Intrinsic Volumes of Random Polytopes in Convex Bodies

Nicola Turchi - nicola.turchi@rub.de, joint work with Christoph Thäle and Florian Wespi

RTG 2131 High-dimensional Phenomena in Probability - Fluctuations and Discontinuity - Ruhr University Bochum

Notation

- conv $\{x_1, \ldots, x_n\}$: convex hull of the points x_1, \ldots, x_n in \mathbb{R}^d .
- $G(d, \ell)$: Grassmannian of all ℓ -dimensional linear subspaces of \mathbb{R}^d . $\nu(dL)$: (unique) Haar probability measure on $G(d, \ell)$.
- B_d : euclidean unit ball in \mathbb{R}^d .
- K|L: orthogonal projection of K onto L.
- $\operatorname{vol}_d(K)$: Lebesgue measure of $K \subseteq \mathbb{R}^d$, $\kappa_d = \operatorname{vol}_d(B_d)$.
- For a Polish space S and $x \in \bigcup_{k=1}^{n} S^{k}$, $x^i \coloneqq (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_k)$, analogously for x^{ij} .
- For $f: \bigcup_{k=1}^n S^k \to \mathbb{R}$, the **difference operators** are $D_i f(x) \coloneqq \overline{f(x)} - f(x^i)$ and $D_{i,j} f(x) \coloneqq f(x) - f(x^i) - f(x^j) + f(x^{ij}).$
- $d_W(U_1, U_2) = \sup\{|\mathbf{E}(h(U_1)) \mathbf{E}(h(U_2))| : h \colon \mathbb{R} \to \mathbb{R} \text{ is } 1\text{-Lip}\} \text{ is the }$ Wasserstein distance between two real valued random variables U_1 and U_2 .
- $X = (X_1, \ldots, X_n)$ is a random vector of elements of S. When X', X are independent copies of $X, Z = (Z_1, \ldots, Z_n)$ is a recombination of $\{X, X', \tilde{X}\}$ if $Z_i \in \{X_i, X'_i, \tilde{X}_i\}, i \in \{1, ..., n\}.$
- $a_n \ll b_n$: $\exists c, c > 0$ and $N \in \mathbb{N}$ such that $a_n \leq c b_n$ whenever n > N.

Normal approximation bound

 $\gamma_1 := \sup_{(Y,Y',Z,Z')} \mathbf{E} \left[\mathbf{1} \{ D_{1,2} f(Y) \neq 0 \} \mathbf{1} \{ D_{1,3} f(Y') \neq 0 \} (D_2 f(Z))^2 (D_3 f(Z'))^2 \right],$ $\gamma_2 := \sup_{(Y,Z,Z')} \mathbf{E} \left[\mathbf{1} \{ D_{1,2} f(Y) \neq 0 \} (D_1 f(Z))^2 (D_2 f(Z'))^2 \right],$ $\gamma_3 := \mathbf{E} \left[|D_1 f(X)|^4 \right],$ $\gamma_4 := \mathbf{E} \left[|D_1 f(X)|^3 \right],$

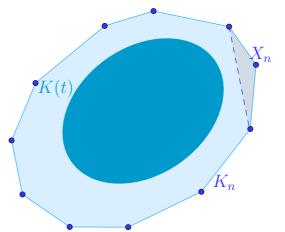
where the suprema in the definitions of γ_1 and γ_2 run over all quadruples or triples of vectors (Y, Y', Z, Z') or (Y, Z, Z') that are recombinations of $\{X, X', X\}$, respectively. From Stein's method, the following result was proven.

Proposition (Lachièze-Rey, G. Peccati 2016)

Let $W := f(X_1, \ldots, X_n)$ be such that $\mathbf{E}W = 0$ and $\mathbf{E}W^2 < \infty$. Let N be a standard Gaussian random variable. Then, it holds

$$d_W\left(\frac{W}{\sqrt{\operatorname{Var} W}}, N\right) \ll \frac{\sqrt{n}}{\operatorname{Var} W}\left(\sqrt{n^2\gamma_1} + \sqrt{n\gamma_2} + \sqrt{\gamma_3}\right) + \frac{n}{\left(\operatorname{Var} W\right)^{\frac{3}{2}}}\gamma_4,$$

Main result

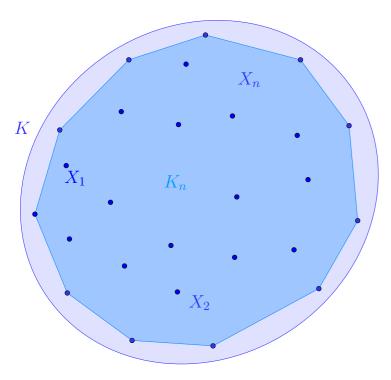


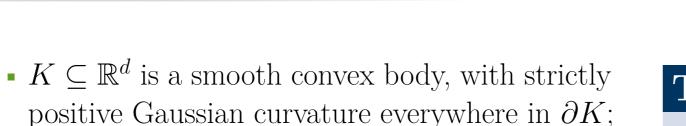
We use the fact that the surface body is contained in the random polytope with high probability, to obtain bounds for $D_i(V_\ell(K_n))$ and the other objects required to apply the normal approximation bound. Finally, we get the following theorem.

