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Stabilization

@ Let X be a Poisson point process Ps or a binomial point process X),.

@ Many functionals of interest in stochastic geometry are of the form

h(X) = &(x,X).

XEX

@ We have stabilization if £(x, X') is locally defined in the sense that
&(x, X) only depends on x and the points of X’ in a random
neighbourhood around x.
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Nearest neighbour graph
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Nearest neighbour graph
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Nearest neighbour graph

X — x| X # (Xnn) N

LX) = &(x ), £(xX) { Ix = xwwll/2, x = (xww)

xXEX

Matthias Schulte Normal approximation for stabilizing functionals



noi approximation
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CLTs for stabilizing functionals

@ Many results on CLTs for stabilizing functionals by Barbour,
Baryshnikov, Penrose, Schreiber, Xia, Yukich, ...
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CLTs for stabilizing functionals

@ Many results on CLTs for stabilizing functionals by Barbour,
Baryshnikov, Penrose, Schreiber, Xia, Yukich, ...

@ Usually there are no or presumably suboptimal rates of convergence.

@ Sharp bounds derived by the Malliavin-Stein method in
Last/Peccati/S. (2016) and Lachieze-Rey/Peccati (2015+)
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CLTs for stabilizing functionals

@ Many results on CLTs for stabilizing functionals by Barbour,
Baryshnikov, Penrose, Schreiber, Xia, Yukich, ...

Usually there are no or presumably suboptimal rates of convergence.

Sharp bounds derived by the Malliavin-Stein method in
Last/Peccati/S. (2016) and Lachieze-Rey/Peccati (2015+)

Apply these recent finding to general stabilizing functionals
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Framework

o (X, F) measurable space generated by a semi-metric d and equipped
with a o-finite non-atomic measure Q

@ Assume that there are constants v, x > 0 such that

(M) Iimsup Q(B(X,f—i—E))—Q(B(X, r))

e—0 €

<rkyr’7l r>0,xeX
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Framework

o (X, F) measurable space generated by a semi-metric d and equipped
with a o-finite non-atomic measure Q

@ Assume that there are constants v, x > 0 such that

(M) Iimsup Q(B(X,f—i—&‘))—@(B(X, r))

<rkyr’7l r>0,xeX
e—0 €

Examples:

e X =W CRY d Euclidean norm, Q restriction of the Lebesgue
measure to W

o X m-dimensional manifold in R? (with some additional assumptions),
d geodesic distance and Q Hausdorff measure, for example the sphere
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Framework

@ Ps Poisson point process with intensity measure sQ, s > 1

@ X, binomial point process of n independent points distributed
according to Q if Q(X) =1
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Framework

@ Ps Poisson point process with intensity measure sQ, s > 1

@ X, binomial point process of n independent points distributed
according to Q if Q(X) =1

@ For a family of measurable scores & : X X N — R, s > 1, let

h(Ps) =) &(x,Ps) and  h(X,) = D &alx, Xn).

Xeps XeXn
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Framework

@ Ps Poisson point process with intensity measure sQ, s > 1

@ X, binomial point process of n independent points distributed
according to Q if Q(X) =1
@ For a family of measurable scores & : X X N — R, s > 1, let

h(Ps) =) &(x,Ps) and  h(X,) = D &alx, Xn).

Xeps XeXn
@ Wecall Rs : X x N — R a radius of stabilization if

Es(x, MU {x} UA) = &(x, ( MU {x}UA)N B(x, Rs(x, MU {x})))

forall x e X, M € N and A C X with |4| <7.
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Assumptions for the Poisson case

@ (A1) There are radii (Rs)s>1 of stabilization and Cgtap, Cstab, Qstab > 0
such that

P(Rs(x, Ps U{x}) > r) < Csap exp(_cstab(sl/’yr)a“ab)

forx e X, r>0,s > 1.
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Assumptions for the Poisson case

@ (A1) There are radii (Rs)s>1 of stabilization and Cgtap, Cstab, Qstab > 0
such that

P(Rs(x, Ps U{x}) > r) < Csap exp(_cstab(sl/’yr)a“ab)

forx e X, r>0,s > 1.
@ (A2) For some p € (0,1] and C, >0,

sup E|&s(x, Ps U {x} UA)|**P < C,.
s€[1,00),xeX,ACX,|A|<7
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Assumptions for the Poisson case

@ (A1) There are radii (Rs)s>1 of stabilization and Cgtap, Cstab, Qstab > 0
such that

P(Rs(x, Ps U{x}) > r) < Csap eXp(_Cstab(Sl/’yr)a“ab)

forx e X, r>0,s > 1.
@ (A2) For some p € (0,1] and C, >0,

sup E|&s(x, Ps U {x} UA)|**P < C,.
s€[1,00),xeX,ACX,|A|<7

@ (A3) There are a set K € F and Ck, ¢k, ak > 0 such that
P(&(x, Ps U {x} U A) # 0) < Ck exp(—cks®</7d(x, K)*K).

forall x € X, s > 1and A C X with |A| <7.
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Main result for the Poisson case

