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Cubic Dirac equation

—iy" B, + M = (Pp)p

¥(0)=f } on (t,z) € R x R™.
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Cubic Dirac equation

—iy" O + Mip = (Yip)ep

5(0) = f } on (t,z) € R x R™.

2 =
e M >0,and 9(t,z) : RM*™ — CN with N = {4 n=12

n=3.
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Cubic Dirac equation

—iy" O + Mip = (Yip)ep

5(0) = f } on (t,x) € R x R™.

2 n=1,2

e M >0,and 9(t,z) : RM*™ — CN with N = {4 3
n=3.

e Repeated Greek indices are summed over i, = 0, ...,n, and dy = 0,
0j =0y, (j 2 1).
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Cubic Dirac equation

—iy" 9 + Myp = (Y1)

5(0) = f } on (t,x) € R x R™.

2 n=1,2

e M >0,and 9(t,z) : RM*™ — CN with N =
4 n=3.

e Repeated Greek indices are summed over i, = 0, ...,n, and dy = 0,
9; =0, (j = 1).
e vy are (constant) N x N complex matrices such that
P =2 Ik, ()T =20 ()T =
and g" = diag(1, —1, —1, —1). In particular,
(=i, + M) (—in"d, + M) = 9} — A+ M? =0+ M>.
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Cubic Dirac equation

—iy" Ot + Mip = (Pp)y
$(0) = f

e |f n = 3, one choice is

40 = Izyo 0 > i
0  —Iaxo)’

where the Pauli matrices o7 are defined as

L (01 s (0 —i s (10
"(10’ = o) 770 1

} on (t,z) € R x R™.
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Cubic Dirac equation

—iy" Ot + Mip = (Pp)y
$(0) = f

e |f n = 3, one choice is

0 __ I2><2 0 j _ O ) O'j
7= 0 _IQXQ ’ v —ag’ 0

where the Pauli matrices o7 are defined as
0 1 0 —i . 1 0
1 _ 2 3 _
A=) () =6 )

e Ifn=1,2, we take

} on (t,z) € R x R".
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Cubic Dirac equation

—iy" O + Mip = (Yip)ep

5(0) = f } on (t,z) € R x R™.

e Dirac adjoint ) = 1T~ (implies ¥v € R).
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Cubic Dirac equation

ik, +zi(4;§ - E:/nb)w } on (t.2) € R x R™
e Dirac adjoint ) = 1T~ (implies ¥v € R).
e Two main models

(i) Soler Model gsoes 7oy
(@%ﬂp)’yuiﬁ Thirring MOdel [THIRRING'58]
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Cubic Dirac equation

—"Out + My = (Yy)y on(t,z) € R x R"
¥(0) = f ’ '

e Dirac adjoint ) = 1T~ (implies ¥v € R).

e Two main models

(i) Soler Model gsoes 7oy
(@%ﬂp)’yuw Thirring MOdel [THIRRING'58]

e Squaring the Dirac equation leads to an equation of the form

O + M?¢p = Map>® + 200.
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Cubic Dirac equation

—iy" O + Mip = (Yip)ep

5(0) = f } on (t,x) € R x R™.

e Basic conserved quantities are the Charge

QY] = ¥l Lz &)
and the Energy

Bl = [ 5 @00 = 302°%) + 5 (F0) do.
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Cubic Dirac equation

—iy" 9 + Myp = (Y1)

5(0) = f } on (t,x) € R x R™.

e Basic conserved quantities are the Charge

QW] = [[¥llL2®n)
and the Energy

L — — 1 —
Bl = [ 5700~ 007°) + 5 (50) do.
Can decompose 1) = 1 + 1

Blol = [ 19120 = (9o = S0,
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Scaling

—iy' O + Myp = (P)yp

5(0) = f } on (t,z) € R x R™.

o If M = 0and (¢, z) is a solution, then iy (¢, z) = A2¢(\t, Az) also a
solution.

