Geometric functionals of fractal percolation

Steffen Winter

Karlsruhe Institute of Technology

joint work with Michael Klatt

19th Workshop on Stochastic Geometry, Stereology and Image Analysis Luminy, May 2017

Let $J := [0,1]^2 \subset \mathbb{R}^2$, $M \in \mathbb{N}$, $M \ge 2$ and $p \in [0,1]$.

J

Let $J:=[0,1]^2\subset \mathbb{R}^2$, $M\in \mathbb{N}$, $M\geq 2$ and $p\in [0,1]$.

1. Subdivide J into squares of sidelength 1/M and decide for each of them independently whether it is kept (with prob. p) or discarded (with prob. 1 - p).

Let $J := [0,1]^2 \subset \mathbb{R}^2$, $M \in \mathbb{N}$, $M \ge 2$ and $p \in [0,1]$.

1. Subdivide J into squares of sidelength 1/M and decide for each of them independently whether it is kept (with prob. p) or discarded (with prob. 1 - p).

Let $J:=[0,1]^2\subset \mathbb{R}^2$, $M\in \mathbb{N}$, $M\geq 2$ and $p\in [0,1].$

1. Subdivide J into squares of sidelength 1/M and decide for each of them independently whether it is kept (with prob. p) or discarded (with prob. 1 - p).

For n = 2, 3, ...:

Let $J:=[0,1]^2\subset \mathbb{R}^2$, $M\in \mathbb{N}$, $M\geq 2$ and $p\in [0,1]$.

1. Subdivide J into squares of sidelength 1/M and decide for each of them independently whether it is kept (with prob. p) or discarded (with prob. 1 - p).

For n = 2, 3, ...:

Let $J:=[0,1]^2\subset \mathbb{R}^2$, $M\in \mathbb{N}$, $M\geq 2$ and $p\in [0,1].$

1. Subdivide J into squares of sidelength 1/M and decide for each of them independently whether it is kept (with prob. p) or discarded (with prob. 1 - p).

For n = 2, 3, ...:

Let $J:=[0,1]^2\subset \mathbb{R}^2$, $M\in \mathbb{N}$, $M\geq 2$ and $p\in [0,1].$

1. Subdivide J into squares of sidelength 1/M and decide for each of them independently whether it is kept (with prob. p) or discarded (with prob. 1 - p).

For n = 2, 3, ...:

Let $J:=[0,1]^2\subset \mathbb{R}^2$, $M\in \mathbb{N}$, $M\geq 2$ and $p\in [0,1].$

1. Subdivide J into squares of sidelength 1/M and decide for each of them independently whether it is kept (with prob. p) or discarded (with prob. 1 - p).

For n = 2, 3, ...:

n. Repeat step 1 for each of the squares kept in step n - 1.

Let F(n) be the union of the squares kept in the *n*-th step.

•
$$J \supseteq F(1) \supseteq F(2) \supseteq \ldots$$

•
$$J \supseteq F(1) \supseteq F(2) \supseteq \ldots$$

 Fractal percolation (Mandelbrot percolation, canonical curdling) is the random compact subset of J given by

$$F:=\bigcap_{n=1}^{\infty}F(n)$$

•
$$J \supseteq F(1) \supseteq F(2) \supseteq \ldots$$

 Fractal percolation (Mandelbrot percolation, canonical curdling) is the random compact subset of J given by

$$F:=\bigcap_{n=1}^{\infty}F(n)$$

- [Mandelbrot 74; Chayes, Chayes, Durrett 88]:
 - If $M^d p \leq 1$, then $F = \emptyset$ almost surely.

Recall that F (in \mathbb{R}^d) depends on $M \ge 2$ and $p \in [0, 1]$.

[Mandelbrot 74; Chayes, Chayes, Durrett 88]:

- If $M^d p \leq 1$, then $F = \emptyset$ almost surely.
- If M^d p > 1, then P(F ≠ Ø) > 0, and conditioned on F ≠ Ø, the Hausdorff dimension (and the Minkowski dimension) is almost surely

$$\dim F = D := \frac{\log(M^a p)}{\log M}.$$

Recall that F (in \mathbb{R}^d) depends on $M \ge 2$ and $p \in [0, 1]$.