For two random variables Y, Z let

de(Y,Z) :=sup |[P(Y < u) —P(Z < u)|.
ueR
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Main result for the Poisson case

For two random variables Y, Z let

de(Y,Z) :=sup |[P(Y < u) —P(Z < u)|.
ueR

Theorem: Lachieze-Rey/S./Yukich (2017)

Assume (A1), (A2), (A3) with o = min{astan, k }, ¢ = min{Cstap, Ck }
and

/7d(x, K)®
cps X,
S/Xexp < - TR > Q(dx) < Gyar Var h(Ps), s=>1,

with Gyar > 0. Let N be a standard Gaussian random variable. Then there
is a C > 0 such that

h(Ps) — Eh(PS) C
dK( Var h(Ps) 7N> = \/Var h(Py)’ o=t
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Main result for the Poisson case

For two random variables Y, Z let

de(Y,Z) :=sup |[P(Y < u) —P(Z < u)|.
ueR

Theorem: Lachieze-Rey/S./Yukich (2017)

Assume (A1), (A2), (A3) with o = min{astan, k }, ¢ = min{Cstap, Ck }
and

/7d(x, K)®
cps X,
S/Xexp < - TR > Q(dx) < Gyar Var h(Ps), s=>1,

with Gyar > 0. Let N be a standard Gaussian random variable. Then there
is a C > 0 such that

h(Ps) — Eh(PS) C
dK( Var h(Ps) 7N> = \/Var h(Py)’ o=t

For K = X the variance conditions becomes Var hs(Ps) > sQ(X)/Cyar-
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Assumptions for the binomial case

@ (A1’) There are radii of stabilization (R;)qen and
Cstab, Cstab, Ostab > 0 such that

IP>(Rf7(xa Xp—g U {X}) > r) < Gstab eXp(_Cstab(nl/’yr)aStab)

forxeX,r>0,n>09.
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Assumptions for the binomial case

@ (A1’) There are radii of stabilization (R;)qen and
Cstab, Cstab, Ostab > 0 such that

P(RH(X’ Xp—g U {X}) > r) < Gstab eXp(_Cstab(nl/’yr)aStab)

forxeX,r>0,n>09.
e (A2) For some p € (0,1] and C, >0,

sup E|&n(x, Xp—g U {x} U A)\4+p < Gp.
n>9,xeX, ACX,|A|<T
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Assumptions for the binomial case

@ (A1’) There are radii of stabilization (R;)qen and
Cstab, Cstab, Ostab > 0 such that

P(Rn(xv Xp—g U {X}) > r) < Gstab eXp(_Cstab(nl/’yr)aStab)

forxeX,r>0,n>09.
e (A2) For some p € (0,1] and C, >0,

sup E|&n(x, Xp—g U {x} U A)\4+p < Gp.
n>9,xeX, ACX,|A|<T

o (A3') There are a set K € F and Cg, ck,ax > 0 such that
P(En(x, Xp—g U {x} UA) # 0) < Cx exp(—ck(n/7d(x, K))™¥).

forall x e X, n>9and A C X with |A| <7.
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Main result for the binomial case

Theorem: Lachieze-Rey/S./Yukich (2017)

Assume (A1), (A2'), (A3') with o = min{astap, @k }, ¢ = min{cstan, ck }
and

o/ d(x, K)®
cpn X,
n/xexp ( - 35 4ol > Q(dx) < Cyar Var h(X,), n>09,

with Gyar > 0. Let N be a standard Gaussian random variable. Then there
isa C > 0 such that

h(X,) — Eh(X,,) C
o Nar h(X,) ’N>S¢W’ n=9
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k-nearest neighbour graph

e W C RY compact convex with Vy(W) > 0 and Q(-) = Vy(-)/ Va(W)
@ Fora >0 let

1
LM =2 3 1xy) € MNGMYx -y, MeN.
(x,y)GMi
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k-nearest neighbour graph

Theorem: Last/Peccati/S. 2016, Lachieze-Rey/S./Yukich 2017

There is a constant C, > 0 for any a > 0 such that

(@) —EL(a)

<=, s>1,
Var L&) (Pg) s
and () ()
e . a
dK<L (X,) — EL (Xn)7N> §&7 I
Var L&) (X,) n
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k-nearest neighbour graph

Theorem: Last/Peccati/S. 2016, Lachieze-Rey/S./Yukich 2017

There is a constant C, > 0 for any a > 0 such that

() —EL()
w(EIEOR) ) Gy
Var L&) (Pg) NG
and (@) (x,) (@) (x,)
L9(x,) —ELY (X, Co
d IN)<—, n>9
K( Var L&) (X,) ) vn

Previous results with (weaker) rates of convergence:
@ Poisson case: Avram/Bertsimas 1993, Penrose/Yukich 2005

@ binomial case: Bickel/Breimann 1983, Chatterjee 2008,
Lachieze-Rey/Peccati 2015+
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Voronoi approximation

o W c (0,1)¢ compact convex with V(W) > 0 and
Q(-) = Va(-n[0,1]%)
@ For M €N,
Aw(M) = Va( |J C(x, M)N[0,1]%).
xEMNA
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Voronoi approximation