Timothy Candy — Scattering for the Cubic Dirac equation 6/22



Scaling

—iy' O + Myp = (P)yp

5(0) = f } on (t,z) € R x R™.

o If M =0and ¢(t,x) is a solution, then ¢, (t,x) = )\%w()\t, Ar) also a
solution.

e Thus the Cubic Dirac equation is critical in H"= ,in particular,

n = 1 problem is Charge critical, scale invariant space is L>.

n = 2 problem is Energy critical, scale invariant space is H?2.
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Scaling

—iy" 9 + Myp = (P)¢ n
5(0) = f } on (t,z) € R x R™.

o If M =0and ¢(t,x) is a solution, then ¢, (t,x) = )\%w()\t, Ar) also a
solution.
e Thus the Cubic Dirac equation is critical in H"= ,in particular,

n = 1 problem is Charge critical, scale invariant space is L>.

n = 2 problem is Energy critical, scale invariant space is H?2.

e Basic Questions:
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Scaling

—iy" 0,0 + Mip = (Pi)ip on (t,z) € R x R™.
(0) = f |

o If M =0and ¢(t,x) is a solution, then ¢, (t,x) = )\%w()\t, Ar) also a
solution.
e Thus the Cubic Dirac equation is critical in H"= ,in particular,
n = 1 problem is Charge critical, scale invariant space is L>.
n = 2 problem is Energy critical, scale invariant space is Hz.
e Basic Questions:

© (LWP) Given data f € H*® can we find a time 7" > 0 and a unique solution
¥ € C([0,T], H*) which depends continuously on the data?

6/22

Timothy Candy — Scattering for the Cubic Dirac equation



Scaling

—iy" 0,0 + Mip = (Pi)ip on (t,z) € R x R™.
(0) = f |

o If M =0and ¢(t,x) is a solution, then ¢, (t,x) = )\%w()\t, Ar) also a
solution.
e Thus the Cubic Dirac equation is critical in H"= ,in particular,

n = 1 problem is Charge critical, scale invariant space is L>.

n = 2 problem is Energy critical, scale invariant space is H?2.

e Basic Questions:
© (LWP) Given data f € H*® can we find a time 7" > 0 and a unique solution
¥ € C([0,T], H*) which depends continuously on the data?
® (GWP and asymptotic behaviour) Can we extend local solution to a global
solution ¢ € C(R, H*)? What happens as t — co?

6/22
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Case n = 1: large data GWP

Focus on Thirring model

— iy O + Mip = (" )y,

Theorem (C’12)

Letn =1 and M > 0. Then the Thirring model is globally well-posed from large
data in L2(R).
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Case n = 1: large data GWP

Focus on Thirring model

— iy O + Mip = (" )y,

Theorem (C’12)

Letn =1 and M > 0. Then the Thirring model is globally well-posed from large
data in L2(R).

e For Soler model nonlinearity (¢¢)v, only have small data global
well-posedness.
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Case n = 1: large data GWP

Focus on Thirring model

— iy O + Mip = (" )y,

Theorem (C’12)

Letn =1 and M > 0. Then the Thirring model is globally well-posed from large
data in L2(R).

e For Soler model nonlinearity (¢¢)v, only have small data global
well-posedness.

e Previous results: gwp for regular large data weweroo7sl, large data global
eXiStence S > % [SELBERG-TESFAHUN'10].

7122
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Case n = 1: modified scattering

Focus on Thirring model
—iy" O + Mep = (PyHap) .

Theorem (C.-Lindblad’16)

Letn =1 and M = 1. If the data satisfies ||(x)* f|| ;s < 1 then for the solution
T = (31,12) we have the pointwise asymptotics as p = \/t2 — x2 — oo

Vit —z(th1 + 12)
_ eip+2i|f+(%)|21n(p)f+(%) 1 et t2il - (DI e) f (2) 4 O(p,%)
Vit+ (Y1 — o)

_ eiﬂ+2i|f+(%)|2ln(ﬁ))f+(%) _ e—ip+2i|f—(%)|2ln(P)f_(%) + (’)(p_%).

v
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Case n = 1: modified scattering

Focus on Thirring model
—iy" O + Mep = (PyHap) .

Theorem (C.-Lindblad’16)

Letn =1 and M = 1. If the data satisfies ||(x)* f|| ;s < 1 then for the solution
T = (31,12) we have the pointwise asymptotics as p = \/t2 — x2 — oo

v@ij5(¢14-¢2)
. 2 z\|2 n T —q | fo (& 2 n xz -1
— ipt2il 4 ($)171 (p)f+(?)+e p+2i|f- ()71 (p)ff(?)_k(g(p 2)

Vit +x(Y1 — 1)

= eiP+27?|f+(f)\2111(P)f+(%) _ e—ipt2ilf- (D) ln(ﬁ)f_(%) + (’)(p_%).

v

e For linear Dirac log correction vanishes.
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Case n = 1: modified scattering

Focus on Thirring model
—iy" O + Mep = (PyHap) .