- [Mandelbrot 74; Chayes, Chayes, Durrett 88]:
 - If $M^d p \leq 1$, then $F = \emptyset$ almost surely.
 - If M^d p > 1, then P(F ≠ Ø) > 0, and conditioned on F ≠ Ø, the Hausdorff dimension (and the Minkowski dimension) is almost surely

$$\dim F = D := \frac{\log(M^d p)}{\log M}.$$

▶ There exists $p_c = p_c(M)$ with $1/M^d < p_c < 1$ such that

- [Mandelbrot 74; Chayes, Chayes, Durrett 88]:
 - If $M^d p \leq 1$, then $F = \emptyset$ almost surely.
 - If M^d p > 1, then P(F ≠ Ø) > 0, and conditioned on F ≠ Ø, the Hausdorff dimension (and the Minkowski dimension) is almost surely

$$\dim F = D := \frac{\log(M^d p)}{\log M}.$$

- There exists $p_c = p_c(M)$ with $1/M^d < p_c < 1$ such that
 - for $p < p_c$, F is almost surely totally disconnected ('dustlike'),

- [Mandelbrot 74; Chayes, Chayes, Durrett 88]:
 - If $M^d p \leq 1$, then $F = \emptyset$ almost surely.
 - If M^d p > 1, then P(F ≠ Ø) > 0, and conditioned on F ≠ Ø, the Hausdorff dimension (and the Minkowski dimension) is almost surely

$$\dim F = D := \frac{\log(M^d p)}{\log M}.$$

- There exists $p_c = p_c(M)$ with $1/M^d < p_c < 1$ such that
 - for $p < p_c$, F is almost surely totally disconnected ('dustlike'),
 - for $p \ge p_c$, F percolates with positive probability.

- [Mandelbrot 74; Chayes, Chayes, Durrett 88]:
 - If $M^d p \leq 1$, then $F = \emptyset$ almost surely.
 - If M^d p > 1, then P(F ≠ Ø) > 0, and conditioned on F ≠ Ø, the Hausdorff dimension (and the Minkowski dimension) is almost surely

$$\dim F = D := \frac{\log(M^d p)}{\log M}.$$

- There exists $p_c = p_c(M)$ with $1/M^d < p_c < 1$ such that
 - for $p < p_c$, F is almost surely totally disconnected ('dustlike'),
 - for $p \ge p_c$, F percolates with positive probability.
- Bounds on p_c (d = 2):

Recall that F (in \mathbb{R}^d) depends on $M \ge 2$ and $p \in [0, 1]$.

[Mandelbrot 74; Chayes, Chayes, Durrett 88]:

- If $M^d p \leq 1$, then $F = \emptyset$ almost surely.
- If M^d p > 1, then P(F ≠ Ø) > 0, and conditioned on F ≠ Ø, the Hausdorff dimension (and the Minkowski dimension) is almost surely

$$\dim F = D := \frac{\log(M^a p)}{\log M}.$$

- There exists $p_c = p_c(M)$ with $1/M^d < p_c < 1$ such that
 - for $p < p_c$, F is almost surely totally disconnected ('dustlike'),
 - for $p \ge p_c$, F percolates with positive probability.
- Bounds on p_c (d = 2):
 - ▶ [Chayes, Chayes, Durrett 88]: $1/\sqrt{M} \le p_c(M) \le 0.9999$

Recall that F (in \mathbb{R}^d) depends on $M \ge 2$ and $p \in [0, 1]$.

[Mandelbrot 74; Chayes, Chayes, Durrett 88]:

- If $M^d p \leq 1$, then $F = \emptyset$ almost surely.
- If M^d p > 1, then P(F ≠ Ø) > 0, and conditioned on F ≠ Ø, the Hausdorff dimension (and the Minkowski dimension) is almost surely

$$\dim F = D := \frac{\log(M^d p)}{\log M}.$$

- There exists $p_c = p_c(M)$ with $1/M^d < p_c < 1$ such that
 - for $p < p_c$, F is almost surely totally disconnected ('dustlike'),
 - for $p \ge p_c$, F percolates with positive probability.

