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Stabilization

Let X be a Poisson point process Ps or a binomial point process Xn.

Many functionals of interest in stochastic geometry are of the form

h(X ) =
∑
x∈X

ξ(x ,X ).

We have stabilization if ξ(x ,X ) is locally defined in the sense that
ξ(x ,X ) only depends on x and the points of X in a random
neighbourhood around x .
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Nearest neighbour graph
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L(X ) =
∑
x∈X

ξ(x ,X ), ξ(x ,X ) =

{
‖x − xNN‖/2, x = (xNN)NN

‖x − xNN‖, x 6= (xNN)NN
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Voronoi approximation

AW (X )−Vd(W ) =
∑
x∈X

ξ(x ,X ), ξ(x ,X ) =

{
Vd(Cx(X ) ∩W C ), x ∈W

−Vd(Cx(X ) ∩W ), x ∈W C
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CLTs for stabilizing functionals

Many results on CLTs for stabilizing functionals by Barbour,
Baryshnikov, Penrose, Schreiber, Xia, Yukich, . . .

Usually there are no or presumably suboptimal rates of convergence.

Sharp bounds derived by the Malliavin-Stein method in
Last/Peccati/S. (2016) and Lachieze-Rey/Peccati (2015+)

Apply these recent finding to general stabilizing functionals
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Framework

(X,F) measurable space generated by a semi-metric d and equipped
with a σ-finite non-atomic measure Q
Assume that there are constants γ, κ > 0 such that

(M) lim sup
ε→0

Q(B(x , r + ε))−Q(B(x , r))

ε
≤ κγrγ−1, r ≥ 0, x ∈ X.

Examples:

X = W ⊆ Rd , d Euclidean norm, Q restriction of the Lebesgue
measure to W

X m-dimensional manifold in Rd (with some additional assumptions),
d geodesic distance and Q Hausdorff measure, for example the sphere
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Framework

Ps Poisson point process with intensity measure sQ, s ≥ 1

Xn binomial point process of n independent points distributed
according to Q if Q(X) = 1

For a family of measurable scores ξs : X×N→ R, s ≥ 1, let

h(Ps) =
∑
x∈Ps

ξs(x ,Ps) and h(Xn) =
∑
x∈Xn

ξn(x ,Xn).

We call Rs : X×N→ R a radius of stabilization if

ξs(x ,M∪ {x} ∪ A) = ξs(x , (M∪ {x} ∪ A) ∩ B(x ,Rs(x ,M∪ {x})))

for all x ∈ X, M∈ N and A ⊂ X with |A| ≤ 7.
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Assumptions for the Poisson case

(A1) There are radii (Rs)s≥1 of stabilization and Cstab, cstab, αstab > 0
such that

P(Rs(x ,Ps ∪ {x}) ≥ r) ≤ Cstab exp(−cstab(s1/γr)αstab)

for x ∈ X, r ≥ 0, s ≥ 1.

(A2) For some p ∈ (0, 1] and Cp > 0,

sup
s∈[1,∞),x∈X,A⊂X,|A|≤7

E|ξs(x ,Ps ∪ {x} ∪ A)|4+p ≤ Cp.

(A3) There are a set K ∈ F and CK , cK , αK > 0 such that

P(ξs(x ,Ps ∪ {x} ∪ A) 6= 0) ≤ CK exp(−cK sαK/γd(x ,K )αK ).

for all x ∈ X, s ≥ 1 and A ⊂ X with |A| ≤ 7.

Matthias Schulte Normal approximation for stabilizing functionals 8 / 21



Assumptions for the Poisson case

(A1) There are radii (Rs)s≥1 of stabilization and Cstab, cstab, αstab > 0
such that

P(Rs(x ,Ps ∪ {x}) ≥ r) ≤ Cstab exp(−cstab(s1/γr)αstab)

for x ∈ X, r ≥ 0, s ≥ 1.

(A2) For some p ∈ (0, 1] and Cp > 0,

sup
s∈[1,∞),x∈X,A⊂X,|A|≤7

E|ξs(x ,Ps ∪ {x} ∪ A)|4+p ≤ Cp.

(A3) There are a set K ∈ F and CK , cK , αK > 0 such that

P(ξs(x ,Ps ∪ {x} ∪ A) 6= 0) ≤ CK exp(−cK sαK/γd(x ,K )αK ).

for all x ∈ X, s ≥ 1 and A ⊂ X with |A| ≤ 7.