Theorem (C.-Lindblad’16)

Letn =1 and M = 1. If the data satisfies ||(x)* f|| ;s < 1 then for the solution
T = (31,12) we have the pointwise asymptotics as p = \/t2 — x2 — oo

v@ij5(¢14-¢2)
. 2 z\|2 n T —q | fo (& 2 n xz -1
— ipt2il 4 ($)171 (p)f+(?)+e p+2i|f- ()71 (p)ff(?)_k(g(p 2)

Vit +x(Y1 — 1)

= eiP+27?|f+(f)\2111(P)f+(%) _ e—ipt2ilf- (D) ln(ﬁ)f_(%) + (’)(p_%).

v

e For linear Dirac log correction vanishes.
¢ In the massless case M = 0, can explicitly write down solution in terms of
data.

8/22
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Sketch of proof

Argument follows original approach to modified scattering for Klein-Gordon
equatlon [DELORT’01], [LINDBLAD-SOFFER’05].

o We consider separately the exterior region 1 < ¢ < (x), and the interior
regiont > (x).
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Argument follows original approach to modified scattering for Klein-Gordon
equatlon [DELORT’01], [LINDBLAD-SOFFER’05].

o We consider separately the exterior region 1 < ¢ < (x), and the interior
regiont > (x).

e Exterior region Klein-Gordon equation has fast decay. Can exploit this by

rewriting problem as a cubic Klein-Gordon equation which is schematically
of form

O+ 4 = ¥ + 4200

together with weighted energy estimates as in waneamavsa.
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Sketch of proof

Argument follows original approach to modified scattering for Klein-Gordon
equatlon [DELORT’01], [LINDBLAD-SOFFER’05].

o We consider separately the exterior region 1 < ¢ < (x), and the interior
regiont > (x).

e Exterior region Klein-Gordon equation has fast decay. Can exploit this by
rewriting problem as a cubic Klein-Gordon equation which is schematically
of form

O¢p + ¢ = ¢° + %0y
together with weighted energy estimates as in waneamavsa.
e This gives the decay bound

¥, 2)] < (@) @) ol s

easily enough decay to close bootstrap argument.
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Sketch of proof

e Remains to construct solution in the more interesting interior region ¢ > (x).
Introduce hyperbolic coordinates

t = pcosh(y), x = psinh(y)

so p = V12 — x2. After extracting linear decay/oscillations reduce to system
of form

1 ‘
O0p+ + emwzayd& =ilps’ps + 0,5+ + Ry

where Ry = O(p~?),and 9,54 ~ p~ L.
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Sketch of proof

e Remains to construct solution in the more interesting interior region ¢ > (x).
Introduce hyperbolic coordinates

t = pcosh(y), x = psinh(y)

so p = V12 — x2. After extracting linear decay/oscillations reduce to system
of form

] o
0pp+ + emwzayd& =il¢+|*ds + 9,5+ + Ra
where Ry = O(p~?),and 9,54 ~ p~ L.

e Construct a strong norm £[¢1](p) < In p, which controls errors terms,
equation for ¢ then gives L°° bounds, and can hence reduce to ODE
which gives asymptotic correction.
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Sketch of proof

e Remains to construct solution in the more interesting interior region ¢ > (x).
Introduce hyperbolic coordinates

t = pcosh(y), x = psinh(y)

so p = V12 — x2. After extracting linear decay/oscillations reduce to system
of form

] o
0pp+ + emwzayd& =il¢+|*ds + 9,5+ + Ra
where Ry = O(p~?),and 9,54 ~ p~ L.

e Construct a strong norm £[¢1](p) < In p, which controls errors terms,
equation for ¢ then gives L°° bounds, and can hence reduce to ODE
which gives asymptotic correction.

e Sharper methods can clearly be used to weaken assumptions (srwcos,

[IFRIM-TATARU'15]. ..
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Case n = 1: further results

e Thiring model is completely integrable, and in particular, explicit soliton
solutions are known for the Thirring model, for instance for |w| < M

ay(z) + al (z)

p=c (i tal)

VM — w?
VM F wcosh(vVM — w?z) +iv/M — wsinh(vVM — w?z)
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Case n = 1: further results

e Thiring model is completely integrable, and in particular, explicit soliton
solutions are known for the Thirring model, for instance for |w| < M

au(x) + al,(z)

v=e () L)

VM — w?
VM F wcosh(vVM — w?z) +iv/M — wsinh(vVM — w?z)

« Orbital stability in L2 of these solitons was recently obtained
[CONTRERAS-PELINOVSKY-SHIMABUKURO'16] via inverse Scattering methods.