• Bounds on p_c (d = 2):

- [Chayes, Chayes, Durrett 88]: $1/\sqrt{M} \le p_c(M) \le 0.9999$
- [White 2000]: $p_c(2) > 0.8107$

Recall that F (in \mathbb{R}^d) depends on $M \ge 2$ and $p \in [0, 1]$.

[Mandelbrot 74; Chayes, Chayes, Durrett 88]:

- If $M^d p \leq 1$, then $F = \emptyset$ almost surely.
- If M^d p > 1, then P(F ≠ Ø) > 0, and conditioned on F ≠ Ø, the Hausdorff dimension (and the Minkowski dimension) is almost surely

$$\dim F = D := \frac{\log(M^d p)}{\log M}.$$

- There exists $p_c = p_c(M)$ with $1/M^d < p_c < 1$ such that
 - for $p < p_c$, F is almost surely totally disconnected ('dustlike'),
 - for $p \ge p_c$, F percolates with positive probability.

• Bounds on p_c (d = 2):

- ▶ [Chayes, Chayes, Durrett 88]: $1/\sqrt{M} \le p_c(M) \le 0.9999$
- [White 2000]: $p_c(2) > 0.8107$
- [Don 14]: $0.881 \le p_c(2) \le 0.993$ and $0.784 \le p_c(3) \le 0.940$.

Recall that F (in \mathbb{R}^d) depends on $M \ge 2$ and $p \in [0, 1]$.

[Mandelbrot 74; Chayes, Chayes, Durrett 88]:

- If $M^d p \leq 1$, then $F = \emptyset$ almost surely.
- If M^d p > 1, then P(F ≠ Ø) > 0, and conditioned on F ≠ Ø, the Hausdorff dimension (and the Minkowski dimension) is almost surely

$$\dim F = D := \frac{\log(M^d p)}{\log M}.$$

- There exists $p_c = p_c(M)$ with $1/M^d < p_c < 1$ such that
 - for $p < p_c$, F is almost surely totally disconnected ('dustlike'),
 - for $p \ge p_c$, F percolates with positive probability.
- Bounds on p_c (d = 2):
 - ▶ [Chayes, Chayes, Durrett 88]: $1/\sqrt{M} \le p_c(M) \le 0.9999$
 - [White 2000]: p_c(2) > 0.8107
 - [Don 14]: $0.881 \le p_c(2) \le 0.993$ and $0.784 \le p_c(3) \le 0.940$.
- further properties and related models: Falconer and Grimmett, Dekking and Meester, Orzechowski, Broman and Camia, ...

► *F* is a fractal (a self-similar random set).

For each $n \in \mathbb{N}_0$, F(n) is polyconvex.

- ► *F* is a fractal (a self-similar random set).
- For each n ∈ N₀, F(n) is polyconvex. Intrinsic volumes are well defined for F(n).

- F is a fractal (a self-similar random set).
- For each n ∈ N₀, F(n) is polyconvex. Intrinsic volumes are well defined for F(n).
- Let r := 1/M. We are interested in the limits

$$\mathcal{Z}_k(F) := \lim_{n \to \infty} r^{n(D-k)} \mathbb{E} V_k(F(n)).$$

- F is a fractal (a self-similar random set).
- For each n ∈ N₀, F(n) is polyconvex. Intrinsic volumes are well defined for F(n).
- Let r := 1/M. We are interested in the limits

$$\mathcal{Z}_k(F) := \lim_{n \to \infty} r^{n(D-k)} \mathbb{E} V_k(F(n)).$$

compare with fractal curvatures [Zähle 11]:

$$\mathcal{C}_k(F) := \lim_{\varepsilon \searrow 0} \varepsilon^{D-k} \mathbb{E} V_k(F_{\varepsilon}).$$

Theorem (Existence of the limits) Let F be a fractal percolation in \mathbb{R}^d with parameters $M \ge 2$ and $p \in [0, 1]$.

