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Framework

Let X be a LCSM ‘phase’ space, Φ,Ψ, . . . - point processes (PPs) on
X (PP is a measurable mappling from (Ω,F ,P) into the set N of
locally-finite counting measures on X blah-blah-blah. . . )
The probability generating functional p.g.fl. characterises the
distribution of a PP Φ:

GΦ[h] = E exp
{∫

X
log h(x) Φ(dx)

}
= E

∏
xi∈Φ

h(xi)

for the class V of functions h : X 7→ [0, 1] such that supp(1− h) is
bounded (log 0 = −∞ by convention).
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Independent thinning

Given a ϕ ∈ N and p ∈ [0, 1], denote by p ◦ϕ the independent thinning
when each point of ϕ is retained with probability p and removed with
prob. 1− p independently of the other points; p ◦ Φ = p ◦ Φ(ω).
It is easy to see that

Gp◦Φ[h] = GΦ[1− p + ph], p ∈ V.

The (stochastic) operation ◦ is associative and distributive w.r.t.
superposition of PPs:

p1 ◦ (p2 ◦ Φ = (p1p2) ◦ Φ, p ◦ (Φ1 + Φ2) = p ◦ Φ1 + p ◦ Φ2.
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Thinning-stable PPs

Definition
A PP Φ (or its distribution) is called discrete (or thinning) α-stable
(notation: DαS) if for any p ∈ [0, 1]

p1/α ◦ Φ′ + (1− p)1/α ◦ Φ′′
D
= Φ

where Φ′ and Φ′′ are independent copies of Φ.

DαSPPs are fully characterised in Yu. Davydov, I. Molchanov & Z.’11.
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CLT for superposition

Let Ψ1,Ψ2, . . . be a sequence of i.i.d. PPs. If there exists a PP Φ such
that for some α we have

n−1/α ◦ (Ψ1 + . . .Ψn) =⇒ Φ as n→∞

then Φ is DαS.

Idea

Take 0 < p < 1 and decompose Sn =
∑n

i=1 Ψi
D
= Spn + S(1−p)n. Then

n−1/α◦Sn
D
= p1/α◦[(pn)−1/α◦Spn]+(1−p)1/α◦[((1−p)n)−1/α◦S(1−p)n]

=⇒ p1/α ◦ Φ′ + (1− p)1/α ◦ Φ′′ .

NB. The case α = 1 corresponds to the classical Poisson limit
theorem: Φ is Poisson PP.
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Not equally distributed summands

When Ψi’s are independent, but not i.i.d. , we can still decompose Sn

into two independent terms:

n−1/α ◦ Sn = p1/α ◦ [(pn)−1/α ◦ Spn] + n−1/α ◦
n∑

j=pn+1

Ψj

=⇒ p1/α ◦ Φ′ + Φ(p)

for some PP Φ(p) independent of Φ.
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Selfdecomposable PPs

It will be convenient to set p = e−t, t ≥ 0 to have an additive
semigroup:

e−t1 ◦ e−t2 ◦ Φ = e−(t1+t2) ◦ Φ; e0 ◦ Φ = Φ.

Definition
A PP Φ (or its distribution) is called selfdecomposable (notation: SD)
if for any t > 0 there exists a PP Φt independent of Φ such that

Φ
D
= e−t ◦ Φ′ + Φt,

where Φ′ is an independent copy of Φ.

Thus if n−1/α ◦ Sn ⇒ Φ, then Φ is necessarily SD.
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Infinite divisibility

All possible limits of the sums in the triangular array constitute the
class of infinitely divisible distributions:

Definition
A PP Φ (or its distribution) is called infinitely divisible (notation: ID) if
for any natural n there exists a PP Φ(n) independent of Φ such that

Φ
D
= Φ

(n)
1 + · · ·+ Φ(n)

n ,

where Φ
(n)
i ’s are independent copies of Φ(n).