U,(z) =

Timothy Candy — Scattering for the Cubic Dirac equation 11/22



Case n = 2, 3: small data gwp and scattering

Theorem (Bejenaru-Herr'15, 16, Bournaveas-C.'15)
Letn = 2,3 and M > 0. There exists ¢ > 0 such that if||f\|Hn;1 < ¢ then there

exists a global solutiony € C(R, H %) which is unique in a certain subspace,
and depends continuously on the data. Moreover 1) scatters to a linear solution
ast — +oo, thus there exists V1o with (—ir"0,, + M)+ = 0 such that

lim_[6(0) ~ Yol 22 = 0.

t—+oo
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Case n = 2, 3: small data gwp and scattering

Theorem (Bejenaru-Herr'15, 16, Bournaveas-C.'15)
Letn = 2,3 and M > 0. There exists ¢ > 0 such that if||f\|Hn;1 < ¢ then there

exists a global solutiony € C(R, H %) which is unique in a certain subspace,
and depends continuously on the data. Moreover 1) scatters to a linear solution
ast — +oo, thus there exists V1o with (—ir"0,, + M)+ = 0 such that

lim_[6(0) ~ Yol 22 = 0.

t—+oo

¢ Result also holds in the case of the Thirring Model

—iv* O + Mip = (vy*h)v,0.
When n = 3 can also add combinations of
(DY), @)Y, (YY) Y
0~1~2,3

where 75 = —ir¥y1~42+3 (essentially any Lorentz covariant nonlinearity).
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Large data solutions n = 3

Theorem (C.-Herr'17)

Letze€ C, |z| =1, and M, A > 0. There exists ¢ = ¢(A) > 0 such that if
1%(0) ||z < A and ,
[4(0) + 27*¢"(0) |1 < e

solution is globally well-posed and scatters to a free solution.

13/22
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Large data solutions n = 3

Theorem (C.-Herr'17)

Letze€ C, |z| =1, and M, A > 0. There exists ¢ = ¢(A) > 0 such that if
1%(0) ||z < A and ,
[4(0) + 27*¢"(0) |1 < e

solution is globally well-posed and scatters to a free solution.

e First observed by [CHADAM-GLASEY'74] with e = 0, [BACHELOT'89] for smooth data,
[0'ancona-okawotoi7] @N@ular regularity plus potential.
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Large data solutions n = 3

Theorem (C.-Herr'17)

Letz € C, |z| =1,and M, A > 0. There exists e = ¢(A) > 0 such that if
1%(0) ||z < A and ,
[4(0) + 27*¢"(0) |1 < e

solution is globally well-posed and scatters to a free solution.

e First observed by [CHADAM-GLASEY'74] with e = 0, [BACHELOT'89] for smooth data,
[0'ancona-okawotoi7] @N@ular regularity plus potential.

« Key point is that structural assumption implies that product ¢ is small, so
can run perturbative argument as in the small data case.

13/22
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Previous Results for Cubic Dirac:

e Local well-posedness for s > 1 (subcritical range) due t0 (escosevo-veen 971.
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e Global well-posedness and scattering when s > 1 and M > 0, or s =1 and
some additional angular regularity due to [MAGHIHARA-NAKANISHI-OZAWA '03,

MACHIHARA-NAKAMURA-OZAWA'04, MACHIHARA-NAKAMURA-NAKANISHI-OZAWA'05].
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e Local well-posedness for s > 1 (subcritical range) due t0 (escosevo-veen 971.

e Global well-posedness and scattering when s > 1 and M > 0, or s =1 and
some additional angular regularity due to [MAGHIHARA-NAKANISHI-OZAWA '03,

MACHIHARA-NAKAMURA-OZAWA'04, MACHIHARA-NAKAMURA-NAKANISHI-OZAWA'05].
e If n = 2, local well-posedness in subcritical regime ieecen 141.
L] EXiStence Of SOI|tary wave SOlUtiOnS [STRAUSS-VASZQUEZ '86,CAZENAVE-VASZQUEZ '86,MERLE '88,

ESTEBAN-SERE'93, ...]

