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Problem statement

Goal: Understand the pattern of signal strengths received from base stations (e.g. cell
towers) by a “typical” user (e.g. cell phone).

Sketch: Nathan Ross

Standard model

Standard model for densely populated areas

• Base stations (BS) are placed as a simple point process Ξ =
∑

i∈I δXi in R2. All
transmit with the same power P.

• Power received at origin from BS at x is

P rec
x =

Sx

g(x)
P,

where
distance loss: g(x) = (K‖x‖)β , β > 2 (finite interference).
shadow-fading effect (what remains): Sx = exp

(
σZx − σ2/β

)
, σ > 0.

where Zx ∼ N (0, 1) and (Zx )x independent of Ξ.
β and σ have to do with transmission frequency and environment.

• Propagation loss for signal from x is

Yx =
P

P rec
x

=
g(x)

Sx
.

Point process of propagation losses: Nσ =
∑

i∈I δYi , where Yi = Y (σ)
i = YXi .

Standard model

Regime and consequences

Regime:

β > 2 fixed,
σ →∞ (“strong shadowing effects”, i.e. heterogeneous environment; σ ≥ 2 ok).

Consequences:
• Sx = exp

(
σZx − σ2/β

)
→ 0 a.s., Yx = g(x)/Sx →∞ a.s.

• Sx is normalized so that ES2/β
x = 1.

• If EΞ(A) = κLebd (A) for every A ∈ B2, then

ENσ((0, t ]) = E
∫
R2

1{Yx ≤ t}Ξ(dx) = κ

∫
R2

P
(
Yx ≤ t

)
dx = κ

∫
R2

P
(
g(x)/S ≤ t

)
dx

= κE
∫
R2

1{(K‖x‖)β/S ≤ t} dx =
κπt2/β

K 2 E(S2/β) =
κπt2/β

K 2 =: µ
(
(0, t ]

)
• If Ξ is deterministic, satisfying Ξ(B̄(0, r)) ∼ κπr 2 as r →∞, then

ENσ((0, t ]) =
∑
i∈I

P
(
Yxi ≤ t)→ κπt2/β

K 2 = µ
(
(0, t ]

)
as σ →∞.



Independent shadowing

Independent shadowing results

Suppose that ZXi , i ∈ I, are independent.

Błaszczyszyn, Karray and Klepper (2010):
To obtain Nσ, the points of Ξ are subjected to the independent random transform
[x 7→ g(x)/Sx ].
So if Ξ ∼ Pop(κLebd ), then Nσ ∼ Pop(µ).

Błaszczyszyn, Karray and Keeler (2013):
For deterministic Ξ, we have Nσ

D−→ Pop(µ) as σ →∞.

Keeler, Ross and Xia (to appear, presented at SGSIA 2015):
For very general Ξ, distance loss functions and independent shadowing models:
under the compatibility condition

∫
P(Yx ≤ t) (EΞ)(dx)→ µ

(
(0, t ]

)
as σ →∞,

we still have Nσ
D−→ Pop(µ).

But independent shadowing is unrealistic!

Dependent shadowing

Dependent shadowing model

Still Sx = exp
(
σZx − σ2/β

)
,

but now (Zx )x∈R2 is Gaussian ran-
dom field with
mean 0, variance 1, and
general correlation function %,

i.e. %(x , y) = corr(Zx ,Zy ).

Dependent shadowing

Dependent shadowing results

Template of a general result, assuming Ξ is in some sense stationary:

Nσ
D−→ Pop(µ) as σ →∞ still holds if

1 Ξ is orderly enough, i.e. 1
εd P
(
Ξ(B(x , ε)) ≥ 2

)
→ 0 sufficiently fast as ε→ 0;

2 Ξ satisfies a (very weak) mixing condition (“no long-range pos. correlations”);

3 ρ(x , y)→ 0 fast enough as ‖x − y‖ → ∞;

4 ρ(x , y)→ 1 not too fast as ‖x − y‖ → 0.