Theorem: Lachieze-Rey/S./Yukich 2017+

There is a constant Cyy > 0 such that

Aw(Ps) — EAw(Ps) Cw
“ ( NI < ey $2b
VarAW(Ps) S
and Aw(X) — EAw () c
W\tn) — W\<tn w
dK( VarAW(Xn) ) ) S n(d—l)/(2d)’ n Z 9
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Voronoi approximation

Theorem: Lachieze-Rey/S./Yukich 2017+

There is a constant Cyy > 0 such that

J (AW(PS) —IEAW(PS)’ > < Cw s>,
Var Ay (Ps) s(d=1)/(2d)
and
Aw(X,) — EAw(X,) - Cw I
Var Ap (X,) — p(d-1)/(2d)’ -

Previous results with (weaker) rates of convergence:
@ Poisson case: Schulte 2012, Yukich 2015

@ binomial case: Lachieze-Rey/Peccati 2015+, Lachieze-Rey/Vega
2015+
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Convex hull of random points

e A C R? compact convex with C%-boundary and positive Gaussian
curvature and Q(+) = Vg(- N A)/V4(A)
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Convex hull of random points

e A C R? compact convex with C%-boundary and positive Gaussian
curvature and Q(+) = Vg(- N A)/V4(A)

e Conv(M) convex hull of M C A
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Convex hull of random points

e A C R? compact convex with C%-boundary and positive Gaussian
curvature and Q(+) = Vg(- N A)/V4(A)

e Conv(M) convex hull of M C A
o fi(Conv(M)) number of k-faces of Conv(M)
e V;(Conv(M)) i-th intrinsic volume of Conv(M)
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Convex hull of random points

Theorem: Lachieze-Rey/S./Yukich 2017

For any h € {fy,...,f4—1, Vi,..., V4} there is a constant C, also
depending on A such that
J (h(Conv(’Ps)) — Eh(Conv(Ps))
K \/Var h(Conv(Ps))

d—1
,N> < Cps @D s >1,

and

A ( h(Conv(X,)) — Eh(Conv(X,))
\/Var h(Conv(X,))

d—1
,N> < Cpn 2D n > max{9, d+2}.
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Convex hull of random points

Theorem: Lachieze-Rey/S./Yukich 2017

For any h € {fy,...,f4—1, Vi,..., V4} there is a constant C, also
depending on A such that

A (h(Conv(’Ps)) — Eh(Conv(Ps))

d—1
,N> < Cps @D s >1,

\/Var h(Conv(Ps))
and
h(Conv(X,)) — Eh(Conv(X,)) A n> max
dK( \/Var h(Conv(X,)) 7N) = Gon T, 02 max{s, o425

Previous results by Renyi/Sulanke 1963/1964, Reitzner 2005, Vu 2006,
Calka/Schreiber/Yukich 2013, Thale/Turchi/Wespi 2017
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Malliavin-Stein bounds

Theorem: Last/Peccati/S. 2016

Let f(Ps) be square integrable with 02 = Var f(Ps). Assume

E|Dyf(PsUA)*P <c, Qae xeX,ACX A <1

with ¢, p > 0. Then there is a constant C > 0 such that

oo (LP=EPD ) £

<7
o — 02

12 | 206 "
s~ + . +702
+ [53/ </IP’(D2 f(r]))#0)p/(16+4p)(@(dy)>2@(dx):| 1/2
X \JX WA
1/2
w2 [ P02, 2 0P ety )

Ms:=s / P(Dyf(Ps) # 0)P/(E+2P) Q(dx).
X
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Malliavin-Stein bounds

Theorem: Lachieze-Rey/S./Yukich 2017, Lachieze-Rey/Peccati 2015+

Let f(X,) be square integrable with 02 = Var f (&,

») and assume that
E[Dyf(Xp1-jq VAP <c, Qae xeXACK|A <2
Define

r—n /X P(D, F(X_1) # 0)55 Q(dx),

Yn(x,y) = sup (D f( n—2— | A| UA) # 0)P/(8+2p

x,y € X.
ACX:|AI<1

Then there is a constant C > 0 such that

dK<f(X)—Ef(X)7N><U2[ \F+r L

W baliesy) @(d(x,)) +n3/2\// ([ ont) (dy)) o).

Matthias Schulte
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Conclusion

@ Central limit theorems for stabilizing functionals with presumably
optimal rates of convergence
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Conclusion
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@ Main result applicable to

- Poisson or binomial input
- a large class of underlying spaces
- different kinds of variance rescaling

@ Version for marked Poisson or binomial point processes

Matthias Schulte Normal approximation for stabilizing functionals



Conclusion

@ Central limit theorems for stabilizing functionals with presumably
optimal rates of convergence
@ Main result applicable to

- Poisson or binomial input
- a large class of underlying spaces
- different kinds of variance rescaling

@ Version for marked Poisson or binomial point processes

@ Many further examples of stabilizing functionals
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Thank you!
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