Theorem (Existence of the limits) Let F be a fractal percolation in \mathbb{R}^d with parameters $M \ge 2$ and $p \in [0, 1]$. Then, for each $k \in \{0, ..., d\}$, the limit

$$\mathcal{Z}_k(F) = \lim_{n \to \infty} r^{n(D-k)} \mathbb{E} V_k(F(n))$$

exists

Theorem (Existence of the limits)

Let F be a fractal percolation in \mathbb{R}^d with parameters $M \ge 2$ and $p \in [0,1]$. Then, for each $k \in \{0, \ldots, d\}$, the limit

$$\mathcal{Z}_k(F) = \lim_{n \to \infty} r^{n(D-k)} \mathbb{E} V_k(F(n))$$

exists and is given by

$$V_{k}([0,1]^{d}) + \sum_{T \subset \{1,...,M^{d}\}, |T| \geq 2} (-1)^{|T|-1} \sum_{n=1}^{\infty} r^{n(D-k)} \mathbb{E}V_{k}(\bigcap_{j \in T} F^{j}(n)).$$

 $F^{j}(n)$ is the union of the level-*n* cubes contained in J_{j} .

J_7	J_8	J_9	$\frac{1}{M}$
J_4	J_5	J_6	
J_1	J_2	J_3	J

イロン 不聞と 不同と 不同と 一回

6

In $\mathbb{R}^2,$ the general formula reduces to

$$\mathcal{Z}_0(F) = 1 - E_1 - E_2 + E_3 - E_4,$$

where

In $\mathbb{R}^2,$ the general formula reduces to

$$\mathcal{Z}_0(F) = 1 - E_1 - E_2 + E_3 - E_4,$$

where

$$E_1 := 2M(M-1)\sum_{n=1}^{\infty} r^{nD} \mathbb{E} V_0(F^1(n) \cap F^2(n))$$

<ロ> <個> <ヨ> <ヨ> 三日

In $\mathbb{R}^2,$ the general formula reduces to

$$\mathcal{Z}_0(F) = 1 - E_1 - E_2 + E_3 - E_4,$$

where

$$E_{1} := 2M(M-1)\sum_{n=1}^{\infty} r^{nD} \mathbb{E}V_{0}(F^{1}(n) \cap F^{2}(n))$$
$$E_{2} := 2(M-1)^{2}\sum_{n=1}^{\infty} r^{nD} \mathbb{E}V_{0}(F^{1}(n) \cap F^{4}(n))$$

◆□ → <四 → < Ξ → < Ξ → < Ξ → のへで</p>

In $\mathbb{R}^2,$ the general formula reduces to

$$\mathcal{Z}_0(F) = 1 - E_1 - E_2 + E_3 - E_4,$$

where

$$E_{1} := 2M(M-1)\sum_{n=1}^{\infty} r^{nD} \mathbb{E}V_{0}(F^{1}(n) \cap F^{2}(n))$$

$$E_{2} := 2(M-1)^{2}\sum_{n=1}^{\infty} r^{nD} \mathbb{E}V_{0}(F^{1}(n) \cap F^{4}(n))$$

$$E_{3} := 4(M-1)^{2}\sum_{n=1}^{\infty} r^{nD} \mathbb{E}V_{0}\left(\bigcap_{j=1}^{3} F^{j}(n)\right)$$

イロト イポト イヨト イヨト 二日

In $\mathbb{R}^2,$ the general formula reduces to

$$\mathcal{Z}_0(F) = 1 - E_1 - E_2 + E_3 - E_4,$$

where

$$E_{1} := 2M(M-1)\sum_{n=1}^{\infty} r^{nD} \mathbb{E} V_{0}(F^{1}(n) \cap F^{2}(n)) \qquad 1 \qquad 2$$

$$E_{2} := 2(M-1)^{2} \sum_{n=1}^{\infty} r^{nD} \mathbb{E} V_{0}(F^{1}(n) \cap F^{4}(n)) \qquad 4$$

$$I \qquad I$$

$$E_{3} := 4(M-1)^{2} \sum_{n=1}^{\infty} r^{nD} \mathbb{E} V_{0} \left(\bigcap_{j=1}^{3} F^{j}(n) \right) \qquad 3$$

$$E_{4} := (M-1)^{2} \sum_{n=1}^{\infty} r^{nD} \mathbb{E} V_{0} \left(\bigcap_{j=1}^{4} F^{j}(n) \right) \qquad 1 \qquad 2$$