Dependent shadowing

Dependent shadowing results

Concrete result for hard core process (Ross and S, 2017):
Let Ξ second-order stationary
=⇒ ∃ constant intensity κ, reduced 2nd factorial moment measure λ̆[2].
Assume further

1 Ξ has a hard core, i.e. there is a ε∗ > 0 such that inf{x,y}⊂Ξ‖x − y‖ ≥ ε∗ a.s.;

2 Ξ is B+
2 -mixing, in the sense that the reduced covariance measure γ̆[2], given by

γ̆[2](B) = λ̆[2](B)− κ|B|,

for any B ∈ B2 bounded can be extended to a [−∞,∞)-valued signed measure
(i.e. of finite positive variation);

3 There is a non-increasing %̃ : R+ → [0, 1] satisfying %(x , y) ≤ %̃(‖x − y‖), such
that %̃(r) < 1 for r > 0, %̃(r) = O(r−(1+a)) for some a > 0, and [r 7→ r %̃2(r)]
non-increasing on some interval [r0,∞);

4 % is uniformly positive definite (u.p.d.):
∀ε > 0 : ∃δ = δ(ε) > 0 : ∀n ∈ N,∀x1, . . . , xn ∈ R2 with mini 6=j ‖xi − xj‖ ≥ ε and
∀v ∈ Rn :

∑n
i,j=1 vivjρ(xi , xj ) ≥ δ‖v‖2.

Then Nσ
D−→ Pop(µ) as σ →∞, and we can give a rate in Wasserstein distance.



Dependent shadowing

Wasserstein metric between point process distrib.

We measure distances between point patterns (finite point measures) on [0, t ] by the
OSPA metric (S, Vo and Vo, 2008; S and Xia, 2008):

Πn set permutations on {1, 2, . . . , n}.

For point patterns ξ =
∑m

i=1 δti and η =
∑n

j=1 δsj ∈ N
with m ≤ n,

d(ξ, η) = min
π∈Πn

1
n

m∑
i=1

∣∣ti − sπ(i)
∣∣+

t
n

(n −m).

Consider Wasserstein metric between point process distributions P and Q:

dW (P,Q) = min
Ξ∼P
H∼Q

Ed(Ξ,H).

Dependent shadowing

Bound for hard core process
• br := β

σ
log((Kr)/t) + σ

β
. (Significance: P(Yx ≤ t) = P(Zx ≥ b‖x‖))

• Fix d ,R,C > 0 with d ,R ≤ C, b := bd > 0 and B := bC > 1.
• Let ε∗ > 0 be the hard core distance,

T ∗ = T ∗(R) =
(R+ε∗/2

ε∗/2

)2 upper bound for the maximal number of points in any
R-ball.

• F := F (R,T ∗, ε∗) = 1
δ(ε∗)

(4π + 1)T ∗
[
%̃2(R) + 1√

3R2

∫∞
R s%̃2(s) ds

]
Assume that B2F ≤ 1.

• M(s) = µ
(
(0, s]

)
= ENσ((0, s]) and MΞ(s) = µΞ

(
(0, s]

)
= E

(
Nσ((0, s])

∣∣ Ξ
)
.

Then,
dW
(
L(Nσ|[0,t]),Pop(µ|[0,t])

)
≤ 2κ

∫
‖x‖>C

P(Z ≥ b‖x‖) dx + E
∣∣MΞ(t)−M(t)

∣∣+ E
∫ t

0

∣∣MΞ(s)−M(s)
∣∣ ds

+ M(t)T ∗
[
P(Z ≥ bd ) + 5e−b2(1−%̃(ε∗))/4

]
+ κπd2

+ (t + 1)M(t)
[

8(B + σ−1)
√

F√
1− F 2

+ (1 + b−2)
√

Fe−b2(F−1−1)/2
]

= O(σ−z)

for any z > 0.

Sketch of proof

Proof idea

1 dW (L(Nσ|[0,t]),Pop(µ|[0,t]))

≤ dW (L(Nσ|[0,t]),Cox(µΞ|[0,t])) + dW (Cox(µΞ|[0,t]),Pop(µ|[0,t])).

2 Condition first term on Ξ and dispose of nasty events whose probability is small
(and nasty bits of Ξ whose influence is small).

3 Apply Stein’s method to the rest.

4 Control weak dependence between one BS and all other BSs that are far apart
by using conditional distribution of multivariate Gaussian vector and uniform
positive definiteness.
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