Objective

Obtain quantitative central limit theorems for volumes of random polytopes inscribed in smooth convex bodies.

Settings





- choose *n* independent random points X_1, \ldots, X_n uniformly on K;
- define $K_n \coloneqq \operatorname{conv} \{X_1, \ldots, X_n\}.$
- $\implies K_n$ is a random polytope inscribed in the convex body K.

Intrinsic volumes

For $\ell \in \{0, \ldots, d\}$, the ℓ -th **intrinsic volume** $V_{\ell}(K)$ of K can be defined via Kubota's formula,

$$V_{\ell}(K) := \binom{d}{\ell} \frac{\kappa_d}{\kappa_\ell \, \kappa_{d-\ell}} \int_{G(d,\ell)} \operatorname{vol}_{\ell}(K|L) \, \nu_{\ell}(\mathrm{d}L) \, .$$

• They emerge from Minkowski sums of convex bodies:

$$\operatorname{vol}_{d}(K + tB_{d}) = \sum_{\ell=0}^{d} V_{\ell}(K) \operatorname{vol}_{n-\ell}(tB_{n-\ell}), \quad t > 0.$$

• Hadwiger's theorem: any continuous valuation v(K) on the class of convex bodies of \mathbb{R}^d which is invariant under rigid motion can be represented as

$$v(K) = \sum_{\ell=0}^{d} c_{\ell} V_{\ell}(K),$$

with constants $c_{\ell} > 0$.

Theorem - Central limit theorems for intrinsic volumes

Consider the standardized intrinsic volume

$$W_{\ell}(K_n) := \frac{V_{\ell}(K_n) - \mathbf{E}[V_{\ell}(K_n)]}{\sqrt{\mathbf{Var}[V_{\ell}(K_n)]}}, \quad \ell \in \{1, \dots, d\}.$$

Then $W_{\ell}(K_n)$ converges in distribution, as $n \to \infty$, to a standard Gaussian random variable.

Remarks

• The main theorem is actually achieved via a quantitative bound on the Wasserstein distance, namely, it is proven that

$$d_W(W_\ell(K_n), N) \ll n^{-\frac{1}{2} + \frac{1}{n+1}} (\log n)^{3 + \frac{2}{n+1}}.$$

Such rate of convergence is however not optimal, since it was proven in [4] recently and independently from us - that it holds without logarithmic term.

- For $K = B_d$ the theorem was known. For general K it was known when $\ell = d$.
- We also obtain a quick proof for an asymptotic upper bound on $\operatorname{Var} V_{\ell}(K_n)$, but the optimal bound $n^{-\frac{d+3}{d+1}} \ll \operatorname{Var} V_{\ell}(K_n) \ll n^{-\frac{d+3}{d+1}}$ was already known from [2]. The latter is used in the proof of our theorem.

Further results

A similar approach can be used to study the intrinsic volumes of random polytopes with vertices on the boundary of smooth convex bodies. In particular, combining estimates for the so-called **surface body** with the Efron-Stein jackknife inequality, we obtain lower and upper bounds on the variances of the intrinsic volumes, together with central limit theorems. This is a work in progress jointly with F. Wespi.

- Meaning of $V_{\ell}(K)$ for some particular values of ℓ :
 - $V_d(K)$ is the ordinary volume,
 - $V_{d-1}(K)$ is half of the surface area,
 - $V_1(K)$ is a constant multiple of the mean width,
 - $V_0(K)$ is the Euler-characteristic of K.

Floating bodies

Consider an hyperplane H such that

 $\operatorname{vol}_d(K \cap H) = t, \quad t > 0.$

Then $K \cap H$ is called a *t*-cap of K. The **floating body** of K with parameter t is defined by

 $K \setminus K(t) = \bigcup K \cap H.$ $K \cap H$ is a *t*-cap

Proposition (Bárány, Dalla 1997)

For any $\alpha > 0$, there exists $c_{\alpha} > 0$, such that, for $\tau_n := c_{\alpha} \frac{\log n}{n}$, it holds $\mathbf{P}(K(\tau_n) \subseteq K_n) \ge 1 - n^{-\alpha}.$

References (short list)

[1] I. Bárány and L. Dalla (1997): Few points to generate a random polytope. Mathematika 44 44, 325–331. [2] I. Bárány, F. Fodor and V. Vigh (2010): Intrinsic volumes of inscribed random polytopes in smooth convex bodies. Adv. Appl. Probab. 42, 605–619. [3] R. Lachièze-Rey and G. Peccati: New Berry-Esseen bounds for functionals of binomial point processes. to appear in Ann. Appl. Probab., (2016+). [4] R. Lachièze-Rey, M. Schulte, and J. Yukich: Normal approximation for sums of stabilizing functionals. arXiv: 1702.00726.

This poster is based on the article:

C. Thäle, N. Turchi, F. Wespi: Random polytopes: variances and central limit theorems for intrinsic volumes. arXiv:1702.01069

RUHR

RUB UNIVERSITÄT BOCHUM