In \mathbb{R}^2 , the general formula reduces to

$$\mathcal{Z}_0(F) = 1 - E_1 - E_2 + E_3 - E_4,$$

where

In $\mathbb{R}^2,$ the general formula reduces to

$$\mathcal{Z}_0(F) = 1 - E_1 - E_2 + E_3 - E_4,$$

where

$$E_{1} := 2M(M-1)\sum_{n=1}^{\infty} r^{nD} \mathbb{E} V_{0}(F^{1}(n) \cap F^{2}(n))$$

$$E_{2} := 2(M-1)^{2} \sum_{n=1}^{\infty} r^{nD} p^{2n}$$

$$E_{3} := 4(M-1)^{2} \sum_{n=1}^{\infty} r^{nD} p^{3n}$$

$$E_{4} := (M-1)^{2} \sum_{n=1}^{\infty} r^{nD} \mathbb{E} V_{0} \left(\bigcap_{j=1}^{4} F^{j}(n) \right)$$

イロト イポト イヨト イヨト 二日

In \mathbb{R}^2 , the general formula reduces to

$$\mathcal{Z}_0(F) = 1 - E_1 - E_2 + E_3 - E_4,$$

where

 $E_1 := 2M(M-1)\sum^{\infty} r^{nD} \mathbb{E}V_0(F^1(n) \cap F^2(n))$ $E_2:=2(M-1)^2\sum^{\infty}r^{nD}p^{2n}$ $E_3 := 4(M-1)^2 \sum_{n=1}^{\infty} r^{nD} p^{3n}$ $E_4:=(M-1)^2\sum^{\infty}r^{nD}p^{4n}$

In \mathbb{R}^2 , the general formula reduces to

$$\mathcal{Z}_0(F) = 1 - E_1 - E_2 + E_3 - E_4,$$

where

 $E_1 := 2M(M-1)\sum^{\infty} r^{nD} \mathbb{E}V_0(F^1(n) \cap F^2(n))$ $E_2:=2(M-1)^2\sum^{\infty}r^{nD}p^{2n}$ $E_3 := 4(M-1)^2 \sum_{n=1}^{\infty} r^{nD} p^{3n}$ $E_4:=(M-1)^2\sum^{\infty}r^{nD}p^{4n}$

Let K₁, K₂ be two independent (1-dim.) fractal percolations defined on I = [0, 1] (with the same M and p as F).

- Let K₁, K₂ be two independent (1-dim.) fractal percolations defined on I = [0, 1] (with the same M and p as F).
- For n ∈ N, let K_i(n), i = 1,2 denote the n-th steps of their construction.

- Let K₁, K₂ be two independent (1-dim.) fractal percolations defined on I = [0, 1] (with the same M and p as F).
- For n ∈ N, let K_i(n), i = 1, 2 denote the n-th steps of their construction.
- Let K̃_i(n), i = 1, 2 be the random set, which equals K_i(n) with probability p and is empty otherwise.

(日)

- Let K₁, K₂ be two independent (1-dim.) fractal percolations defined on I = [0, 1] (with the same M and p as F).
- For n ∈ N, let K_i(n), i = 1, 2 denote the n-th steps of their construction.
- Let K̃_i(n), i = 1, 2 be the random set, which equals K_i(n) with probability p and is empty otherwise.

Then for each $n \in \mathbb{N}$, in distribution

$$F^1(n)\cap F^2(n)=\psi(ilde{K}_1(n-1)\cap ilde{K}_2(n-1)),$$

where $\psi: I \to \mathbb{R}^2$ is the similarity mapping I to $J_1 \cap J_2$.

