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Notation

 z, in R

- G(d,¢): Grassmannian of all /-dimensional linear subspaces of R?.
v(dL): (unique) Haar probability measure on G(d, {).

« By : euclidean unit ball in R%.

« K|L: orthogonal projection of K onto L.

- volg(K): Lebesgue measure of K C R?, kg = voly(By).

« For a Polish space S and x € UZ:1Sk ,

= conv{xy,...,x,}: convex hull of the points z, ...

v = (x1,...,Ti_1,Tis1,...,Tk), analogously for z%.
- For f: UY_, S¥ — R, the difference operators are
Dif(x) = fx) — f(z') and Di,f(z) = f(z) — f(a") — f(?) + f(a¥).

= dy (U, Us) = sup{|E(h(Uy)) — E(h(Us))| : h: R — R is 1-Lip} is the
Wasserstein distance between two real valued random variables Uy and Us.
- X =(Xy,...

, Xp,) is a random vector of elements of S.

When X, X are independent copies of X, Z = (71, ...
of{XX’X}leE{X X’X}zé{l N}
« a, < b,: dc,c > 0 and N € N such that a,, < cbn whenever n > N.

Objective

, Zy) is a recombination

Obtain quantitative central limit theorems for volumes of random polytopes
inscribed in smooth convex bodies.

Settings

- K C R?is a smooth convex body, with strictly
positive Gaussian curvature everywhere in 0K

= choose n independent random points
X1, ..., X, uniformly on K;

« define K, = conv{ Xy, ..., X, }.

—> K, is a random polytope
inscribed in the convex body K.

Intrinsic volumes

For ¢ € {0,...,d}, the ¢-th intrinsic volume V;(K) of K can be defined via
Kubota’s formula,

d Ky
K) = (K| L dL).
it) = () [ sotay

= They emerge from Minkowski sums of convex bodies:

Zw

« Hadwiger’s theorem: any continuous valuation v(K') on the class of convex
bodies of R? which is invariant under rigid motion can be represented as

d

(K) = e Vi(K),

(=0

VOld K+ th VOln g tBn g) t > 0.

with constants ¢, > 0.

« Meaning of V;(K) for some particular values of ¢:

« V4(K) is the ordinary volume,
« Va_1(K) is half of the surface area,
= V1(K) is a constant multiple of the mean width,
« Vo(K) is the Euler-characteristic of K.

Floating bodies

Consider an hyperplane H such that
VOld(KﬁH):t, t > 0.
Then K N H is called a t-cap of K. The floating body of K with parameter ¢

is defined by
K\EK(t)= |J) EnH

KNH is a t-cap

Proposition (Barany, Dalla 1997)

For any o > 0, there exists ¢, > 0, such that, for 7,, := calo% =1t holds

P(K(r,) CK,)>1—n"

Normal approximation bound

T = (Y?EZ/) E|1{D1of(Y) # 0} 1{D1sf(Y') # 0} (Dof (2))* (Dsf(2"))7] ,
= swp E (H{D12f (Y) # 0} (DLF(2)) (Daf(Z'))]

1= E||[Dif(X)]Y],
V4= E[|D1f(X)’3} :
where the suprema in the definitions of 41 and ~, run over all quadruples or triples
of vectors (Y,Y', Z, Z") or (Y, Z,Z") that are recombinations of {X, X', X}, re-
spectively. From Stein’s method, the following result was proven.

Proposition (Lachieze-Rey, G. Peccati 2016)

Let W = f(X1,...,X,) be such that EW = 0 and EW* < co. Let N be a

standard Gaussian random variable. Then, it holds
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Main result

We use the fact that the surface body is contained in the
random polytope with high probability, to obtain bounds
for D;(V,(K,)) and the other objects required to apply the
normal approximation bound. Finally, we get the following
theorem.

Theorem - Central limit theorems for intrinsic volumes

Consider the standardized intrinsic volume

Wé(Kn) T \/V&I'[W(Kn)]

Then Wy (K,,) converges in distribution, as n — 00, to a standard Gaussian
random variable.

c{l,...,d}.

Remarks

= The main theorem is actually achieved via a quantitative bound on the
Wasserstein distance, namely, it is proven that

dyw(Wi(K,), N) < n_%ﬁ%ﬂ(log n)gﬂlﬂ.
Such rate of convergence is however not optimal, since it was proven in [4] -
recently and independently from us - that it holds without logarithmic term.
« For K = B, the theorem was known. For general K it was known when ¢ = d.

= We also obtain a quick proof for an asymptotic upper bound on Var Vy(K,),
but the optimal bound n ~H < Var Vi(K,) <n 7 was already known from
2]. The latter is used in the proof of our theorem.

Further results

A similar approach can be used to study the intrinsic volumes of random polytopes
with vertices on the boundary of smooth convex bodies. In particular, combining
estimates for the so-called surface body with the Efron-Stein jackknife inequality,
we obtain lower and upper bounds on the variances of the intrinsic volumes, together
with central limit theorems. This is a work in progress jointly with F. Wespi.
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