

CAVALIERI-TYPE ESTIMATION FOR PERTURBED SYSTEMATIC SAMPLING

Mads Stehr (mads.stehr@math.au.dk) - Joint work with Markus Kiderlen CSGB, Aarhus University, Denmark

(1)

INTRODUCTION

The **aim** is to estimate the volume of a solid $Y \subseteq \mathbb{R}^n$ from Lebesgue measurements on the (n-1)-dimensional intersections with random parallel hyperplanes. We will consider the case n = 3, see Figure 1.

Notation: If H_y is the hyperplane orthogonal to some reference unit vector ω with distance y from the origin, we define the *measurement function* f as

 $f(y) = \lambda_2(Y \cap H_y) = A(Y \cap H_y) .$

with section-spacing
$$t > 0$$
 is
 $\hat{V} = t \sum_{k \in \mathbb{Z}} f(y_k)$,

Properties: \hat{V} is unbiased for $V(Y) = \int_{\mathbb{R}} f dy$.

 H_{U-2t}

GENERALIZED CAVALIERI

Problem: Equidistant sampling positions are rarely realistic in applications.

New model: Sampling positions $X = \{x_k\}$ form a point process on \mathbb{R} .

Assumptions: *X* is a stationary point process with intensity $\gamma > 0$.

Generalized Cavalieri estimator [1]: With the average distance between consecutive points in *X* being $\bar{t} = \gamma^{-1}$,

Assumptions: For some fixed t > 0, U is uniform on (0, t].

Classical Cavalieri estimator [1] based on the equidistant sampling positions $\{y_k\} = \{U+kt\}$

Figure 1: Classical set-up for estimation of volume of the unit ball in \mathbb{R}^3 .

QUADRATURE RULES & PERTURBED SYSTEMATIC SAMPLING

Geometry

The classical Cavalieri estimator approximates the integral of the measurement function *f* by a Riemann sum. Using the same approximation rule when the sampling positions are not equidistant causes errors, see Figure 2.

Improvements [2]

Assumptions: Distances between consecutive sampling positions in the stationary point process $X = \{x_k\}$ are available.

Method: Use higher order quadrature rules to approximate measurement the function *f*, see Figure 2.

Trapezoidal rule: Approximate *f* by a piecewise linear function. Yields the estimator

$$\hat{V}_1 = \sum_{k \in \mathbb{Z}} \frac{x_{k+1} - x_{k-1}}{2} f(x_k) , \qquad (3)$$

$$\hat{V}_0 = \bar{t} \sum_{k \in \mathbb{Z}} f(x_k) , \qquad (2)$$

Properties: \hat{V}_0 is unbiased for V(Y) with $\operatorname{War}\hat{V}_0$ potentially considerably larger [1] than $\operatorname{War}\hat{V}$. If $x_k = U + kt$ for all $k \in \mathbb{Z}$ then $\hat{V}_0 = \hat{V}$.

VARIANCE

Theoretical variance

Figure 3 shows that the trapezoidal rule indeed leads to a decrease in variance compared to the generalized Cavalieri estimator when used to determine the volume of the unit ball with randomly perturbed sampling.

which is unbiased for V(Y).

Simpson's rule: Approximates *f* by a piecewise quadratic polynomial. Under mild integrability conditions on *X*, Simpson's rule leads to an unbiased estimator.

Perturbed Sampling

Sampling positions: Randomly perturbed from intended equidistant locations, i.e. $X = \{x_k\} = \{U + kt + D_k\}$

Error assumptions: Errors $\{D_k\}$ are iid and independent of U. $D_1 \sim h \cdot \lambda$, $\mathbb{E}D_1 = 0$ and $\mathbb{V}arD_1 = \sigma^2$.

Variance formula [1] generalized Cavalieri (2):

$$\operatorname{War}\hat{V}_{0} = tg(0) + t\sum_{k \neq 0} g * h * \check{h}(kt) - \int_{\mathbb{R}} g(z)dz \quad (4)$$

where
$$\check{h}(x) = h(-x)$$
 and $g = f * \check{f}$ is the *covar*-

Estimator type: – Generalized Cavalieri (α = 3.25) – Trapezoidal rule (α = 4) Mean number of intersecting plane

Figure 3: Theoretical variance of generalized Cavalieri and trapezoidal rule estimator found by (4) and (5) respectively. D_1 is assumed uniform on (-0.1225t/2, 0.1225t/2) and α approximates the rate of decrease.

Sample variance

Figure 4 displays the sample variance for the generalized Cavalieri estimator, the trapezoidal rule and Simpson's rule for simulated perturbed sampling positions with D_1 uniform on (-0.1225t/2, 0.1225t/2). Notice that the trapezoidal rule and Simpson's rule in both cases display a rate of decrease similar to the classical case with equidistant section-spacing.

Figure 2: The rectangular quadrature rule for equidistant points $\{x_k\}$ as used in the classical Cavalieri (top), the corresponding rule when applied to points that are not equidistant (middle), and the trapezoidal rule (bottom) which approximates with a piecewise linear function. The measurement function is $f(x) = 2(1 - x^2)$ for $x \in [-1, 1]$ (Figures with courtesy from [2]).

iogram of *f*.

Variance formula trapezoidal rule (3):

$$\begin{aligned} \text{Var}\hat{V}_{1} = \text{Var}\hat{V}_{0} + \frac{1}{2t}(\text{ID}\check{h}) * (\text{ID}h) * g(t) \\ &- (\text{ID}\check{h}) * h * g(t) - (\text{ID}h) * \check{h} * g(t) \\ &+ \frac{\sigma^{2}}{2t}g(0) - \frac{1}{2t}g * h * \check{h}(2t) , \end{aligned}$$
(5)

with ID*h* defined as IDh(x) = xh(x).

Figure 4: Sample variance for volume estimation of the unit ball (left) and a spindle shaped solid *S* with measurement function $f_S(x) = \frac{\pi}{2}(1 + \cos \pi x)$ for $x \in [-1, 1]$ (right).

REFERENCES

[1] A.J. Baddeley, K.A. Dorph-Petersen, and E.B.V. Jensen. A note on the stereological implications of irregular spacing of sections. Journal of Microscopy, 222(3):177–181, 2006.

[2] M. Kiderlen and K.A. Dorph-Petersen. The cavalieri estimator with unequal section spacing revisited. CSGB Reasearch Report 2017, 04, 2017.