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Intrinsic volumes
The intrinsic volumes

Vj : Kn → R, j ∈ {0, . . . , n},

are defined as the coefficients of the
monomials in the Steiner formula

Hn(K + εBn) =
n∑

j=0
κn−j Vj(K ) εn−j ,

for a convex body K ∈ Kn and ε ≥ 0.

K + εBn

Kε

They are classical examples of valuations in convex geometry, i.e.

Vj(K ) + Vj(K ′) = Vj(K ∪ K ′) + Vj(K ∩ K ′)

whenever K ,K ′,K ∪ K ′ ∈ Kn.
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Support and curvature measures
The support measures

Λj : Kn × B(Rn × Sn−1)→ R, j ∈ {0, . . . , n − 1},

are defined by a local Steiner formula.

They are

I measure valued: Λj(K , ·) is a measure,
I additive: Λj(·, β) is a valuation,
I isometry invariant: For t ∈ Rn and ϑ ∈ O(n),

I Λj(K + t, η + t) = Λj(K , η),
I Λj(ϑK , ϑη) = Λj(K , η),

I locally defined: Λj(K , η) = Λj(K ′, η) if η∩NorK = η∩NorK ′,
I weakly continuous: If Ki → K (in the Hausdorff metric) then

Λj(Ki , ·)
w−→ Λj(K , ·).
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The support measures

Λj : Kn × B(Rn × Sn−1)→ R, j ∈ {0, . . . , n − 1},

are defined by a local Steiner formula.

They naturally localize the intrinsic volumes, i.e.

Λj( · ,Rn × Sn−1) = Vj .

The curvature measures φj , j ∈ {0, . . . , n − 1}, are the marginal
measures on B(Rn) of the support measures, and hence defined by

φj(K , ·) := Λj(K , · × Sn−1).
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Curvature measures on polytopes
The curvature measures of a polytope P ∈ Pn are explicitly given by

φj(P, β) = 1
ωn−j

∑
F∈Fj (P)

∫
F∩β
Hj(dx)

∫
N(P,F )∩Sn−1

Hn−j−1(du)

β

P
F1

F2

F3

F4

F5
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(Generalized) tensorial curvature measures
The tensorial curvature measures are a tensor-valued generalization
of the curvature measures

. For r , s ∈ N0, they are given by

φj(K , β) =
∫
β×Sn−1

Λj(K , d(x , u)).

Here c r ,s,ln,j > 0 and x rus ∈ Tr+s is a symmetric tensor product, i.e.
a symmetric r + s-linear mapping from (Rn)r+s to R.

On polytopes, we further obtain the generalized tensorial curvature
measures from the curvature measures

, i.e. they are given by

(P, β) =
∑

F∈Fj (P)

∫
F∩β
Hj(dx)

∫
N(P,F )∩Sn−1

Hn−j−1(du),

for r , s, l ∈ N0, where Q(F ) ∈ T2 denotes the metric tensor on F .
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Properties of the tensorial curvature measures

I The tensorial curvature measures are the marginal measures
on B(Rn) of the local Minkowski tensors, introduced and
characterized by Hug and Schneider in recent years.

I The total tensorial curvature measures are the Minkowski
tensors, characterized by Alesker in 1999.

I The tensorial curvature measures are isometry covariant and
locally defined tensor measure valued valuations.

I To date, there is no characterization result for the tensorial
curvature measures using these properties.

I However, the valuations

Qmφr ,s,lj , r + s + 2l + 2m = p

are essentially linearly independent.
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The principal kinematic formula
Let K ,K ′ ∈ Kn and j ∈ {0, . . . , n}. Then∫

Gn
Vj(K ∩ gK ′)µ(dg) =

n∑
k=j

αnjk Vk(K )Vn−k+j(K ′),

where αnjk = Γ( k+1
2 ) Γ( n−k+j+1

2 )
Γ( j+1

2 ) Γ( n+1
2 )

.
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The Crofton formula
Let K ∈ Kn and j , k ∈ N0 with j ≤ k < n. Then∫

A(n,k)
Vj(K ∩ E )µk(dE ) = αnjk Vn−k+j(K ),

where αnjk > 0 is the same coefficient as in the kinematic formula.
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Recent development

I In 2008, Hug, Schneider and Schuster developed a complete
set of Crofton formulae for Minkowski tensors.

I In 2014, Bernig and Hug applied algebraic methods to obtain
integral formulae for translation invariant Minkowski tensors.

I In 2015, Goodey, Hug and Weil developed kinematic and
Crofton formulae for area measures.

I In 2016, Svane and Jensen obtained intrinsic Crofton formulae
for Minkowski tensors on sets of positive reach (and local
versions thereof).

I There are plenty of applications of tensor valuations and
integral geometry, e.g. in

I Morphometry of spatial structures (Mecke 2000, Klatt 2016),
I Stochastic geometry (on the Boolean model by Hörrmann and

Weil 2015),
I Image analysis (Lecture notes by Jensen and Kiderlen 2017).
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integral geometry, e.g. in

I Morphometry of spatial structures (Mecke 2000, Klatt 2016),

I Stochastic geometry (on the Boolean model by Hörrmann and
Weil 2015),

I Image analysis (Lecture notes by Jensen and Kiderlen 2017).
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Tensorial kinematic formulae

Theorem 1 (Hug and W. ’16)
For P,P ′ ∈ Pn, β, β′ ∈ B(Rn), j , l , r , s ∈ N0 with j ≤ n, and l = 0
if j = 0,∫

Gn
φr ,s,lj (P ∩ gP ′, β ∩ gβ′)µ(dg)

=
n∑

k=j

b s2 c∑
m=0

m∑
i=0

cs,l ,i ,mn,j,k Qm−iφr ,s−2m,l+i
k (P, β)φn−k+j(P ′, β′),

where

cs,,i ,mn,j,k := (−1)i
(4π)mm!

