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Finding an Extra Head
Consider a two-sided sequence of i.i.d. fair coin tosses.

The Extra Head Problem – Liggett 2002

Can you shift the origin 0 to one of the heads in such a way
that you have two independent one-sided fair i.i.d. sequences,
one to the left and one to the right of that head?

Note that if you shift the origin to the first head at or after 0
then the sequence to the left of that head will be biased:
the distance to the first head to the left will not be geometric,
it will be the sum of two independent geometric variables −1.
(This is the waiting time paradox.)
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Finding an Extra Head
Consider a two-sided sequence of i.i.d. fair coin tosses.

The Extra Head Problem – Liggett 2002

Can you shift the origin 0 to one of the heads in such a way
that you have two independent one-sided fair i.i.d. sequences,
one to the left and one to the right of that head?

Note that if you shift the origin to the first head at or after 0
then the sequence to the left of that head will be biased:
the distance to the first head to the left will not be geometric,
it will be the sum of two independent geometric variables −1.

Liggett’s solution

If there is a head at 0, do not shift. If there is a tail at 0,
shift forward until you have equal number of heads and tails.
The origin will then be at a head and it is an extra head.
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Palm theory – Balancing allocations
Let X̂ be a stationary ergodic r.e. in a space on which R acts
measurably. Let θs be the shift by s ∈ R. Let the r. measures
ξ̂ and η̂ be invariant factors of X with the same finite intensity.

Let X and Y be Palm versions of X̂ w.r.t. ξ̂ and η̂, respectively.
Let ξ and η be the same factors of X as ξ̂ and η̂ are of X̂ .
————————————————————————————
An allocation τ is a map of the form τ(s)= s + τ0(θsX ), s ∈ R,
for some measurable τ0 . It balances ξ and η if ξ(τ ∈ ·) = η.
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Palm theory – Balancing allocations
Let X̂ be a stationary ergodic r.e. in a space on which R acts
measurably. Let θs be the shift by s ∈ R. Let the r. measures
ξ̂ and η̂ be invariant factors of X with the same finite intensity.

Let X and Y be Palm versions of X̂ w.r.t. ξ̂ and η̂, respectively.
Let ξ and η be the same factors of X as ξ̂ and η̂ are of X̂ .
————————————————————————————
An allocation τ is a map of the form τ(s)= s + τ0(θsX ), s ∈ R,
for some measurable τ0 . It balances ξ and η if ξ(τ ∈ ·) = η.

Theorem

θτ0 (X)X
D
= Y ⇐⇒ τ balances ξ and η
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Palm theory – Balancing allocations
Let X̂ be a stationary ergodic r.e. in a space on which R acts
measurably. Let θs be the shift by s ∈ R. Let the r. measures
ξ̂ and η̂ be invariant factors of X with the same finite intensity.

Let X and Y be Palm versions of X̂ w.r.t. ξ̂ and η̂, respectively.
Let ξ and η be the same factors of X as ξ̂ and η̂ are of X̂ .
————————————————————————————
An allocation τ is a map of the form τ(s)= s + τ0(θsX ), s ∈ R,
for some measurable τ0 . It balances ξ and η if ξ(τ ∈ ·) = η.

Theorem

θτ0 (X)X
D
= Y ⇐⇒ τ balances ξ and η

Theorem

If ξ is diffuse and ξ and η are mutually singular then τ with
τ0(X ) := inf{t > 0 : ξ([0, t ]) ≤ η([0, t ])} balances ξ and η.
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Two-sided Brownian motion
Let B = (Bs)s∈R be a two-sided standard Brownian motion.

This means that (Bs)s≥0 and (B−s)s≥0 are independent
one-sided standard Brownian motions.

In particular, B has value 0 at 0 (that is, B0 = 0 a.s.)
————————————————————————————
The (diffuse) local time measure `x at x ∈ R can be defined by

`x(A) := lim
h→0

1
h

∫
A

1{x≤Bs≤x+h}ds, A ∈ B.

