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Optical airborne and space-

borne systems 
• UAVs (unmanned aerial vehicles) 

• Sub-meter ground sampling resolution imagery 
• Unstable platform 

 
• Low-orbit satellites  

• Sub-meter ground sampling resolution imagery 
• Stable platform 
• High-definition video of up to 90 seconds at 30 frames / second 

 
• Geostationary satellites 

• 1km (or lower) ground sampling resolution imagery 
• Low temporal frequency (1 frame every few minutes) 2 



Challenges 

• Small object size 
• Large number of objects 
• Shadows 

• Independent camera / object motion 

• Time requirements 
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Multiple Object Tracking (MOT) 

• Two sub-problems 
• Where are the possible targets? - Detection of targets 
• Which detection corresponds to each target? - Solve the 

data association problem 

• Two data-handling approaches 
• Sequential – iteratively analyze frames in temporal order 
• Batch processing – analyze the entire video at once 

• Two main problem solving approaches 
• Tracking by detection 
• Track before detect 

 

• Goal: Extract object trajectories throughout a video 

4 



Patterns and stochastic geometry 

 
• Object tracking as a 

spatio-temporal 
marked point process 

• How to model and 
simulate such a 
spatio-temporal 
point process? 
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Overview 

• Models 
• Model formulation 
• Quality model vs. Statistical model 

• Parameter learning 
• Linear programming 
• Parameter learning as a linear program 

• Simulation 
• Standard RJMCMC 
• Parallel implementation of RJMCMC 

• Results 
• Conclusions and perspectives 
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Brief Insights 

Sample output on satellite data © Airbus D&S 
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• Center of the ellipse is a point in the point process 
• Marks:  

• Geometric marks: semi-major axis, semi-minor axis, orientation 
• Additional mark: label 

Marked point process of ellipses 
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� Multiple object tracking problem 
� Searching for the most likely configuration  XX  that fits the given 

image sequence Y  
� Solution 
� X is a realization of the Gibbs process given by: 

 
 
� The most likely configuration is given by: 

 
 
� The process energy is composed of two energy terms: 

Marked Point Process for Multiple 

Object Tracking 

External energy Internal energy

(1) 

(2) 
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Internal energy 

Constant velocity model Long smooth trajectories No overlapping objects 
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External energy 

Quality model 
 
 

• Object evidence through 
frame differencing 
 

• Contrast distance measure 
between interior and exterior 
of ellipse 

Statistical model 
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Total energy 

Quality model 

Statistical model 
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Overview 

• Models 
• Model formulation 
• Quality model vs. Statistical model 

• Parameter learning 
• Linear programming 
• Parameter learning as a linear program 

• Simulation 
• Standard RJMCMC 
• Parallel implementation of RJMCMC 

• Results 
• Conclusions and perspectives 
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Linear programming 

(1) 

(2) 

14 



Objective function 

 
• Quality model energy formulation 

 
 
 
 
 
 

 
• Objective function 
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Gathering constraints 

• Given two configurations  XX and X’ 

• Only the ratio of their posterior distributions            
needs to be computed 

• We can create inequalities of the form 
 

 
• If we have ground truth information XX* then 

 
 
 

• Or more specifically the constraints can be written as 
  

(1) 

(2) 
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How many constraints? 
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Overview 

• Models 
• Model formulation 
• Quality model vs. Statistical model 

• Parameter learning 
• Linear programming 
• Parameter learning as a linear program 

• Simulation 
• Standard RJMCMC 
• Parallel implementation of RJMCMC 

• Results 
• Conclusions and perspectives 
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Related samplers 

RJMCMC MBD and MBC 

[Green1995] [Descombes2009] 
[Gamal2011] 

[Verdie2012] 

P-RJMCMC 
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Classic RJMCMC 

 
• Why? 

• Highly non-convex energy  MCMC 
• Unknown number of objects RJ (reversible jump)

 
• Core idea 

• Create a Markov chain  
• Iteratively perturb the current state of the chain 
• Until convergence is reached 
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Standard perturbation kernels 

• Birth and Death 
• Birth: 

• Add a new object to the configuration 
• Death: 

• Remove one object from the configuration 

• Local transformations 
          Rotation             Translation            Scale 
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State dependent mixing 
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Optimization

• Reversible Jump – MCMC embedded in a Simulated 
Annealing scheme 
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RJMCMC sampler 

iX
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RJMCMC sampler 

iX
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RJMCMC sampler 
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RJMCMC sampler 
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RJMCMC sampler 
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Adding Kalman-inspired births 

Initialize  
Kalman Filter 

Update  
Kalman Filter 

Perturbation  
accepted 

Perturbation 
rejected 

End 
iteration 

Perturbation  
accepted 
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Did time efficiency increase? 

Kalman-inspired births reduce computation times! 
… but could increase the efficiency even more? 

Experimental results 
Satellite data 

(4 objects / frame) 

Experimental results 
Biological data 

(30 objects / frame) 

RJMCMC with Kalman like moves  
converges much faster compared to the  

standard RJMCMC 
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Parallel implementation of 

RJMCMC [Verdie2012] 

 
 

• Data-driven space 

partitioning 

• Locally conditional 

independent 

perturbations 

 

Image with boats © Airbus D&S 31 



Parallel implementation of 

RJMCMC 
 
 

• Data-driven space 

partitioning 

• Locally conditional 

independent 

perturbations 

 

Probability that objects exist in each 

part of the image 
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Parallel implementation of 

RJMCMC 
 
 

• Data-driven space 

partitioning 

• Locally conditional 

independent 

perturbations 

 

Color coding of quad-tree leafs 33 



Parallel perturbations [Verdie2012] 

 
 

• A color is randomly 

chosen 

• Perturbations are 

performed in all 

cells of the chosen 

color in parallel   

 
Color blue is randomly chosen 34 



Our improvement to the 

parallel sampler 
Problem Solution 

Large boat is split between 

two neighboring cells 

Take the configurations in 

the neighboring cells into 

consideration 
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Did time efficiency increase? 

