ] =

∫
Rn

∣∣〈∇〉 12ψ+

∣∣2 − ∣∣〈∇〉 12ψ−∣∣2 − 3

2
(ψψ)2dx.
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Scaling

−iγµ∂µψ +Mψ = (ψψ)ψ

ψ(0) = f

}
on (t, x) ∈ R× Rn.

• If M = 0 and ψ(t, x) is a solution, then ψλ(t, x) = λ
1
2ψ(λt, λx) also a

solution.
• Thus the Cubic Dirac equation is critical in H

n−1
2 , in particular,

n = 1 problem is Charge critical, scale invariant space is L2.

n = 2 problem is Energy critical, scale invariant space is Ḣ
1
2 .

• Basic Questions:

1 (LWP) Given data f ∈ Hs can we find a time T > 0 and a unique solution
ψ ∈ C([0, T ], Hs) which depends continuously on the data?

2 (GWP and asymptotic behaviour) Can we extend local solution to a global
solution ψ ∈ C(R, Hs)? What happens as t→∞?
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Case n = 1: large data GWP

Focus on Thirring model

−iγµ∂µψ +Mψ = (ψγµψ)γµψ.

Theorem (C.’12)
Let n = 1 and M > 0. Then the Thirring model is globally well-posed from large
data in L2

x(R).

• For Soler model nonlinearity (ψψ)ψ, only have small data global
well-posedness.

• Previous results: gwp for regular large data [DELGADO’78], large data global
existence s > 1

2 [SELBERG-TESFAHUN’10].
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Case n = 1: modified scattering

Focus on Thirring model

−iγµ∂µψ +Mψ = (ψγµψ)γµψ.

Theorem (C.-Lindblad’16)
Let n = 1 and M = 1. If the data satisfies ‖〈x〉4f‖H5 � 1 then for the solution
ψT = (ψ1, ψ2) we have the pointwise asymptotics as ρ =

√
t2 − x2 →∞

√
t− x(ψ1 + ψ2)

= eiρ+2i|f+( xt )|
2 ln(ρ)f+(xt ) + e−iρ+2i|f−( xt )|

2 ln(ρ)f−(xt ) +O
(
ρ−

1
2

)
√
t+ x(ψ1 − ψ2)

= eiρ+2i|f+( xt )|
2 ln(ρ)f+(xt )− e−iρ+2i|f−( xt )|

2 ln(ρ)f−(xt ) +O
(
ρ−

1
2

)
.

• For linear Dirac log correction vanishes.
• In the massless case M = 0, can explicitly write down solution in terms of

data.
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Sketch of proof

Argument follows original approach to modified scattering for Klein-Gordon
equation [DELORT’01], [LINDBLAD-SOFFER’05].

• We consider separately the exterior region 1 6 t 6 〈x〉, and the interior
region t > 〈x〉.

• Exterior region Klein-Gordon equation has fast decay. Can exploit this by
rewriting problem as a cubic Klein-Gordon equation which is schematically
of form

�ψ + ψ = ψ3 + ψ2∂ψ

together with weighted energy estimates as in [KLAINERMAN’93].

• This gives the decay bound

|ψ(t, x)| . 〈x〉−1‖〈x〉4ψ0‖H5

easily enough decay to close bootstrap argument.
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Sketch of proof

• Remains to construct solution in the more interesting interior region t > 〈x〉.
Introduce hyperbolic coordinates

t = ρ cosh(y), x = ρ sinh(y)

so ρ =
√
t2 − x2. After extracting linear decay/oscillations reduce to system

of form
∂ρφ± + e∓2iρ

1

ρ
∂yφ± = i|φ±|2φ± + ∂ρS± +R±

where R± = O(ρ−2), and ∂ρS± ∼ ρ−1.

• Construct a strong norm E [φ±](ρ) . ln ρ, which controls errors terms,
equation for φ± then gives L∞ bounds, and can hence reduce to ODE
which gives asymptotic correction.

• Sharper methods can clearly be used to weaken assumptions [STINGO’15],
[IFRIM-TATARU’15]...
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Case n = 1: further results

• Thiring model is completely integrable, and in particular, explicit soliton
solutions are known for the Thirring model, for instance for |ω| < M

ψ = eitω
(
aω(x) + a†ω(x)
aω(x)− a†ω(x)

)
with

Uω(x) =

√
M − ω2

√
M + ω cosh(

√
M − ω2 x) + i

√
M − ω sinh(

√
M − ω2 x)

.

• Orbital stability in L2
x of these solitons was recently obtained

[CONTRERAS-PELINOVSKY-SHIMABUKURO’16] via inverse scattering methods.
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Case n = 2, 3: small data gwp and scattering

Theorem (Bejenaru-Herr’15, ’16, Bournaveas-C.’15)
Let n = 2, 3 and M > 0. There exists ε > 0 such that if ‖f‖

H
n−1
2

< ε then there

exists a global solution ψ ∈ C(R, H
n−1
2 ) which is unique in a certain subspace,

and depends continuously on the data. Moreover ψ scatters to a linear solution
as t→ ±∞, thus there exists ψ±∞ with (−iγµ∂µ +M)ψ±∞ = 0 such that

lim
t→±∞

‖ψ(t)− ψ±∞(t)‖
H
n−1
2

= 0.

