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INTRODUCTION

The aim is to estimate the volume of a solid
Y ⊆ Rn from Lebesgue measurements on the
(n−1)-dimensional intersections with random
parallel hyperplanes. We will consider the case
n = 3, see Figure 1.

Notation: If Hy is the hyperplane orthogonal
to some reference unit vector ω with distance
y from the origin, we define the measurement
function f as

f(y) = λ2(Y ∩Hy) = A(Y ∩Hy) .

Assumptions: For some fixed t > 0, U is uni-
form on (0, t].

Classical Cavalieri estimator [1] based on the
equidistant sampling positions {yk} = {U+kt}

with section-spacing t > 0 is

V̂ = t
∑
k∈Z

f(yk) , (1)

Properties: V̂ is unbiased for V (Y ) =
∫
R fdy.
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Figure 1: Classical set-up for estimation of volume
of the unit ball in R3.

GENERALIZED CAVALIERI
Problem: Equidistant sampling positions are
rarely realistic in applications.

New model: Sampling positions X = {xk}
form a point process on R.

Assumptions: X is a stationary point process
with intensity γ > 0.

Generalized Cavalieri estimator [1]: With the
average distance between consecutive points
in X being t̄ = γ−1,

V̂0 = t̄
∑
k∈Z

f(xk) , (2)

Properties: V̂0 is unbiased for V (Y ) with
VarV̂0 potentially considerably larger [1] than
VarV̂ . If xk = U + kt for all k ∈ Z then V̂0 = V̂ .

QUADRATURE RULES & PERTURBED SYSTEMATIC SAMPLING

Geometry

The classical Cavalieri estimator approximates
the integral of the measurement function f by
a Riemann sum. Using the same approxima-
tion rule when the sampling positions are not
equidistant causes errors, see Figure 2.
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Figure 2: The rectangular quadrature rule for
equidistant points {xk} as used in the classical Cav-
alieri (top), the corresponding rule when applied
to points that are not equidistant (middle), and the
trapezoidal rule (bottom) which approximates with
a piecewise linear function. The measurement func-
tion is f(x) = 2(1−x2) for x ∈ [−1, 1] (Figures with
courtesy from [2]).

Improvements [2]

Assumptions: Distances between consecutive
sampling positions in the stationary point pro-
cess X = {xk} are available.

Method: Use higher order quadrature rules to
approximate measurement the function f , see
Figure 2.

Trapezoidal rule: Approximate f by a piece-
wise linear function. Yields the estimator

V̂1 =
∑
k∈Z

xk+1 − xk−1
2

f(xk) , (3)

which is unbiased for V (Y ).

Simpson’s rule: Approximates f by a piece-
wise quadratic polynomial. Under mild inte-
grability conditions onX , Simpson’s rule leads
to an unbiased estimator.

Perturbed Sampling

Sampling positions: Randomly perturbed
from intended equidistant locations, i.e.
X = {xk} = {U + kt+Dk}
Error assumptions: Errors {Dk} are iid and in-
dependent of U . D1 ∼ h · λ, ED1 = 0 and
VarD1 = σ2.

Variance formula [1] generalized Cavalieri (2):

VarV̂0 = tg(0)+t
∑
k 6=0

g∗h∗ȟ(kt)−
∫
R
g(z)dz (4)

where ȟ(x) = h(−x) and g = f ∗ f̌ is the covar-
iogram of f .

Variance formula trapezoidal rule (3):

VarV̂1 =VarV̂0 +
1

2t
(IDȟ) ∗ (IDh) ∗ g(t)

− (IDȟ) ∗ h ∗ g(t)− (IDh) ∗ ȟ ∗ g(t)

+
σ2

2t
g(0)− 1

2t
g ∗ h ∗ ȟ(2t) , (5)

with IDh defined as IDh(x) = xh(x).

VARIANCE
Theoretical variance

Figure 3 shows that the trapezoidal rule indeed
leads to a decrease in variance compared to the
generalized Cavalieri estimator when used to
determine the volume of the unit ball with ran-
domly perturbed sampling.
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Estimator type:
Generalized Cavalieri (α = 3.25)
Trapezoidal rule (α = 4)

Perturbed sampling: Theoretical variance for unit ball

Figure 3: Theoretical variance of generalized Cav-
alieri and trapezoidal rule estimator found by (4)
and (5) respectively. D1 is assumed uniform on
(−0.1225t/2, 0.1225t/2) and α approximates the
rate of decrease.

Sample variance

Figure 4 displays the sample variance for
the generalized Cavalieri estimator, the trape-
zoidal rule and Simpson’s rule for simulated
perturbed sampling positions withD1 uniform
on (−0.1225t/2, 0.1225t/2). Notice that the
trapezoidal rule and Simpson’s rule in both
cases display a rate of decrease similar to the
classical case with equidistant section-spacing.
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Generalized Cavalieri (α = 3.25)
Trapezoidal rule (α = 4)
Simpson's rule (α = 4)
Classical extension term (α = 4)

Perturbed sampling: Variances for the unit ball
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Generalized Cavalieri (α = 3.03)
Trapezoidal rule (α = 6.11)
Simpson's rule (α = 6.14)
Classical extension term (α = 6)

Perturbed sampling: Variances for the spindle

Figure 4: Sample variance for volume estimation
of the unit ball (left) and a spindle shaped solid S
with measurement function fS(x) = π

2
(1 + cosπx)

for x ∈ [−1, 1] (right).


