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0. Introduction

Background

Developments in classical and modern geometry concerning complete
systems of Euclidean invariants with certain geometric properties

Applications to random models in former and recent literature
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1. Curvature measures

Differential geometry:
integrals of k th mean curvatures of a d-dimensional submanifold
Md ⊂ Rd with smooth boundary:

Ck(Md) :=

∫
∂Md

Sd−1−k(κ1, . . . ,κd−1) dHd−1

k th Lipschitz-Killing curvature, k = 0, . . . , d− 1, where

Sl((κ1, . . . ,κd−1) := const(d, l)
∑

1<i1...≤il<d−1

κ1 . . .κl

l th symmetric function of principal curvatures κ1, . . . ,κd−1
Special cases: k = 0 total Gauss curvature = Euler characteristic,
k = d− 2 total mean curvature, k = d− 1 surface area, define
additionally for k = d: Cd(Md) := Ld(Md) volume

Measure versions for j-dimensional submanifolds: Ck(Mj , ·), 1 ≤ j ≤ d
Extensions to piecewise flat spaces via Morse index theory
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Convex geometry:

V k(K) k th intrinsic volume of a convex body K; for smooth boundary

V k(K) = Ck(∂K)

Additive extensions to the convex ring C (finite unions of compact convex
sets in Rd):

[Hadwiger 1957], [Groemer 1978], [Schneider 1980] (measure version),
[McMullen/Schneider 1983], [Klain 1995]: ideas from convex integral
geometry, Ck as motion invariant valuations on C,
”Inclusion-exclusion-principle”
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Geometric measure theory (extension of both approaches):

integrals of k th generalized mean curvatures over the unit normal bundle
norMd of a d-dimensional submanifold Md ⊂ Rd with positive reach
(unique foot point property)

Ck(Md) :=

∫
norMd

Sd−1−k(κ1, . . . ,κd−1) dHd−1

k th Lipschitz-Killing curvature, k = 0, . . . , d− 1, where

Sl((κ1, . . . ,κd−1) := const(d, l)
∑

1≤i1<...<il≤d−1

κ1 . . .κl

l-th symmetric function of generalized principal curvatures κ1, . . . ,κd−1
Curvature measures: [Federer 1959], above explicit representation [Z.
1986]
Additive extension to unions of sets with positive reach: [Z.1987], [Rataj,
Z. 2001]; to other classes of sets: subanalytic sets [Fu 1994], o-minimal
sets [Bröcker/Kuppe 2000], [Bernig 2005] (via stratified Morse theory),
Lipschitz domains of bounded curvature [Rataj/Z.2005],..., WDC-sets
(Pokorny/Rataj/Zajicek 2017)
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2. Stationary point processes of geometric sets (germ-grain
processes)

Convex sets

[Kendall 1974], [Matheron 1975], [Davy 1976], [Ripley 1976], [Stoyan
1979], [Kellerer 1884], [Weil 1983, 1984], [Weil/Wieacker 1984],
[Stoyan/Kendall/Mecke 1987], [Mecke/Schneider/Stoyan/Weil 1990],
[Schneider/Weil 2000], ...

Manifolds

[Fava/Santalo 1979]

Sets with positive reach

Z. (1986), ...

Many applications of integral-geometric relationships in stereology
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Examples for the case of motion invariant germ-grain processes:
1. Relationships between the curvature densities ck of the random j-th
curvature measures Cj of the union of all grains and those of the
intersection with a fixed p-dimensional plane Ep, say c

Ep
k ,

c
Ep
k = γ(d+ k − p, p, d) cd+k−p

2. For the special case of Poisson processes:

ck = − exp(−λCd)

d−k∑
s=1

(−1)s

s!