- Let K₁, K₂ be two independent (1-dim.) fractal percolations defined on I = [0, 1] (with the same M and p as F).
- For n ∈ N, let K_i(n), i = 1, 2 denote the n-th steps of their construction.
- Let K̃_i(n), i = 1, 2 be the random set, which equals K_i(n) with probability p and is empty otherwise.

Then for each $n \in \mathbb{N}$, in distribution

$$F^1(n)\cap F^2(n)=\psi(ilde{K}_1(n-1)\cap ilde{K}_2(n-1)),$$

where $\psi: I \to \mathbb{R}^2$ is the similarity mapping I to $J_1 \cap J_2$.

In particular,

 $\mathbb{E}V_k(F^1(n)\cap F^2(n))=r^kp^2\mathbb{E}V_k(K_1(n-1)\cap K_2(n-1)).$

$$\begin{aligned} \mathcal{Z}_0(F) &= 1 - E_1 + (M-1)^2 \left(-\frac{2p}{M^2 - p} + \frac{4p^2}{M^2 - p^2} - \frac{p^3}{M^2 - p^3} \right), \\ E_1 &= 2(M-1)^2 \left(\left(\frac{3}{M-1} - \frac{4p}{M-p} + \frac{p^2}{M-p^2} \right) \frac{p}{M-p} - \frac{2Mp}{(M-1)(M^2 - p)} + \frac{4Mp^2}{(M-p)(M^2 - p^2)} - \frac{Mp^3}{(M-p^2)(M^2 - p^3)} \right). \end{aligned}$$

$$\begin{split} \mathcal{Z}_0(F) &= 1 - E_1 + (M-1)^2 \left(-\frac{2p}{M^2 - p} + \frac{4p^2}{M^2 - p^2} - \frac{p^3}{M^2 - p^3} \right), \\ E_1 &= 2(M-1)^2 \left(\left(\frac{3}{M-1} - \frac{4p}{M-p} + \frac{p^2}{M-p^2} \right) \frac{p}{M-p} \right. \\ &\left. - \frac{2Mp}{(M-1)(M^2 - p)} + \frac{4Mp^2}{(M-p)(M^2 - p^2)} - \frac{Mp^3}{(M-p^2)(M^2 - p^3)} \right) \end{split}$$

$$\begin{aligned} \mathcal{Z}_0(F) &= 1 - E_1 + (M-1)^2 \left(-\frac{2p}{M^2 - p} + \frac{4p^2}{M^2 - p^2} - \frac{p^3}{M^2 - p^3} \right), \\ E_1 &= 2(M-1)^2 \left(\left(\frac{3}{M-1} - \frac{4p}{M-p} + \frac{p^2}{M-p^2} \right) \frac{p}{M-p} \right. \\ &\left. - \frac{2Mp}{(M-1)(M^2 - p)} + \frac{4Mp^2}{(M-p)(M^2 - p^2)} - \frac{Mp^3}{(M-p^2)(M^2 - p^3)} \right) \end{aligned}$$

$$\begin{aligned} \mathcal{Z}_0(F) &= 1 - E_1 + (M-1)^2 \left(-\frac{2p}{M^2 - p} + \frac{4p^2}{M^2 - p^2} - \frac{p^3}{M^2 - p^3} \right), \\ E_1 &= 2(M-1)^2 \left(\left(\frac{3}{M-1} - \frac{4p}{M-p} + \frac{p^2}{M-p^2} \right) \frac{p}{M-p} \right. \\ &\left. - \frac{2Mp}{(M-1)(M^2 - p)} + \frac{4Mp^2}{(M-p)(M^2 - p^2)} - \frac{Mp^3}{(M-p^2)(M^2 - p^3)} \right) \end{aligned}$$

Another approximation of F

Instead of the sequence F(n) consider the union G(n) of those boxes Q of level n, which have a nonempty intersection with F. Then

- $G(n) \subseteq F(n)$,
- $F = \bigcap_n G(n);$
- ► G(n) are still polyconvex;
- similar formulas hold for the rescaled limits of expected intrinsic volumes;
- ▶ the survival probability $\tilde{p} = \tilde{p}(p) := \mathbb{P}(F \neq \emptyset)$ appears

Approximation by F(n) vs. G(n)

 Approximation by F(n) vs. G(n)

Approximation by F(n) vs. G(n)

In F(n) diagonal connections are counted, which produce many extra holes.