Y(t,x) = e “hp, ().
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Previous Results for Cubic Dirac:

e Local well-posedness for s > 1 (subcritical range) due t0 (escosevo-veen 971.

e Global well-posedness and scattering when s > 1 and M > 0, or s =1 and
some additional angular regularity due to [MAGHIHARA-NAKANISHI-OZAWA '03,

MACHIHARA-NAKAMURA-OZAWA'04, MACHIHARA-NAKAMURA-NAKANISHI-OZAWA'05].
e If n = 2, local well-posedness in subcritical regime ieecen 141.
L] EXiStence Of SOI|tary wave SOlUtiOnS [STRAUSS-VASZQUEZ '86,CAZENAVE-VASZQUEZ '86,MERLE '88,

ESTEBAN-SERE'93, ...] )
P(t,z) = e ", (z).

° (|ineal’) Stab|l|tY/|nStab|||ty of Solitary WaVES [CoMECH-GUAN-GUSTAFSON'14,

CONTRERAS-PELINOVSKY-SHIMABUKURO' 16, BOUSSAID-COMECH'16...]
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Basic Linear Bounds

—iyt O, + Moy =0

#(0) = f } on (t,x) € R x R"™.

e Energy Estimate

1Yl e s mxrr) S Nl ey + (=07 0u + M) L1 prs mr4m)
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Basic Linear Bounds

—iyt O, + Moy =0

5(0) = f } on (t,z) € R x R™

e Energy Estimate
[l oo mrs Rxrry S I f s ny + 1(=" 0 + M)l 1 g2 mrmy

o [°° Strichartz

Let 1 < min{21, 1}. Then
ol oty S Wy oy + 10 #2000y
(See [STRICHARTZ'77],[GINIBRE-VELO'89] , [ESCOBEDO-VEGA ’97]...).
15/22
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First Attempt: n =3

e Energy estimate gives

1ol ms S N Fllers + 11090 ]| Ly

but nonlinear estimate loses a power of 1" since
ovlloy e = IWPVUlly 2 S 10172 o W]l 1z

and we can only put ¢ € L{L° for g > 2.
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ovlloy e = IWPVUlly 2 S 10172 o W]l 1z
and we can only put ¢ € L{L° for g > 2.

e However does give Iwp for s > 1 (escoseno-vean 971, @nd can be pushed to give
gwp when s > 1,m > 1 (using Klein-Gordon Strichartz) or have additional
angular regularity [MACHIHARA-NAKAMURA-NAKANISHI-OZAWA'05] .
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gwp when s > 1,m > 1 (using Klein-Gordon Strichartz) or have additional
angular regularity [MACHIHARA-NAKAMURA-NAKANISHI-OZAWA'05] .

« Endpoint case requires L?L°(R'*™) bound. Unfortunately this estimate
faiIS [KLAINERMAN-MAGHEDON '93], alSO faiIS in L% (R, BMOI (R?))) [MONTGOMERY-SMITH '98].
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First Attempt: n =3

e Energy estimate gives

[l e rry S N Fllere + 994l L2 s

but nonlinear estimate loses a power of 1" since
ovlloy e = IWPVUlly 2 S 10172 o W]l 1z

and we can only put ¢ € L{L° for g > 2.

e However does give Iwp for s > 1 (escoseno-vean 971, @nd can be pushed to give
gwp when s > 1,m > 1 (using Klein-Gordon Strichartz) or have additional
angular regularity [MACHIHARA-NAKAMURA-NAKANISHI-OZAWA'05] .

« Endpoint case requires L?L°(R'*™) bound. Unfortunately this estimate
faiIS [KLAINERMAN-MAGHEDON '93], alSO faiIS in L% (R, BMOI (R?))) [MONTGOMERY-SMITH '98].

e To improve need two further ingredients:
@ Null Structure and bilinear estimates (without structure, blow-up can occur

[LINDBLAD'96, D’ANCONA-OKAMOTO'16] )

16/22
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First Attempt: n =3

e Energy estimate gives

[Yllege s Sl + (1900 L1 s
but nonlinear estimate loses a power of 1" since
- - 2wrs 2
1wl me ~ 1029°%ll Ly e S 1912 oo 0l e
and we can only put ¢ € L{L for ¢ > 2.

e However does give Iwp for s > 1 (escoseno-vean 971, @nd can be pushed to give
gwp when s > 1,m > 1 (using Klein-Gordon Strichartz) or have additional
angular regularity [MACHIHARA-NAKAMURA-NAKANISHI-OZAWA'05] .