∑
r1+···rs

=(s−1)d+k

s∏
j=1

(
Γ(
rj + 1

2
)
(
Γ(
d+ 1

2

)−1
λCrj

)
,

if k ≤ d− 1 , and cd = 1− exp(−λCd) ,

where λ is the intensity of the germs and Cj the mean value of the j-th
curvature of the typical grain

M. Zähle Curvature measures of random sets - A survey



Examples for the case of motion invariant germ-grain processes:
1. Relationships between the curvature densities ck of the random j-th
curvature measures Cj of the union of all grains and those of the
intersection with a fixed p-dimensional plane Ep, say c

Ep
k ,

c
Ep
k = γ(d+ k − p, p, d) cd+k−p

2. For the special case of Poisson processes:

ck = − exp(−λCd)

d−k∑
s=1

(−1)s

s!

∑
r1+···rs

=(s−1)d+k

s∏
j=1

(
Γ(
rj + 1

2
)
(
Γ(
d+ 1

2

)−1
λCrj

)
,

if k ≤ d− 1 , and cd = 1− exp(−λCd) ,

where λ is the intensity of the germs and Cj the mean value of the j-th
curvature of the typical grain

M. Zähle Curvature measures of random sets - A survey



3. Stationary random cell complexes and tessellations

Random tessellations generated by hyperplanes, random mosaics with
convex cells:
First papers: [Ambartzumian 1970,1974], [Miles 1976], [Cowan
1978,1980], [Mecke 1980,1984], [Santalo 1984], ... , large literature up to
now.

Stationary random mosaics [Weiss/Z. 1988] and more general cell
complexes [Z. 1988] with non-smooth cells:

Mean value relationships [Z. 1988]:

cik =

i∑
j=k

(−1)j−kN jC
j

k , C
i

k = (−1)i−k(N i)−1(cik − ci−1k ) ,

where cik is the k-th curvature density of the random i-skeleton, N i the
mean number of i-cells per unit volume, and C

i

k is the mean k-th
curvature of the typical i-cell, extensions to curvature-direction measures
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4. Fractal models

For ε > 0 and A ⊂ Rd denote

Aε := {x ∈ Rd : d(x,A) ≤ ε} .

Theorem [Fu 1985]
For any compact K ⊂ Rd with d ≤ 3, Lebesgue-a.e. ε > 0 is a regular
value of the distance function of K and, hence, the closure of the
complement of the the parallel set Kε has positive reach.

For arbitrary d and compact K with this property define the k th
Lipschitz-Killing curvature of the parallel sets Kε for those ε by

Ck(Kε) := (−1)d−kCk

(
(Kε)c

)
(consistent definition).

For classical sets K as above we have

lim
ε→0

Ck(Kε) = Ck(K) ,

for fractal sets explosion. Therefore rescaling is necessary:
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Fractal curvatures in the deterministic case [Winter 2008]: The limits

Cfrack (F ) := lim
ε→0

εD−kCk(Fε)

or, more generally,

Cfrack (F ) := lim
δ→0

1

| ln δ|

∫ 1

δ

εD−kCk(Fε)
1

ε
dε

exist for certain classes of self-similar fractal sets F of Hausdorff
dimension D. (Integral representation for Ck(F ) which admits some
explicit or numerical calculations.)
Assumptions: open set condition, polyconvex parallel sets.
New system of geometric parameters, allows to distinguish
self-similar fractals with equal Hausdorff dimension, but different
geometric features.

Extensions for non-polyconvex parallel sets are included in the stochastic
version below.
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Example (Winter 2008):

two self-similar sets with the same Hausdorff dimension ln 8/ ln 3

Sierpinski carpet modified Sierpinski carpet
Cfrac0 = −0, 016, Cfrac1 = 0, 0725 Cfrac0 = −0, 014, Cfrac1 = 0, 0720
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Self-similar random sets:

J fixed compact set in Rd with int(J) = J

(S1, . . . , Sν) random number of random contracting similarities such that

1. S0 := id for ν = 0

2. 1 < Eν <∞ (supercritical case)
3. Si(J) ⊂ J and Si(int(J)) ∩ Sj(int(J)) = ∅ , i 6= j, w.p.1

(open set condition OSC)
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Galton-Watson tree of random similarities:

(S1, S2, . . . , Sν(0))

(S11, S12, . . . , S1ν(1)) (S21, S22, . . . , S2ν(2)) . . . (Sν(0)1, Sν(0)2, . . . , Sν(0)ν(ν(0)))

(S121, S122, . . . , S12ν(12)) . . . (S2ν(2)1, S2ν(2)2, . . . , S2ν(2)ν(2ν(2))). . .