Parallel implementation significantly  
reduces computation times! 

RJMCMC 
RJMCMC + Kalman 
Parallel RJMCMC 
without Kalman 
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Overview 

• Models 
• Model formulation 
• Quality model vs. Statistical model 

• Parameter learning 
• Linear programming 
• Parameter learning as a linear program 

• Simulation 
• Standard RJMCMC 
• Parallel implementation of RJMCMC 

• Results 
• Conclusions and perspectives 
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Data sets 

• 4 different data sets: 
• Synthetic biological benchmarks (Pasteur Institute)

• 100 frames / sequence 
• Different levels of noise 

• Real biological sequence (Curie Institute, fluorescence 
image sequence) 
• 300 frames / sequences 

• UAV (unmanned aerial vehicle) data (Public available 
data set) 

• Satellite data (Airbus Defense and Space)
• Low temporal frequency (  �1-2Hz) 
• High temporal frequency (30Hz) 38 



Synthetic biological benchmarks 

*Generated using the publicly available software ICY courtesy of the Quantitative Analysis Unit 
at the Pasteur Institute and J.-C. Olivo-Marin (http://icy.bioimageanalysis.org) 
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Synthetic biological benchmarks 

*Generated using the publicly available software ICY courtesy of the Quantitative Analysis Unit 
at the Pasteur Institute and J.-C. Olivo-Marin (http://icy.bioimageanalysis.org) 
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Real biological data 

• Total internal reflection fluorescence image sequence (TIRF)* 
 
 
 
 
 
 
 
 
 
 

 
* (by courtesy of J. Salamero, PICT IBiSA, UMR 144 CNRS Insitut Curie) 
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UAV data – low temporal frequency 

         Original image       [Prokaj2011]     Proposed 

COLUMBUS LARGE IMAGE FORMAT 
(CLIF) 2006 data set 
 
 
Provided by: 
 The Sensor Data Management System, 
U.S. AirForce 
https://www.sdms.afrl.af.mil 
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UAV data – low temporal frequency 

         Original image       [Prokaj2011]     Proposed 
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Satellite data – low temporal frequency 

Tracking results © INRIA / AYIN 

Average computation time:  12 sec / frame on a cluster with 512 cores 
Image size: 1600 x 900 pixels 
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Satellite data – high temporal frequency 

Tracking 
results 
 
© INRIA 
/ AYIN 

Average computation time:  8 sec / frame on a cluster with 512 cores 
Image size: 1600 x 900 pixels 
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Satellite data – high temporal frequency 

Tracking 
results 
 
© INRIA 
/ AYIN 

Average computation time:  8 sec / frame on a cluster with 512 cores 
Image size: 1600 x 900 pixels 
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Satellite data – high temporal frequency 

Tracking results © INRIA / AYIN 

Average computation time:  10-11 sec / frame on a cluster with 512 cores 
Image size: 1600 x 900 pixels 
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Overview 

• Models 
• Model formulation 
• Quality model vs. Statistical model 

• Parameter learning 
• Linear programming 
• Parameter learning as a linear program 

• Simulation 
• RJMCMC with Kalman inspired moves 
• Parallel implementation of RJMCMC 

• Results 
• Conclusions 
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Critical analysis 

Advantages 
 

• Detection of weakly 
contrasted objects 

• Consistent trajectories 
• Object interactions 

modeling 
• Robustness to noise and 

data quality 
• Good results on different 

data sets 

Drawbacks 
 

• Real-time processing 
only in exceptional cases 

• Simple shape modeling 
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Conclusions 

 
 

• Novel spatio-temporal marked point process model for 
the detection and tracking of moving objects 

• Automatic or semi-automatic parameter estimation using 
linear programming 

• Efficient parallel implementation of the RJMCMC sampler 
• Good results on different types of data 
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Thank you! 
Josiane.Zerubia@inria.fr 
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Backup 

 
 

• Tracking by detection / Track before detect 
• Data association based methods 
• Random Finite Sets based methods 
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Tracking by detection 

 
• Use a detector to pre-detect targets 
• Use a tracker to solve the data association problem 
 

 
• Common algorithms 

• Multiple Hypothesis Tracking (MHT) [Bar-Shalom2007, 
Saleemi2013] 

• Joint Probabilistic Data Association Filter (JPDAF) 
[Kang2005, Wu2009] 

• MCMC Data Association – partition discrete set of 
detections into tracks [Yu2009] 55 



Data-association based methods 

NN-app DD-MCMCDA 

[Perera2006] [Yu2008] [Saleemi2013] 

MHT 
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Track before detect (TBD) 

 
• Common in radar data with low signal to noise ratio 
• Track the signal before declaring it a target 

 
 

• Common algorithms 
• Probability Hypothesis Density (PHD) filter [Mahler2003, 

Pace2011, Vo2013] 
• Probabilistic Multiple Hypothesis Tracker (PMHT) and its 

variant Histogram – Probabilistic MHT (H-PMHT) 
[Streit1995, Davey2015] 

• Maximum Likelihood Probabilistic Data Association (ML-
PDA) [Willet2011] 
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Random Finite Sets-based 

methods 

RFS PHD 

[Mahler2003] [Pace2011] [Vo2013] 
[Vo2014] 

[Papi2015] 

L-RFS / GLMB 
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