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Fractal percolation

Let J := [0, 1]2 ⊂ R2, M ∈ N, M ≥ 2 and p ∈ [0, 1].

1. Subdivide J into squares of sidelength 1/M and decide for
each of them independently whether it is kept (with prob. p)
or discarded (with prob. 1− p).

For n = 2, 3, . . .:

n. Repeat step 1 for each of the squares kept in step n − 1.

J

Let F (n) be the union of the squares kept in the n-th step.
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Fractal percolation

I J ⊇ F (1) ⊇ F (2) ⊇ . . .

I Fractal percolation (Mandelbrot percolation, canonical
curdling) is the random compact subset of J given by

F :=
∞⋂
n=1

F (n).
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Some properties

Recall that F (in Rd) depends on M ≥ 2 and p ∈ [0, 1].

I [Mandelbrot 74; Chayes, Chayes, Durrett 88]:

I If Mdp ≤ 1, then F = ∅ almost surely.
I If Mdp > 1, then P(F 6= ∅) > 0, and conditioned on F 6= ∅,

the Hausdorff dimension (and the Minkowski dimension) is
almost surely

dimF = D :=
log(Mdp)

logM
.

I There exists pc = pc(M) with 1/Md < pc < 1 such that

I for p < pc , F is almost surely totally disconnected (‘dustlike’),
I for p ≥ pc , F percolates with positive probability.

I Bounds on pc (d = 2):

I [Chayes, Chayes, Durrett 88]: 1/
√
M ≤ pc(M) ≤ 0.9999

I [White 2000]: pc(2) > 0.8107
I [Don 14]: 0.881 ≤ pc(2) ≤ 0.993 and 0.784 ≤ pc(3) ≤ 0.940.

I further properties and related models: Falconer and Grimmett,

Dekking and Meester, Orzechowski, Broman and Camia, ...
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Expected intrinsic volumes

I F is a fractal (a self-similar random set).

I For each n ∈ N0, F (n) is polyconvex.

Intrinsic volumes are
well defined for F (n).

I Let r := 1/M. We are interested in the limits

Zk(F ) := lim
n→∞

rn(D−k)EVk(F (n)).

I compare with fractal curvatures [Zähle 11]:

Ck(F ) := lim
ε↘0

εD−kEVk(Fε).
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Expected intrinsic volumes

Theorem (Existence of the limits)

Let F be a fractal percolation in Rd with parameters M ≥ 2 and
p ∈ [0, 1].

Then, for each k ∈ {0, . . . , d}, the limit

Zk(F ) = lim
n→∞

rn(D−k)EVk(F (n))

exists and is given by

Vk([0, 1]d) +
∑

T⊂{1,...,Md},|T |≥2

(−1)|T |−1
∞∑
n=1

rn(D−k)EVk(
⋂
j∈T

F j(n)).

F j(n) is the union of the level-n
cubes contained in Jj .

J

1
M

J1 J2 J3

J4 J5 J6

J9J8J7
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The case d = 2

In R2, the general formula reduces to

Z0(F ) =1− E1 − E2 + E3 − E4,

where

E1 := 2M(M − 1)
∞∑
n=1

rnD

E2 := 2(M − 1)2
∞∑
n=1

rnD

E3 := 4(M − 1)2
∞∑
n=1

rnD

E4 := (M − 1)2
∞∑
n=1

rnD

1 2

1

4

1 2

3
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Reducing the dimension

I Let K1, K2 be two independent (1-dim.) fractal percolations
defined on I = [0, 1] (with the same M and p as F ).

I For n ∈ N, let Ki (n), i = 1, 2 denote the n-th steps of their
construction.

I Let K̃i (n), i = 1, 2 be the random set, which equals Ki (n)
with probability p and is empty otherwise.

Then for each n ∈ N, in distribution

F 1(n) ∩ F 2(n) = ψ(K̃1(n − 1) ∩ K̃2(n − 1)),

where ψ : I → R2 is the similarity mapping I to J1 ∩ J2.

F 1(n) F 2(n)
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construction.
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with probability p and is empty otherwise.

Then for each n ∈ N, in distribution

F 1(n) ∩ F 2(n) = ψ(K̃1(n − 1) ∩ K̃2(n − 1)),

where ψ : I → R2 is the similarity mapping I to J1 ∩ J2.

In particular,

EVk(F 1(n) ∩ F 2(n)) = rkp2EVk(K1(n − 1) ∩ K2(n − 1)).
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Expected Euler characteristic (d = 2)

Z0(F ) = 1− E1 + (M − 1)2
(
− 2p

M2 − p
+

4p2

M2 − p2
− p3

M2 − p3

)
,

E1 = 2(M − 1)2
((

3

M − 1
− 4p

M − p
+

p2

M − p2

)
p

M − p

− 2Mp

(M − 1)(M2 − p)
+

4Mp2

(M − p)(M2 − p2)
− Mp3

(M − p2)(M2 − p3)

)

.
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Another approximation of F

Instead of the sequence F (n) consider the union G (n) of those
boxes Q of level n, which have a nonempty intersection with F .
Then

I G (n) ⊆ F (n),

I F =
⋂

n G (n);

I G (n) are still polyconvex;

I similar formulas hold for the rescaled limits of expected
intrinsic volumes;

I the survival probability p̃ = p̃(p) := P(F 6= ∅) appears
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Approximation by F (n) vs. G (n)
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Yet another approximation of F

In F (n) diagonal connections are counted,
which produce many extra holes.

But di-
agonal connections do not survive in F .
Consider the closed complements of F (n)
in J = [0, 1]d :

C (n) = J \ F (n).

Then −V0(C (n)) corresponds to the Eu-
ler characteristic of F (n) with a 4-neigh-
borhood (no diagonal connections).

Yk(F ) := lim
n→∞

rn(D−k)EVk(C (n))
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Open Questions
I Is the zero of the rescaled limit of expected Euler

characteristics a lower bound for pc?
Does Z0(Fp) > 0 imply p < pc?

Z0(Fp) := lim
n→∞

rDnV0(Fp(n))

I What is the best approximation of F?
(C (n))n? Parallel sets? etc.

I similar relations for other scale invariant models (Boolean
multiscale models, Brownian loop soup, ...) [Broman,Camia 10]
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