Obviously, we have
DαS ⊂ SD ⊂ ID.
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Integer random variables

Discrete stability and selfdecomposability was introduced by Steutel
& van Harn for r.v.’s in X = Z+ who defined a stochastic ‘discrete
multiplication’ as follows:

t ◦ ξ D=
ξ∑

i=1

βi ,

where {βi} are independent Bern(t) r.v.’s, and characterised the
corresponding discrete-stable and selfdecomposable integer random
variables.
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Selfdecomposable integer random variables

Theorem (Steutel & van Harn ’79)

A non-negative integer valued r.v. ξ is SD iff there exists an ID r.v. ξ̃
with p.g.f. g̃ and E log(1 + ξ̃) <∞ such that the p.g.f. of ξ has the form

g(z) = exp
{∫ 1

z

log g̃(x)

1− x
dx
}
, 0 ≤ z ≤ 1. (1)

Remark
A non-negative integer r.v. can be viewed as a PP on X being a
singleton and the discrite multiplication corresponds to the
independent thinning. We aim to generalise (1) to PPs.
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Poisson cluster PPs

Figure: Centres form a Poisson PPs, each centre gives rise to independent
‘daughter’ PPs – clusters.
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The centres need not live on the same phase space X: given some
measure space [Y, µ] and a family of PP distributions indexed by
y ∈ Y with p.g.fl.’s G̃[h|y], the Poisson cluster process has p.g.fl.

G[h] = exp
{∫

Y
(G̃[h|y]− 1)µ(dy)

}
.

Theorem (Kerstan & Matthes ’78)

A finite PP Φ is ID iff there exists a finite PP N with P{N(X) = 0} = 0
and γ > 0 such that Φ

D
=
∑ν

i=1 Ni, where ν ∼ Po(γ) and Ni ∼ N i.i.d.
Equivalently,

log GΦ[h] = γ(GN [h]− 1)

so that Φ is a Poisson cluster process (Y is a singleton and µ(Y) = γ).
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Finite SD point processes

Main theorem

A finite PP Φ is SD iff there exists a finite PP Ñ satisfying
E log(1 + Ñ(X)) <∞ and γ > 0 such that Φ

D
=
∑

si∈Πγ
e−si ◦ Ñi, where

Πγ is a Poisson PP on R+ with density γ and Ñi ∼ Ñ i.i.d.
Equivalently,

log GΦ[h] = γ

∫ ∞
0

(GÑ [1− e−s + e−sh]− 1) ds (2)

so that Φ is a Poisson cluster process with clusters e−t ◦ Ñ, t ∈ R+.

Corrolary

When X is a singleton, z = h, x = 1− e−s + e−sh and ID
ξ̃ =

∑ν
i=1 Ñi, ν ∼ Po(γ), we get the Steutel & van Harn

characterisation of integer SD r.v.’s.
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Sufficiency

If Φ
D
=
∑

si∈Πγ
e−si ◦ Ñi, then

e−t ◦ Φ =
∑

si∈Πγ

e−(si+t) ◦ Ñi
D
=

∑
si∈Πγ |[t,∞)

e−si ◦ Ñi.

Hence Φ
D
= e−t ◦ Φ′ + Φt, where

Φt
D
=

∑
si∈Πγ |[0,t)

e−si ◦ Ñi

independent of Φ and Φ′.

NB

Notice that Φ(B) is an SD integer r.v. so that log(1 + Ñ(B)) <∞ for
any bounded measurable B ⊂ X guarantees a.s. local finiteness of Φ.
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Necessity: idea of the proof

If Φ is a finite SD PP, then Φ is ID, so that for any t > 0 and h ∈ V,

log GΦt [h] = log GΦ[h]− log GΦ[1− e−t + e−th]

= γ(GN [h]− GN [1− e−t + e−th])

= −γ
∫ t

0

d
ds

GN [1− e−s + e−th] ds.