(mi )
πi

Γ( k
2 +1)

Γ( j
2+1)

Γ( j+s
2 −m+1)

Γ( k+s
2 +1)

Γ( k−j
2 +m)

Γ( k−j
2 )

αnjk .
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Tensorial kinematic formulae

Corollary 2 (Hug and W. ’16)
For K ,K ′ ∈ Kn, β, β′ ∈ B(Rn) and j , r , s ∈ N0 with j ≤ n,∫

Gn
φr ,s,0j (K ∩ gK ′, β ∩ gβ′)µ(dg)

=
n∑

k=j

b s2 c∑
m=0

1∑
i=0

cs,0,i ,mn,j,k Qm−iφr ,s−2m,ik (K , β)φn−k+j(K ′, β′).

Remarkably, the coefficients cs,0,i ,mn,j,k in Theorem 1 vanish, for
i > 1, due to the quotient

(i−2)!
(−2)! = Γ(i−1)

Γ(−1) = (−1)i 1
Γ(2−i) = 1{i = 0} − 1{i = 1}.

Hence, only the generalized tensorial curvature measures with
continuous extensions remain in the representation in Corollary 2.



Tensorial kinematic formulae

Corollary 2 (Hug and W. ’16)
For K ,K ′ ∈ Kn, β, β′ ∈ B(Rn) and j , r , s ∈ N0 with j ≤ n,∫

Gn
φr ,s,0j (K ∩ gK ′, β ∩ gβ′)µ(dg)

=
n∑

k=j

b s2 c∑
m=0

1∑
i=0

cs,0,i ,mn,j,k Qm−iφr ,s−2m,ik (K , β)φn−k+j(K ′, β′).

Remarkably, the coefficients cs,0,i ,mn,j,k in Theorem 1 vanish, for
i > 1, due to the quotient

(i−2)!
(−2)! = Γ(i−1)

Γ(−1) = (−1)i 1
Γ(2−i) = 1{i = 0} − 1{i = 1}.

Hence, only the generalized tensorial curvature measures with
continuous extensions remain in the representation in Corollary 2.



Tensorial kinematic formulae – Sketch of proof
We decompose the motion g ∈ Gn into a rotation ϑ ∈ SO(n) and a
translation by t ∈ Rn to get∫
Gn
φr ,s,lj

(
P ∩ gP ′, β ∩ gβ′

)
µ(dg)

= cr,s,l
n,j
ωn−j

∫
SO(n)

∫
Rn
φr ,s,lj

(
P ∩ (ϑP ′ + t), β ∩ (ϑβ′ + t)

)
Hn(dt) ν(dϑ)

For almost all t ∈ Rn,

Fj(P ∩ (ϑP ′ + t)) 3 G = F ∩ (ϑF ′ + t)

with unique faces F ∈ Fk(P) and
F ′ ∈ Fn−k+j(P ′).

P

ϑP ′ + t
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Tensorial kinematic formulae – Sketch of proof
Therefore,∫

Gn
φr ,s,lj

(
P ∩ gP ′, β ∩ gβ′

)
µ(dg)

= cr,s,l
n,j
ωn−j

∫
SO(n)

n∑
k=j

∑
F∈Fk(P)

∑
F ′∈Fn−k+j (P′)

Q(F 0 ∩ (ϑF ′)0)l

×
∫
N(P∩(ϑP′+t),F∩(ϑF ′+t))∩Sn−1

us Hn−j−1(du)

×
∫
Rn

∫
F∩(ϑF ′+t)∩β∩(ϑβ′+t)

x r Hj(dx)Hn(dt) ν(dϑ).

Similar to the proof of the principal kinematic formula, we can
simplify the translative part, i.e. the integration with respect to t:
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The remaining rotational part, i.e. the integration with respect
to ϑ, is the crucial step of the proof. It involves

I Grassmannian integration formulae,
I tensor geometry,
I Zeilberger’s algorithm.
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Tensorial Crofton formulae

Theorem 3 (Hug and W. ’16)
Let P ∈ Pn, β ∈ B(Rn), and j , k, r , s, l ∈ N0 with j < k ≤ n, and
with l = 0 if j = 0. Then,∫

A(n,k)
φr ,s,lj (P ∩ E , β ∩ E )µk(dE )

=
b s2 c∑
m=0

m∑
i=0

cs,l ,i ,mn,j,n−k+j Q
m−iφr ,s−2m,l+i

n−k+j (P, β),

where the cs,l ,i ,mn,j,k are defined as in Theorem 1.



Tensorial Crofton formulae

Corollary 4 (Hug and W. ’16)
Let K ∈ Kn, β ∈ B(Rn) and j , k, r , s ∈ N0 with j < k ≤ n. Then,∫

A(n,k)
φr ,s,0j (K ∩ E , β ∩ E )µk(dE )

=
b s2 c∑
m=0

1∑
i=0

cs,0,i ,mn,j,n−j+k Q
m−iφr ,s−2m,in−k+j (K , β),

where the cs,0,i ,mn,j,k are defined as in Theorem 1.
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