• Result also holds in the case of the Thirring Model

−iγµ∂µψ +Mψ = (ψγµψ)γµψ.

When n = 3 can also add combinations of

(ψγ5ψ)ψ, (ψψ)γ5ψ, (ψγ5ψ)γ5ψ

where γ5 = −iγ0γ1γ2γ3 (essentially any Lorentz covariant nonlinearity).
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Case n = 2, 3: small data gwp and scattering

Theorem (Bejenaru-Herr’15, ’16, Bournaveas-C.’15)
Let n = 2, 3 and M > 0. There exists ε > 0 such that if ‖f‖

H
n−1
2

< ε then there

exists a global solution ψ ∈ C(R, H
n−1
2 ) which is unique in a certain subspace,

and depends continuously on the data. Moreover ψ scatters to a linear solution
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Large data solutions n = 3

Theorem (C.-Herr’17)
Let z ∈ C, |z| = 1, and M,A > 0. There exists ε = ε(A) > 0 such that if
‖ψ(0)‖H1 6 A and

‖ψ(0) + zγ2ψ∗(0)‖H1 6 ε

solution is globally well-posed and scatters to a free solution.

• First observed by [CHADAM-GLASEY’74] with ε = 0, [BACHELOT’89] for smooth data,
[D’ANCONA-OKAMOTO’17] angular regularity plus potential.

• Key point is that structural assumption implies that product ψψ is small, so
can run perturbative argument as in the small data case.
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Previous Results for Cubic Dirac:

• Local well-posedness for s > 1 (subcritical range) due to [ESCOBEDO-VEGA ’97].
• Global well-posedness and scattering when s > 1 and M > 0, or s = 1 and

some additional angular regularity due to [MACHIHARA-NAKANISHI-OZAWA ’03,

MACHIHARA-NAKAMURA-OZAWA’04, MACHIHARA-NAKAMURA-NAKANISHI-OZAWA’05].
• If n = 2, local well-posedness in subcritical regime [PECHER ’14].
• Existence of solitary wave solutions [STRAUSS-VÁSZQUEZ ’86,CAZENAVE-VÁSZQUEZ ’86,MERLE ’88,

ESTEBAN-SÉRÉ’93, ...]

ψ(t, x) = e−iωtψω(x).

• (linear) stability/instability of solitary waves [COMECH-GUAN-GUSTAFSON’14,

CONTRERAS-PELINOVSKY-SHIMABUKURO’16, BOUSSAID-COMECH’16...]
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Basic Linear Bounds

−iγµ∂µψ +Mψ = 0

ψ(0) = f

}
on (t, x) ∈ R× Rn.

• Energy Estimate

‖ψ‖L∞t Hsx(R×Rn) . ‖f‖Hs(Rn) + ‖(−iγµ∂µ +M)ψ‖L1
tH

s
x(R1+n)

• L∞ Strichartz
Let 1

q < min{n−14 , 12}. Then

‖ψ‖LqtL∞x (R×Rn) . ‖f‖
H
n
2
− 1
q (Rn)

+ ‖(−iγµ∂µ +M)ψ‖
L1
tH

n
2
− 1
q

x (R1+n)

(see [STRICHARTZ’77],[GINIBRE-VELO’89],[ESCOBEDO-VEGA ’97]...).
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First Attempt: n = 3

• Energy estimate gives

‖ψ‖L∞t Hsx . ‖f‖Hs + ‖ψψψ‖L1
tH

s
x

but nonlinear estimate loses a power of T since

‖ψψψ‖L1
TH

s
x
≈ ‖ψ2∇sψ‖L1

TL
2
x
. ‖ψ‖2L2

TL
∞
x
‖ψ‖L∞T Hsx

and we can only put ψ ∈ LqtL∞x for q > 2.
• However does give lwp for s > 1 [ESCOBEDO-VEGA ’97], and can be pushed to give

gwp when s > 1,m > 1 (using Klein-Gordon Strichartz) or have additional
angular regularity [MACHIHARA-NAKAMURA-NAKANISHI-OZAWA’05].

• Endpoint case requires L2
tL
∞
x (R1+n) bound. Unfortunately this estimate

fails [KLAINERMAN-MACHEDON ’93], also fails in L2
t (R, BMOx(R3)) [MONTGOMERY-SMITH ’98].

• To improve need two further ingredients:
1 Null Structure and bilinear estimates (without structure, blow-up can occur

[LINDBLAD’96, D’ANCONA-OKAMOTO’16] ).
2 Need to exploit null frames introduced by Tataru in the study of the wave maps

equation.
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Null Structure I
Let −iγµ∂µψ = 0 and consider the bilinear term ψψ.
• Introduce potential

−iγµ∂µϕ = ψ.

