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1. Boolean Models

A Boolean model (with convex grains) is a random closed set
Z ⊂ Rd, arising as the union of a Poisson particle process X on
the space Kd of convex bodies in Rd,

Z =
⋃

K∈X
K.

If X and Z are stationary, X and Z are determined (in distri-
bution) by the intensity γ (> 0) and the distribution Q of the
typical grain, a probability measure on Kd0 ⊂ K

d of convex bodies
with circumcenter at the origin.

A major problem in applications is to estimate γ, the mean num-
ber of particles per unit volume, from measurements of the union
set Z.
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If X and Z are, in addition, isotropic, the classical formulas of
Davy and Miles (1978) allow such an estimation. The formu-
las express the mean values V j(Z) of the (additively extended)
intrinsic volumes Vj, j = 0 . . . , d, of the Boolean model Z as a
triangular array of the mean values V j(X) of X and read

V d(Z) = 1− e−V d(X),

V d−1(Z) = e−V d(X)V d−1(X),

V j(Z) = e−V d(X)
[
V j(X)−

d−j∑
k=2

(−1)k

k!

d−1∑
m1,...,mk=j+1

m1+...mk=(k−1)d+j

cdj

k∏
i=1

cmi

d V mi
(X)

]
, j = 0, . . . , d− 2.

This system of equations can be inverted from top to bottom
to yield γ = V 0(X) in terms of the mean values V j(Z) for j =
0, . . . , d.
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This method does not work for non-isotropic Z anymore, hence mean values

for direction dependent functionals have to be considered.
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2. Mixed Volumes

Classical directional quantities in Convex Geometry are the mixed
volumes V (K[j],M [d− j]).

For K,M ∈ Kd, α, β ≥ 0, we have

Vd(αK + βM) =
d∑

j=0

(d
j

)
αjβd−jV (K[j],M [d− j]).

If M = Bd, the unit ball, then V (K[j],M [d− j]) = cjdVj(K).

Since V (K[j],M [d − j]) is continuous and additive in K, it has
an extension to polyconvex sets and the limit exists:

V (Z[j],M [d− j]) = lim
r→∞

EV (Z ∩ rBd[j],M [d− j])
Vd(rBd)

.
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In W. (2001) it was shown that these mean values satisfy a

variant of the Miles formulas,

V d(Z) = 1− e−V d(X),

V (Z[d− 1],M) = e−V d(X)V (X[d− 1],M),

and

V (Z[j],M [d− j]) = e−V d(X)

V (X[j],M [d− j])

−
d−j∑
k=2

(−1)k

k!

d−1∑
m1,...,mk=j+1

m1+···+mk=(k−1)d+j

V m1,...,mk(X, ...,X,M [d− j])

,

for j = 0, . . . , d− 2 and M ∈ Kd.
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Here, mean values of mixed expressions occur,

V m1,...,mk(X, ...,X,M [d− j])

= γk
∫
· · ·

∫
Vm1,...,mk(K1, . . . ,Kk,M [d− j])Q(dKk) · · ·Q(dK1)

and the mixed functionals Vm1,...,mk(K1, . . . ,Kk,M [d − j]) arise

from the iterated translation formula for the mixed volumes,∫
(Rd)k−1

V (K1 ∩ (K2 + x2) ∩ · · · ∩ (Kk + xk)[j],M [d− j])d(x2, . . . , xk)

=
d∑

m1,...,mk=j+1
m1+···+mk=(k−1)d+j

Vm1,...,mk(K1, . . . ,Kk,M [d− j])

and are uniquely determined by the fact that they are homoge-

neous of degree mi in Ki, i = 1, ..., k.
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Since V (K[0],M [d]) = V0(K)Vd(M), we obtain, as a special case,

the mean value formula for the Euler characteristic V0,

V 0(Z) = e−V d(X)

V 0(X)−
d∑

k=2

(−1)k

k!

×
d−1∑

m1,...,mk=1
m1+···+mk=(k−1)d

V m1,...,mk(X, . . . ,X)

. (1)

Thus, in order to determine the intensity γ = V 0(X) from this

equation, the mixed densities V m1,...,mk(X, . . . ,X) have to be ob-

tained, for all indices m1, . . . ,mk, by the equations for

V (Z[j],M [d− j]), j = 1, . . . , d− 1.
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3. The Main Result

Theorem 1. Let Z be a stationary Boolean model in Rd, d ≥ 2,

with convex grains and satisfying the moment condition

∫
Kd0
V1(K)d−2 Q(dK) <∞.

If the densities of the mixed volumes V (Z[j],M [d− j]) are given

for j = 0, . . . , d and all M ∈ Kd, then the intensity γ of the

underlying Poisson particle process X is uniquely determined.
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For small dimensions d = 2 and d = 3 this result was shown in a

number of papers (W. (1995, 1999, 2001)), an approach for

d = 4 in W. (2001) was incomplete, the case d ≥ 5 remained

open. In these papers, it was used that V (K[1],M [d−1]) has an

integral representation on the unit sphere,

V (K[1],M [d− 1]) =
1

d

∫
Sd−1

h∗(K,u)Sd−1(M,du). (2)

Here h∗(K, ·) is the centered support function of K and Sd−1(K, ·)
is the (d− 1)st area measure of K.