Matthias Schulte Normal approximation for stabilizing functionals 8 / 21



Assumptions for the Poisson case

(A1) There are radii (Rs)s≥1 of stabilization and Cstab, cstab, αstab > 0
such that

P(Rs(x ,Ps ∪ {x}) ≥ r) ≤ Cstab exp(−cstab(s1/γr)αstab)

for x ∈ X, r ≥ 0, s ≥ 1.

(A2) For some p ∈ (0, 1] and Cp > 0,

sup
s∈[1,∞),x∈X,A⊂X,|A|≤7

E|ξs(x ,Ps ∪ {x} ∪ A)|4+p ≤ Cp.

(A3) There are a set K ∈ F and CK , cK , αK > 0 such that

P(ξs(x ,Ps ∪ {x} ∪ A) 6= 0) ≤ CK exp(−cK sαK/γd(x ,K )αK ).

for all x ∈ X, s ≥ 1 and A ⊂ X with |A| ≤ 7.

Matthias Schulte Normal approximation for stabilizing functionals 8 / 21



Main result for the Poisson case

For two random variables Y ,Z let

dK (Y ,Z ) := sup
u∈R
|P(Y ≤ u)− P(Z ≤ u)|.

Theorem: Lachieze-Rey/S./Yukich (2017)

Assume (A1), (A2), (A3) with α = min{αstab, αK}, c = min{cstab, cK}
and

s

∫
X

exp

(
− c p sα/γd(x ,K )α

36 · 4α+1

)
Q(dx) ≤ CVar Var h(Ps), s ≥ 1,

with CVar > 0. Let N be a standard Gaussian random variable. Then there
is a C > 0 such that

dK

(
h(Ps)− Eh(Ps)√

Var h(Ps)
,N

)
≤ C√

Var h(Ps)
, s ≥ 1.

For K = X the variance conditions becomes Var hs(Ps) ≥ sQ(X)/CVar.
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Assumptions for the binomial case

(A1′) There are radii of stabilization (Rn)n∈N and
Cstab, cstab, αstab > 0 such that

P(Rn(x ,Xn−8 ∪ {x}) ≥ r) ≤ Cstab exp(−cstab(n1/γr)αstab)

for x ∈ X, r ≥ 0, n ≥ 9.

(A2′) For some p ∈ (0, 1] and Cp > 0,

sup
n≥9,x∈X,A⊂X,|A|≤7

E|ξn(x ,Xn−8 ∪ {x} ∪ A)|4+p ≤ Cp.

(A3′) There are a set K ∈ F and CK , cK , αK > 0 such that

P(ξn(x ,Xn−8 ∪ {x} ∪ A) 6= 0) ≤ CK exp(−cK (n1/γd(x ,K ))αK ).

for all x ∈ X, n ≥ 9 and A ⊂ X with |A| ≤ 7.
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Main result for the binomial case

Theorem: Lachieze-Rey/S./Yukich (2017)

Assume (A1′), (A2′), (A3′) with α = min{αstab, αK}, c = min{cstab, cK}
and

n

∫
X

exp

(
− c p nα/γd(x ,K )α

36 · 4α+1

)
Q(dx) ≤ CVar Var h(Xn), n ≥ 9,

with CVar > 0. Let N be a standard Gaussian random variable. Then there
is a C > 0 such that

dK

(
h(Xn)− Eh(Xn)√

Var h(Xn)
,N

)
≤ C√

Var h(Xn)
, n ≥ 9.
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k-nearest neighbour graph
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W ⊂ Rd compact convex with Vd(W ) > 0 and Q(·) = Vd(·)/Vd(W )

For α ≥ 0 let

L(α)(M) =
1

2

∑
(x ,y)∈M2

6=

1{(x , y) ∈ NNGk(M)}‖x − y‖α, M∈ N.
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k-nearest neighbour graph

Theorem: Last/Peccati/S. 2016, Lachieze-Rey/S./Yukich 2017

There is a constant Cα > 0 for any α ≥ 0 such that

dK

(
L(α)(Ps)− EL(α)(Ps)√

Var L(α)(Ps)
,N

)
≤ Cα√

s
, s ≥ 1,

and

dK

(
L(α)(Xn)− EL(α)(Xn)√

Var L(α)(Xn)
,N

)
≤ Cα√

n
, n ≥ 9.