Thus Φt for any t is also ID and its Khinchine measures Kt
n are all

non-negative:

log GΦt [h] = Kt
0 +

∞∑
n=1

1
n!

∫
Xn

h⊗ndKt
n.
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By direct computation, denoting hs = 1− e−s + e−th,

d
ds

GN [hs] = LN(hs)[1− hs], where

LN(h)[g] = E
∑
xi∈N

g(xi)
∏
xj 6=xi

h(xj). textTherefore

lim
t↓0

t−1 log GΦt [h] = −γLN(h)[1− h]

= γ E
[
N(X)

∏
xj∈N

h(xj)−
∑
xi∈N

∏
xj 6=xi

h(xj)
]

= 1− J0

+
∞∑

n=1

1
n!

∫
Xn

n∏
i=1

h(xi)
{

nJn(dx1×· · ·×dxn)− Jn+1(dx1×· · ·×dxn×X)
}
,

where Jn are the Janossy measures for N.
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As the limit of non-negative Khinchine measures, J̃0 = 1− J0 ≥ 0 and

J̃n(B) = nJn(B)− Jn+1(B× X) ≥ 0 ∀B ⊂ Xn

and magically
∑∞

n=0
1
n! J̃n(Xn) = 1 so that they are Janossy measures

for some PP Ñ and

log GΦt [h] = γ

∫ t

0
(GÑ [hs]− 1) ds

implying log GΦ[h] = γ
∫∞

0 (GÑ [hs]− 1) ds.
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Extensions and open problems

The Sufficiency proof applies for a non-finite Ñ. Neccesity is yet
to be established (working with KLM measures instead)
If Φ is DαS, L[v] = GΦ[1− v] is a Laplce functional of an α-stable
random measure µ and Φ is a Cox process directed by µ. For SD
Φ, L[v] satisfies the SD equation. Is L still corresponds to a SD
measure and how is it related to Φ?
How Ñ shows in the conditions for the CLT to hold?
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General branching operation

The thinning is a particular case of a general associative and
distributive operation • – subcritical branching operation. Limit
theorems, DαSand SD can be considered then w.r.t. •.
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Requirements on the operation

∀ t, s ∈ (0, 1] and ∀ ϕ,ϕ1, ϕ2 finite counting measures on X

1 Associativity with respect to superposition:

t • (s • ϕ) = (ts) • ϕ = s • (t • ϕ);

2 Distributivity with respect to superposition:

t • (ϕ1 + ϕ2) = t • ϕ1 + t • ϕ2;

3 Weak continuity:
t • ϕ⇒ ϕ t ↑ 1.
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General Markov branching process

Definition

A time homogeneous Markov process Ψϕ
t on N with ϕ ∈ N being a

starting configuration, is a Markov branching process if its transition
kernel {Pt(ϕ, ·)} satisfies the Independent branching property:

Pt(ϕ1 + ϕ2, ·) = Pt(ϕ1, ·) ∗ Pt(ϕ2, ·)

for any t and ϕ1, ϕ2 ∈ N .

Sergei Zuyev Thinning selfdecomposable point processes

Limit theorems for thinned point processes
Integer r.v.’s

Finite SD PPs
General branching operation

Structure of branching process

The evolution of a branching process Ψϕ
t is given by two components:

1 Diffusion: every particle moves independently according to a
time homogeneous diffusion process;

2 Branching: after exponential time a particle is replaced
independently of other particles by an offspring finite point
process Ψx (possibly empty) whose distribution may depend on x
– the position of the mother particle at the branching time.
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Maximality of the branching operation

Theorem (Zanella & Z.’15)

A stochastic operation • on N is associative and distributive if and
only if it is a branching operation, i.e.

e−t • ϕ D
= Ψϕ

t .

for some general Markov branching process Ψϕ
s .

NB
Characterise stable and SD PPs with respect to general branching
operation. Conditions on local finiteness of Φ in the case • 6= ◦ are
also required.
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