Moreover, the value of V (K[1],M [d−1]) for fixed K and all M ∈ Kd determines

h∗(K, ·), and for fixed M and all K ∈ Kd it determines Sd−1(M, ·).
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As a consequence, all mean values V m1,...,mk(X, . . . ,X) in (1) are
determined by the higher order mean values

V (Z[j],M [d− j]), j ≥ 1,M ∈ Kd,

as long as the indices mi are either 1 or d− 1.

This is sufficient in dimensions d = 2 and d = 3 (but insufficient
in dimension 4, since then V 2,2(X,X) occurs).

Thus for d ≥ 4, a decomposition of

V (K[j],M [d− j]) =?

is necessary (for j = 2, ..., d − 2), in analogy to (2), and also a
similar decomposition of the mixed functionals

Vm1,...,mk(K1, . . . ,Kk,M [d− j]) =?.
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4. Flag Representations

The following integral representations were recently obtained in
Hug-Rataj-W. (2013, 2017).

Theorem 2. (a) There is a measurable function fj,d−j such that
for all K,M (in suitable general position),

V (K[j],M [d− j]) =
∫
F (d,d−j+1)

∫
F (d,j+1)

fj,d−j(u1, L1, u2, L2)

× ψj(K1, d(u1, L1))ψd−j(M,d(u2, L2)).

(b) There is a measurable function gm1,...,mk such that for all
K1, ...,Kk,M (in suitable general position),

Vm1,...,mk(K1, . . . ,Kk,M [d− j])

=
∫
F (d,d−j+1)

∫
F (d,mk+1)

· · ·
∫
F (d,m1+1)

gm1,...,mk(u1, L1, . . . , uk, Lk, u, L)

× ψm1(K1, d(u1, L1)) · · ·ψmk(Kk, d(u1, L1))ψd−j(M,d(u, L)).
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Here, ψi(K, ·) denotes the i-th flag measure of K, a finite Borel

measure on the space

F (d, i+ 1) = {(u, U) : U ∈ G(d, i+ 1), u ∈ Sd−1 ∩ U},

ψi(K, ·) =
∫
G(d,i+1)

1((u, U) ∈ ·)S′i(K|U, du)dU, i = 1, ..., d− 1.

These flag measures also arise from a local Steiner formula in the

space A(d, i+ 1) of affine (i+ 1)-flats, they have nice properties

(translation invariant, weakly continuous and additive in K), and

the i-th area measure Si(K, ·) is (proportional to) the image of

ψi(K, ·) under the projection (u, L) 7→ u.

Notice that corresponding integral representations do not hold with the area

measures, in general.
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Using Theorem 2, one can proceed now recursively:

If the mean flag measures

ψd−1(X, ·)(= cSd−1(X, ·)), ψd−2(X, ·), . . . , ψj+1(X, ·)
are determined by the mean values

V d(Z), V (Z[d− 1],M), . . . , V (Z[j + 1],M [d− j − 1]),

then Theorem 2 shows that the mean value V (Z[j],M [d − j])
determines V (X[j],M [d− j]).

Thus, the second challenge is to show that

V (X[j],M [d− j]) =
∫
F (d,j+1)

∫
F (d,d−j+1)

fj,d−j(u1, L1, u2, L2)

× ψd−j(M,d(u2, L2))ψj(X, d(u1, L1))

(where M varies in Kd) determines the measure ψj(X, ·).
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This seems to require a (complicated) functional analytic result

on the flag space F (d, j + 1), but fortunately there is a different

approach:

The functional K 7→ V (K[j],M [d − j]) is in the space Valj of

j-homogeneous, translation invariant, continuous and additive

functionals (valuations). Confirming a conjecture of McMullen,

Alesker (2001) has shown that every ϕ ∈ Valj is the limit of

finite linear combinations of mixed volumes V (·[j],M [d− j]),M ∈
Kd.

Therefore, the values V (X[j],M [d − j]),M ∈ Kd, determine all

mean values

ϕ(X) = γ
∫
ϕ(K)Q(dK), ϕ ∈ Valj.
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For a continuous function f on F (d, j + 1), we have

ϕf : K 7→
∫
F (d,j+1)

f(u, L)ψj(K, d(u, L)) ∈ Valj.

Hence

∫
F (d,j+1)

f(u, L)ψj(X, d(u, L))

is determined for all f , which yields ψj(X, ·).
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At the end of the recursion, all mean flag measures

ψd−1(X, ·), . . . , ψ1(X, ·)

are determined, which (by Theorem 2) gives us all mixed expres-

sions in

V 0(Z) = e−V d(X)

V 0(X)−
d∑

k=2

(−1)k

k!

×
d−1∑

m1,...,mk=1
m1+···+mk=(k−1)d

V m1,...,mk(X, . . . ,X)

.

Thus, V 0(Z) determines V 0(X) = γ.
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Some Remarks

• The results also hold for Boolean models with polyconvex

grains.

• Apart from the intensity γ, we also get the mean flag measures∫
ψj(K, ·)Q(dK), j = 1, ..., d − 1, (and the mean area measures∫
Sj(K, ·)Q(dK), j = 1, ..., d− 1).

• If the grains are multiples ηK0 of a fixed shape K0 (η a RV),

we obtain the first d moments of the distribution of η.

• The approach can also be used for non-stationary Boolean

models Z.
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