« Endpoint case requires L?L°(R'*™) bound. Unfortunately this estimate
faiIS [KLAINERMAN-MAGHEDON '93], alSO faiIS in L% (R, BMOI (R?))) [MONTGOMERY-SMITH '98].

e To improve need two further ingredients:

@ Null Structure and bilinear estimates (without structure, blow-up can occur
[LINDBLAD'96, D’ANCONA-OKAMOTO'16] )

® Need to exploit null frames introduced by Tataru in the study of the wave maps
equation.
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Null Structure |

Let —iv"9,4 = 0 and consider the bilinear term 1.
e Introduce potential
—iy"Oup = ¢.
Then Oy = 0 and
P = Q(p, )

where @ is sum of classical null forms

Qv (u,v) = 0yud,v — d,ud,v, Qo(u,v) = 0"*ud,v
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Null Structure |

Let —iv"9,4 = 0 and consider the bilinear term 1.
e Introduce potential
—iy"Oup = ¢.
Then Oy = 0 and
P = Q(p, )

where @ is sum of classical null forms
Qv (u,v) = 0yud,v — d,ud,v, Qo(u,v) = 0"*ud,v

e These bilinear forms have improved regularity/decay properties and have
been well-studied [KLAINERMAN-MACHEDON'93], [KLAINERMAN-FOSCHI'00], [LEE-VARGAS'08]
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Null Structure |

Let —iv"9,4 = 0 and consider the bilinear term 1.
e Introduce potential
—iy"Oup = ¢.
Then Oy = 0 and
P = Q(p, )

where @ is sum of classical null forms
Qv (u,v) = 0yud,v — d,ud,v, Qo(u,v) = 0"*ud,v

e These bilinear forms have improved regularity/decay properties and have
been well-studied [KLAINERMAN-MACHEDON'93], [KLAINERMAN-FOSCHI'00], [LEE-VARGAS'08]

¢ As a consequence, we get the bound

17602 % 19Oz 19O, 20
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Null structure i

e Null structure means that in certain situations we get to pretend that for the
good product 11, the L2 L® Strichartz bound holds.
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Null structure i

e Null structure means that in certain situations we get to pretend that for the
good product 11, the L2 L® Strichartz bound holds.

e For the Thirring model nonlinearity, we use the Fierz identities to deduce that

() n=2

Wrtehd = {(www — @ n=3

where v° = —ir0y1~42+3. Can check that /7% is again a good product.
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Null structure Il
e Null structure means that in certain situations we get to pretend that for the
good product 11, the L2 L® Strichartz bound holds.

e For the Thirring model nonlinearity, we use the Fierz identities to deduce that

Wy {(wmw— @)y n=3

where v° = —ir0y1~42+3. Can check that /7% is again a good product.

¢ To close an iteration argument, now requires exploiting the above null
structure observation in the adapted null frame spaces used in the wave

map theory (if M = 0), and constructing null frame spaces adapted to the
hyperboloid (if M > 0).

Timothy Candy — Scattering for the Cubic Dirac equation
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Dirac-Klein-Gordon system on R!*3,

—iy" 0 + Myp = ¢
06 +m*¢ =y

with ¢ : R'*" — R and ¢ : R1*" — CV. Masses satisfy M, m > 0.
* Scaling is (¥(0), $(0), 3;¢(0)) € L? x Hz x H™3.
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Dirac-Klein-Gordon system on R!*3,

— iy O + Mep = gnp
06 +m?p =

with ¢ : R'*" — R and ¢ : R1*" — CV. Masses satisfy M, m > 0.
* Scaling is (¥(0), $(0), 3;¢(0)) € L? x Hz x H™3.