————————————————————————————
A process distributed as x + B
is two-sided Brownian with value x at 0.
————————————————————————————
More generally, if V has distribution ν and is independent of B
then we say that a process distributed as V + B
is two-sided Brownian with distribution ν at 0.
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Unbiased two-sided Skorohod imbedding of x

Question

Is there a random time T such that θT B D
= x + B for x 6= 0 ?
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Unbiased two-sided Skorohod imbedding of x

Question

Is there a random time T such that θT B D
= x + B for x 6= 0 ?

Recall the allocation theorem for Palm versions:

If ξ is diffuse and ξ and η are mutually singular then τ with
τ0(X ) := inf{t > 0 : ξ([0, t ]) ≤ η([0, t ])} balances ξ and η.

Also the following theorem holds:

Brownian motion B is Palm version w.r.t. local time at 0 of the
stationary ergodic B̂ with σ-finite distribution

∫
R P(x + B ∈ ·)dx .

From this we obtain:

Theorem

For x ∈ R define T x = inf{t > 0 : `0([0, t ]) = `x([0, t ])}.

If x 6= 0 then θT x B is two-sided Brownian with value x at 0.
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Unbiased two-sided Skorohod imbedding of ν

Question from the previous slide:

Is there a T such that θT B D
= x + B for x 6= 0 ?

Theorem from the previous slide:

For x ∈ R define T x = inf{t > 0 : `0([0, t ]) = `x([0, t ])}.

If x 6= 0 then θT x B is two-sided Brownian with value x at 0.

Question

Let ν 6= δ0 be a probability measure on R. Is there a T
such that θT B is two-sided Brownian with distribution ν at 0 ?
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Unbiased two-sided Skorohod imbedding of ν

Question from the previous slide:

Is there a T such that θT B D
= x + B for x 6= 0 ?

Theorem from the previous slide:

For x ∈ R define T x = inf{t > 0 : `0([0, t ]) = `x([0, t ])}.

If x 6= 0 then θT x B is two-sided Brownian with value x at 0.

Question

Let ν 6= δ0 be a probability measure on R. Is there a T
such that θT B is two-sided Brownian with distribution ν at 0 ?

Theorem

Define the local time at ν by `ν =
∫
`x ν(dx) and set

T ν := inf{t > 0 : `0([0, t ]) = `ν([0, t ])}.

If ν{0}=0 then θTνB is two-sided Brownian withdistribution ν at0
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Finding an Extra Excursion
Recall: the countable excursions from 0 don’t form a sequence.

Let ν be the σ-finite Itô excursion law. Let A be a set of
excursion paths such that 0 < ν(A) <∞, for instance

excursions with hight > h > 0 or with length > d > 0.

These excursions form a two-sided sequence.

Let NA be the simple point process formed by the left end points
of these excursions and normalised to have intensity 1. Put

T = inf{t > 0 : `0([0, t ]) ≤ NA([0, t ])}.
Theorem: If B is two-sided standard Brownian then θT B

is standard Brownian in (−∞,0],

continues independently in [0,∞) with a typical excursion of
type A, that is, an excursion distributed according to ν(· | A),

and then proceeds independently as standard Brownian.
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Finding a Brownian Bridge

The Slepian process (Bs+1 − Bs)s∈R is stationary ergodic.
This process has a local-time-at-zero, denote it η .
Set Xs = (Bs+u − Bs)0≤u≤1 and X = (Xs)s∈R.
Let Y be Palm version of X w.r.t. η.
Then (Pitman), Y0 is a Brownian bridge.

Let ξ be Lebesgue measure, ξ = λ.
Since X is stationary, X is Palm version of itself w.r.t. λ.

The measures λ and η are diffuse and mutually singular.
——————————————————————————
Set T = inf{t > 0 : η([0, t ]) = t} to obtain θT X D

= X ′.

————————————————————————————
Thus XT

D
= Y0, that is, (BT+u −BT )0≤u≤1 is a Brownian bridge.

————————————————————————————
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Invariant transports of stationary random
measures and mass-stationarity
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The Slepian zero set, and Brownian bridge
embedded in Brownian motion by a spacetime shift
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Transporting random measures on the line
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