Then �ϕ = 0 and
ψψ = Q(ϕ,ϕ)

where Q is sum of classical null forms

Qµν(u, v) = ∂µu∂νv − ∂νu∂µv, Q0(u, v) = ∂µu∂νv

• These bilinear forms have improved regularity/decay properties and have
been well-studied [KLAINERMAN-MACHEDON’93], [KLAINERMAN-FOSCHI’00], [LEE-VARGAS’08]

• As a consequence, we get the bound∥∥ψψ∥∥
L2
t,x
.
∥∥ψ(0)

∥∥
L2
x
‖ψ(0)‖

H
n−1
2
.
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Null structure II

• Null structure means that in certain situations we get to pretend that for the
good product ψψ, the L2

tL
∞
x Strichartz bound holds.

• For the Thirring model nonlinearity, we use the Fierz identities to deduce that

(ψγµψ)γµψ =

{
(ψψ)ψ n = 2

(ψψ)ψ − (ψγ5ψ)γ5ψ n = 3

where γ5 = −iγ0γ1γ2γ3. Can check that ψγ5ψ is again a good product.

• To close an iteration argument, now requires exploiting the above null
structure observation in the adapted null frame spaces used in the wave
map theory (if M = 0), and constructing null frame spaces adapted to the
hyperboloid (if M > 0).
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Dirac-Klein-Gordon system on R1+3.

−iγµ∂µψ +Mψ = φψ

�φ+m2φ = ψψ

with φ : R1+n → R and ψ : R1+n → CN . Masses satisfy M,m > 0.

• Scaling is
(
ψ(0), φ(0), ∂tφ(0)

)
∈ L2 ×H 1

2 ×H− 1
2 .

• Local well-posedness is known in Hε ×H 1
2+ε ×H− 1

2+ε [D’ANCONA-FOSCHI-SELBERG’07].
Builds on earlier work of [KLAINERMAN-MACHEDON’94] [BEALS-BEZARD’96] [BOURNAVEAS’99] [FANG-GRILLAKIS’05].

• Have small data global well-posedness and scattering for critical data with
σ > 0 angular derivatives and M,m > 0 [C.-HERR’16], results in non-resonant
case 2M > m > 0 [BEJENARU-HERR’15], [WANG’13]
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σ > 0 angular derivatives and M,m > 0 [C.-HERR’16], results in non-resonant
case 2M > m > 0 [BEJENARU-HERR’15], [WANG’13]
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Large Data gwp

Theorem (C.-Herr’17)
Let z ∈ C, |z| = 1. Let M,m > 0 and σ > 0. For any A > 0, there exists
ε = ε(A) > 0 such that if

‖〈Ω〉σφ(0)‖
H

1
2

+ ‖〈Ω〉σ∂tφ(0)‖
H−

1
2

+ ‖〈Ω〉σψ(0)‖L2 6 A,

and ∥∥〈Ω〉σ(ψ(0) + zγ2ψ∗(0)
)∥∥
L2
x
6 ε

then the DKG system is globally well-posed and scatters to free solutions as
t→ ±∞.

• Related work in the smooth case [CHADAM-GLASSEY’74], [BACHELOT’89].
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Sketch of proof

−iγµ∂µψ +Mψ = φψ

�φ+m2φ = ψψ

• From previous work [C.-HERR’16] given an interval I ⊂ R, have a norm F s,σ and
a bilinear estimate

‖ψ‖F 0,σ(I) . ‖〈Ω〉σψ(0)‖L2
x

+ ‖φ‖
F

1
2
,σ(I)
‖ψ‖F 0,σ(I).

Problem is that we have no smallness here (assumption only implies ψψ is
small).

• Moreover, the norms F s,σ(I) don’t become small as I shrinks (they are
essentially V 2 type norms with some modulation gain). Instead need to
prove stronger bound, for some δ > 0

‖ψ‖F 0,σ(I) . ‖〈Ω〉σψ(0)‖L2
x

+ ‖〈Ω〉σφ‖δL4
t,x(I×R3)‖φ‖

1−δ
F

1
2
,σ(I)
‖ψ‖F 0,σ(I)

as the L4
t,x(I × R3) does become small as I shrinks.
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Improved Bilinear Estimate

The key additional ingredient is the following bilinear restriction type estimate at
multiple scales.

Theorem (C.’17)
Let n > 2, 1 6 q, r 6 2, 1

q + n+1
2r < n+1

2 , and 0 6 mj . λj for j = 1, 2. Let

α > 0 and define β = ( m1

αλ1
+ m2

αλ2
+ 1)−1. If the supports of f̂ and ĝ are

α-transverse, and at frequencies λ1 and λ2 respectively, then

∥∥eit〈∇〉m1 feit〈∇〉m2 g
∥∥
LqtL

r
x
. αn−1−

n−1
r −

2
q β1− 1

r λ
n−nr−

1
q

min

(λmax
λmin

) 1
q−

1
2 ‖f‖L2‖g‖L2

where λmin = min{λ1, λ2}, λmax = max{λ1, λ2}, and the implied constant is
independent of m1,m2.

• This is Klein-Gordon version of the Wave bilinear restriction estimates of
[LEE-VARGAS’08], [TAO’01], [WOLF’01]...
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