. . 1 1
e Local Well-posedness is known in H¢ x H§+€ X H7§+€ [D’ANCONA-FOSCHI-SELBERG07].
Builds on earlier work of [KLAINERMAN-MACHEDON'94] [BEALS-BEZARD'96] [BOURNAVEAS'99] [FANG-GRILLAKIS'05].
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Dirac-Klein-Gordon system on R!*3,

— iy O + Mep = gnp
O¢ +m?¢ = Py
with ¢ : R'*" — R and ¢ : R1*" — CV. Masses satisfy M, m > 0.
* Scaling is (¥(0), $(0), 3;¢(0)) € L? x Hz x H™3.
o Local well-posedness is known in H¢ x H2 ¢ x H™2F¢ pawcowroson-sewsensor.
Builds on earlier work Of tuanerman-Macueoon'aa) [8eaLs-Bezaro'o6] [Bouanaveas'ss] [Fane-GriLLAKIS'0S].

e Have small data global well-posedness and scattering for critical data with
o > 0 angular derivatives and M, m > 0 c-tern1e;, results in non-resonant
case 2M >m >0 [BEJENARU-HERR'15], [WANG'13]
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Large Data gwp

Theorem (C.-Herr'17)

Letze€ C, |z|=1. Let M,m > 0 and o > 0. Forany A > 0, there exists
e = ¢(A) > 0 such that if

{27 ¢O0)l ;1 + (D7 0ep(0)]] ;-1 + {7 P(0) |22 < A4,

and

(2)7 ($(0) + 279" (0)) || ., < e

then the DKG system is globally well-posed and scatters to free solutions as
t — +oo.
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Large Data gwp

Theorem (C.-Herr'17)

Letze€ C, |z|=1. Let M,m > 0 and o > 0. Forany A > 0, there exists
e = ¢(A) > 0 such that if

{27 ¢O0)l ;1 + (D7 0ep(0)]] ;-1 + {7 P(0) |22 < A4,

and

()7 ((0) + 29747 (0)) || .o < €

then the DKG system is globally well-posed and scatters to free solutions as
t — +oo.

® Related WOI’k in the SmOOth Case [CHADAM-GLASSEY'74]; [BACHELOT'89].
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Sketch of proof

—iV" Ot + Mip = ¢p
O¢ +m?¢ = ¥y

e From previous work (c-rernie] given an interval I C R, have a norm F'*“ and
a bilinear estimate

1 llroery S KDDLz + 16l g0 1l o (1)-

Problem is that we have no smallness here (assumption only implies v is
small).
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Sketch of proof

—iV" Ot + Mip = ¢p
O¢ +m?¢ = ¥y

e From previous work (c-rernie] given an interval I C R, have a norm F'*“ and
a bilinear estimate

1 llroery S KDDLz + 16l g0 1l o (1)-

Problem is that we have no smallness here (assumption only implies v is
small).

o Moreover, the norms F*:?(I) don’t become small as I shrinks (they are
essentially V2 type norms with some modulation gain). Instead need to
prove stronger bound, for some § > 0

[Pl ooy S 179 (0) ]2 + H<Q>U¢H6L§w(]><ﬂg3)||¢H;_;,U(I)||¢HF0>"(I)

as the L} , (I x R?) does become small as I shrinks.
21/22
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Improved Bilinear Estimate

The key additional ingredient is the following bilinear restriction type estimate at
multiple scales.

Theorem (C’17)
Letn>2,1<qr<2,1+5 <2t and0 < m; S A forj=1,2. Let

a > 0 and define B = (5t + 52 + 1)~L. If the supports offandﬁ are

(X/\l

a-transverse, and at frequencies \1 and \o respectively, then

Q=

' ‘ q_m=l_2 1 1 n—2_1/) 11
He”<V>m1 feth)ngHL"Lr Sar i gL ()\mm“m) R FA PR ]l
o in

where \pin, = min{ A1, A2}, Amaz = max{Ai, A2}, and the implied constant is
independent of my, ms.
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Improved Bilinear Estimate

The key additional ingredient is the following bilinear restriction type estimate at
multiple scales.

Theorem (C’17)
Letn>2,1<qr<2,1+5 <2t and0 < m; S A forj=1,2. Let

a > 0 and define B = (5t + 52 + 1)~L. If the supports offandﬁ are

(X/\l

a-transverse, and at frequencies \1 and \o respectively, then

Q=

' ‘ q_m=l_2 1 1 n—2_1/) 11
He”<V>m1 feth)ngHL"Lr Sar i gL ()\mm“m) R FA PR ]l
o in

where \pin, = min{ A1, A2}, Amaz = max{Ai, A2}, and the implied constant is
independent of my, ms.

e This is Klein-Gordon version of the Wave bilinear restriction estimates of

[LEE-VARGAS'08], [TAO'01], [WOLF'01]...
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