(Sw1w2...wn−11, Sw1...wn−12, . . . , Sw1...wn−1ν(w1...wn−1))

vv �� ++

�� �� ++ uu



 ++

yy

i.i.d. copies of (S1, . . . , Sν)

Construction of the self-similar random set F :

F =

∞⋂
n=1

⋃
w=w1...wn∈Wn

Sw1
◦ Sw1w2

◦ . . . ◦ Sw1...wn (J)

where J basic compact set (from OSC) and inductively,
W0 := ∅,
Wn := {w = w1 . . . wn : w1 . . . wn−1 ∈Wn−1, 1 ≤ wn ≤ ν(w1 . . . wn−1)

(Galton-Watson tree)
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F is stochastically self-similar:

F
(d)
=

ν⋃
i=1

Si(F
i)

where F 1, F 2, . . . are i.i.d. copies of F , independent of the independent
pair (F, (S1, . . . , Sν))

Hausdorff dimension D of the random fractal set F a.s. determined by:

E

(
ν∑
i=1

ri
D

)
= 1

where ri random contraction ratio of the random similarity Si

(Falconer, Graf, Mauldin/Williams [1986,87] under SOSC and Patzschke
[1997] general case)

Gatzouras [2000] Minkowski content of F : a.s. (average) limit of

εD−d Ld(Fε) as ε→ 0
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Random fractal curvatures:

Geometric assumptions

(I) reach (Fr)c > 0 for Lebesgue-a.a. r > 0 w.p.1

(fulfilled in Rd with d ≤ 3, for d > 3 and polyconvex parallel sets,
conjecture: always)

for such r the random Lipschitz-Killing curvatures Ck(Fr), k = 0, . . . , d ,
and their local variants, random measures Ck(Fr, ·), are determined

(II) E
(
supr≥1

{
r−k|Ck(Fr)|

})
<∞

(III) E
(
supw,w′,0<ε<1

{
ε−kCvark (Fε, (S̄w(J))ε ∩ S̄w′(J))ε

})
<∞

where S̄w(J) and S̄w′(J) copies of J of size nearly ε under the above
tree of similarities (regular overlapping)

((II) - (III) are fulfilled for polyconvex parallel sets, but also for other
classes, e.g. Koch curve or sponge-type fractals )
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Known before: The following limit exists a.s. (martingale convergence
theorem).

X := lim
n→∞

∑
w∈Wn

rDw1
rDw1w2

. . . rDw1w2...wn and EX = 1

where the sums run over the words of length n (Galton-Watson
tree); denote

µ := E

(
ν∑
i=1

1(·)(| ln ri|)

)
.

Main results [Z. 2011] Under the above conditions the following limits

exist:
1.

Cfrack (F ) := lim
ε→0

εD−k ECk(Fε)

Cfrack (F ) := lim
ε→0

εD−kCk(Fε) = X Cfrack (F ) a.s.

if the measure µ is non-lattice.
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2.

Cfrack (F ) := lim
δ→0

1

| ln δ|

∫ 1

δ

εD−k ECk(Fε)
1

ε
dε

Cfrack (F ) := lim
δ→0

1

| ln δ|

∫ 1

δ

εD−kCk(Fε)
1

ε
dε = X Cfrack (F ) a.s.

in the lattice case. k = 0, . . . , d.
3. Integral representations for the limits.

Special case k = d: Minkowski content

Background: classical renewal theorem for expectations, renewal theorem
for general random walks in the sense of Jagers (Nerman [1981]) for a.s.
convergence

Extensions and further results for deterministic cases: [Winter 2011],
[Kombrink 2011], [Rataj/Z. 2012], [Bohl 2012], [Winter/Z. 2013],
[Bohl/Z. 2013], [Z. 2013], [Pokorny/Winter 2014], [Z. 2014], [Winter
2015], Chapter 11 in the monograph [Rataj/Z. 2018] (relationships to
dynamical systems, fractal curvature densities)
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THANK YOU !
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