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Can One Hear the Shape of a Drum? (Kac, 1966)

Let D ⊂ Rd be a bounded domain (open, connected) with d = 2.
The fundamental frequencies of a D-shaped membrane are given by:
λ0 = 0 < λ1 < λ2 . . . the eigenvalues of the Laplacian −4 on D:

4u(x, y) := ∂2u

∂x2
+
∂2u

∂y2
, u ∈ C2(D), u|∂D ≡ 0

Does (λ1, λ2, . . .) determine the shape of D?

Many other reasons to be interested in these eigenvalues. For example,

λ1 is the rate of exponential decay of the survival probability for a
Brownian motion in D killed when it hits ∂D.
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Cheeger’s inequality

Let d ≥ 2, let D ⊂ Rd be a bounded domain. Let λ1 be the first non-zero
eigenvalue of −4 on D. Then [Cheeger 1970]

λ1 ≥
(CHE(D))2

4

where the Cheeger constant of D is given by

CHE(D) := inf

{
|∂DA|
|A|

: A ⊂ D, 0 < |A| ≤ |D|/2
}
,

|A| denotes the volume of A,

|∂DA| denotes the perimeter of A within D,

i.e. the surface measure of A ∩D \A (where A means closure of A).

Parini 2015: Reverse inequality λ1 <
π2(CHE(D))2

4 for d = 2, D convex.
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Random (weighted) geometric graphs

Let X1, X2, . . . be i.i.d. uniform (D).

For n ∈ N and r > 0, let G(n, r) be the weighted graph on vertex set
Vn := {X1, . . . Xn} with weights

Wxy := φ

(
|x− y|
r

)
where φ(t) = 1[0,1](t), t ≥ 0, and | · | is Euclidean.

i.e., connect any two points of Vn at Euclidean distance at most rn.

[Could also consider non-uniform densities,
and other weight functions φ such as φ(t) = exp(−t2)]
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Cheeger constant of a graph G (G = (V,W ))

Also known as the conductance of G:

CHE(G) = min

{
∂G(U)

volG(U)
: U ⊂ V, 0 < volG(U) ≤ 1/2

}
where we set

∂G(U) :=
∑
v∈U

∑
w∈V \U

Wvw; volG(U) :=
#(U)

#(V )

so volG(U) ∈ (0, 1). The denominator penalizes unbalanced cuts.

[Alternatively could define vol(U) by counting edges rather than vertices,
and/or change the denominator to volG(U)volG(V \ U).]
Uses: provides bounds on mixing times of random walk on graph, bounds
on graph laplacian; reasonable criterion for optimal cut.
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Machine learning

Aim: learn about D from the sample Vn. In particular:

Can we learn about CHE(D) from CHE(G(n, rn)), given (rn)n≥1?

[Recall CHE(D) := inf
{
|∂DA|
|A| : A ⊂ D, 0 < |A| ≤ |D|/2

}
CHE(G) = min

{
∂G(U)
volG(U) : U ⊂ V, 0 < volG(U) ≤ 1/2

}
]

[Raised by Arias-Castro et al. 2012. Could ask similar in manifolds]

Given U ⊂ Vn, we’ll use notation

∂n(U) := ∂G(n,rn)(U),

voln(U) := volG(n,rn)(U) = #(U)/n.

6 / 11



Assumptions on D and rn

D ⊂ Rd open and connected.

Also assume |D| = 1, and that D has a Lipschitz boundary ∂D

[this holds e.g. if ∂D is smooth or D is a cube]

Also, assume that rn � 1 and (unless stated otherwise) that

nrdn � log n,

where an � bn or bn � an means (an/bn)→ 0 as n→∞.

Note: ∃c > 0: if nrdn ≤ c log n then G is not connected so CHE(G) = 0.
Need at least nrdn ≥ c log n to have any chance of learning anything from
CHE(G(n, rn)). But want rn small for computational reasons.

7 / 11



Asymptotic upper bound for CHE(G) in general D

Choose A ⊂ D to minimize |∂DA|/|A| subject to 0 < |A| ≤ 1
2 .

Let Un = Vn ∩A. By the SLLN, voln(Un)→ |A|. Also,

E[∂n(Un)] = n2
∫
A

∫
D\A

1[0,rn](|y − x|)dydx

∼ |∂DA|σn2rd+1
n ,

with σ := (1/2)
∫
Rd x11[0,1](|x|)dx. [‘Surface tension’ of φ = 1[0,1]], at

least if ∂DA is smooth. So assuming n−2r−d−1n ∂n(Un) is concentrated,
and using the Strong Law of Large Numbers for voln(Un), this gives

lim supn−2r−d−1n CHE(G(n, rn)) ≤ lim supn−2r−d−1n

(
∂n(Un)

voln(Un)

)

=
σ|∂DA|
|A|

= σCHE(D)
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THEOREM (Garćıa Trillos et al. ‘16; Müller and P.)

[Recall CHE(D) := inf
{
|∂DA|
|A| : A ⊂ D, 0 < |A| ≤ |D|/2

}
CHE(G) = min

{
∂G(U)
volG(U) : U ⊂ V (G), 0 < volG(U) ≤ 1/2

}
]

Under our conditions (|D| = 1, ∂D Lipschitz, rn → 0, nrdn � log n), a.s.:

n−2r−d−1n CHE(G(n, rn))→ σCHE(D). [already shown ≤]

If A ⊂ D is the (essentially) unique Cheeger minimizer, i.e. |A| < 1/2

and |∂DA||A| < ∂DA
′

|A′| for all A′ ⊂ D with |A′4A| 6= 0, then

n−1
∑
x∈An

δx → Lebd|A weakly.

If A is not unique, we still have convergence on a subsequence.

G. Trillos et al. needed the additional conition nr2n � (log n)3/2 if d = 2.
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Differences between the proofs

Garćıa Trillos et al., in their proof, divide D into n cubes of side
n−1/d.

They use minimax grid matching results (Leighton and Shor ’89, Shor
and Yukich ’91) to associate each point of Vn with a nearby cube.

Hence convert discrete set Un ⊂ Vn into a union of cubes.

Grid matchings need nr2n ≥ C(log n)3/2 if d = 2.

In the Müller and P. proof, instead divide D into larger cubes (boxes)
of side γnrn, with γn → 0 but n(γnrn)

d � log n.

Convert Un into set of boxes, namely boxes containing ‘mostly’ points
of Un.
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