Previous results with (weaker) rates of convergence:

Poisson case: Avram/Bertsimas 1993, Penrose/Yukich 2005

binomial case: Bickel/Breimann 1983, Chatterjee 2008,
Lachieze-Rey/Peccati 2015+
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Voronoi approximation
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W ⊂ (0, 1)d compact convex with Vd(W ) > 0 and
Q(·) = Vd(· ∩ [0, 1]d)
For M∈ N,

AW (M) = Vd(
⋃

x∈M∩A
C (x ,M) ∩ [0, 1]d).
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Voronoi approximation

Theorem: Lachieze-Rey/S./Yukich 2017+

There is a constant CW > 0 such that

dK

(
AW (Ps)− EAW (Ps)√

VarAW (Ps)
,N

)
≤ CW

s(d−1)/(2d)
, s ≥ 1,

and

dK

(
AW (Xn)− EAW (Xn)√

VarAW (Xn)
,N

)
≤ CW

n(d−1)/(2d)
, n ≥ 9.

Previous results with (weaker) rates of convergence:

Poisson case: Schulte 2012, Yukich 2015

binomial case: Lachieze-Rey/Peccati 2015+, Lachieze-Rey/Vega
2015+
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Convex hull of random points

A ⊂ Rd compact convex with C 2-boundary and positive Gaussian
curvature and Q(·) = Vd(· ∩ A)/Vd(A)

Conv(M) convex hull of M⊂ A

fk(Conv(M)) number of k-faces of Conv(M)

Vi (Conv(M)) i-th intrinsic volume of Conv(M)
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Convex hull of random points

Theorem: Lachieze-Rey/S./Yukich 2017

For any h ∈ {f0, . . . , fd−1,V1, . . . ,Vd} there is a constant Ch also
depending on A such that

dK

(
h(Conv(Ps))− Eh(Conv(Ps))√

Var h(Conv(Ps))
,N

)
≤ Chs

− d−1
2(d+1) , s ≥ 1,

and

dK

(
h(Conv(Xn))− Eh(Conv(Xn))√

Var h(Conv(Xn))
,N

)
≤ Chn

− d−1
2(d+1) , n ≥ max{9, d+2}.

Previous results by Renyi/Sulanke 1963/1964, Reitzner 2005, Vu 2006,
Calka/Schreiber/Yukich 2013, Thäle/Turchi/Wespi 2017
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Malliavin-Stein bounds

Theorem: Last/Peccati/S. 2016

Let f (Ps) be square integrable with σ2 = Var f (Ps). Assume

E|Dx f (Ps ∪ A)|4+p ≤ c, Q-a.e. x ∈ X,A ⊂ X, |A| ≤ 1.

with c , p > 0. Then there is a constant C > 0 such that

dK

(
f (Ps)− Ef (Ps)

σ
,N

)
≤ C

σ2

(
Γ
1/2
s +

2Γs

σ
+

Γ
5/4
s + 2Γ

3/2
s

σ2

+

[
s3
∫
X

(∫
X
P(D2

x ,y f (Ps) 6= 0)p/(16+4p)Q(dy)

)2

Q(dx)

]1/2
+

[
s2
∫
X2

P(D2
x ,y f (Ps) 6= 0)p/(8+2p)Q2(d(x , y))

]1/2)
with Γs := s

∫
X
P(Dx f (Ps) 6= 0)p/(8+2p)Q(dx).
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Malliavin-Stein bounds

Theorem: Lachieze-Rey/S./Yukich 2017, Lachieze-Rey/Peccati 2015+

Let f (Xn) be square integrable with σ2 = Var f (Xn) and assume that

E|Dx f (Xn−1−|A| ∪ A)|4+p ≤ c , Q-a.e. x ∈ X,A ⊂ X, |A| ≤ 2.

Define

Γn = n

∫
X
P(Dx f (Xn−1) 6= 0)

p
8+2p Q(dx),

ψn(x , y) = sup
A⊂X:|A|≤1

P(D2
x ,y f (Xn−2−|A| ∪ A) 6= 0)p/(8+2p), x , y ∈ X.

Then there is a constant C > 0 such that

dK

(
f (Xn)− Ef (Xn)

σ
,N

)
≤ C

σ2

[
Γn

σ
+

√
Γn

3
+ Γn

σ2
+
√

Γn

+ n

√∫
X2

ψn(x , y)Q2(d(x , y)) + n3/2

√∫
X

(∫
X
ψn(x , y)Q(dy)

)2

Q(dx)

]
.
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Conclusion

Central limit theorems for stabilizing functionals with presumably
optimal rates of convergence

Main result applicable to

- Poisson or binomial input
- a large class of underlying spaces
- different kinds of variance rescaling

Version for marked Poisson or binomial point processes

Many further examples of stabilizing functionals
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Thank you

Thank you!
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