・ロト ・母 ト ・ヨト ・ヨト ・ヨー うへの

In F(n) diagonal connections are counted, which produce many extra holes. But diagonal connections do not survive in F.

In F(n) diagonal connections are counted, which produce many extra holes. But diagonal connections do not survive in F. Consider the closed complements of F(n)in $J = [0, 1]^d$:

$$C(n)=\overline{J\setminus F(n)}.$$

イロト 不得下 イヨト イヨト

In F(n) diagonal connections are counted, which produce many extra holes. But diagonal connections do not survive in F. Consider the closed complements of F(n)in $J = [0, 1]^d$:

$$C(n) = \overline{J \setminus F(n)}.$$

Then $-V_0(C(n))$ corresponds to the Euler characteristic of F(n) with a 4-neighborhood (no diagonal connections).

イロト イポト イヨト イヨト

In F(n) diagonal connections are counted, which produce many extra holes. But diagonal connections do not survive in F. Consider the closed complements of F(n)in $J = [0, 1]^d$:

$$C(n) = \overline{J \setminus F(n)}.$$

Then $-V_0(C(n))$ corresponds to the Euler characteristic of F(n) with a 4-neighborhood (no diagonal connections).

$$\mathcal{Y}_k(F) := \lim_{n \to \infty} r^{n(D-k)} \mathbb{E} V_k(C(n))$$

イロト イポト イヨト イヨト

Is the zero of the rescaled limit of expected Euler characteristics a lower bound for p_c?
 Does Z₀(F_p) > 0 imply p < p_c?

$$\mathcal{Z}_0(F_p) := \lim_{n \to \infty} r^{Dn} V_0(F_p(n))$$

Is the zero of the rescaled limit of expected Euler characteristics a lower bound for p_c?
 Does Z₀(F_p) > 0 imply p < p_c?

$$\mathcal{Z}_0(F_p) := \lim_{n \to \infty} r^{Dn} V_0(F_p(n))$$

3

Is the zero of the rescaled limit of expected Euler characteristics a lower bound for p_c? Does Z₀(F_p) > 0 imply p < p_c?

$$\mathcal{Z}_0(F_p) := \lim_{n \to \infty} r^{Dn} V_0(F_p(n))$$

What is the best approximation of F? (C(n))_n? Parallel sets? etc.

3

Is the zero of the rescaled limit of expected Euler characteristics a lower bound for p_c? Does Z₀(F_p) > 0 imply p < p_c?

$$\mathcal{Z}_0(F_p) := \lim_{n \to \infty} r^{Dn} V_0(F_p(n))$$

- What is the best approximation of F? (C(n))_n? Parallel sets? etc.
- similar relations for other scale invariant models (Boolean multiscale models, Brownian loop soup, ...) [Broman, Camia 10]

gpsrs2017.math.kit.edu

GEOMETRY AND PHYSICS OF SPATIAL RANDOM SYSTEMS

Bad Herrenalb Black Forest 10-15 Sept. 2017

KEYNOTE SPEAKERS

Adrian Baddeley Perth · Werner Krauth Parls · Peter Mörters Bath Ivan Nourdin Luxemburg · James Sethian Berkeley · Ravi Sheth Pernsylvania Paul Steinhardt Princeton · Christoph Thäle Bochum

ORGANISATION

Daniel Hug Katsone - Markus Kiderlen Aanus Günter Last Katsone - Klaus Mecke Erangen Gerd Schröder-Turk Perm - Eva Vedel Jensen Aanus Wolfgang Weil Katsone - Steffen Winter Katsone Deadline for contributions: 31 May 2017