Optimal cuts of random geometric graphs

Mathew Penrose (University of Bath, UK)

19th Workshop on Stochastic Geometry, Stereology and Image Analysis (SGSIA) Luminy May 2017

1/11

Let $D \subset \mathbb{R}^d$ be a bounded domain (open, connected) with d = 2. The fundamental frequencies of a *D*-shaped membrane are given by: $\lambda_0 = 0 < \lambda_1 < \lambda_2 \dots$ the eigenvalues of the Laplacian $-\triangle$ on *D*:

$$\Delta u(x,y) := \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}, \quad u \in C^2(D), \quad u|_{\partial D} \equiv 0$$

Does $(\lambda_1, \lambda_2, \ldots)$ determine the shape of D?

Many other reasons to be interested in these eigenvalues. For example,

 λ_1 is the rate of exponential decay of the survival probability for a Brownian motion in D killed when it hits ∂D .

Cheeger's inequality

Let $d \ge 2$, let $D \subset \mathbb{R}^d$ be a bounded domain. Let λ_1 be the first non-zero eigenvalue of $-\triangle$ on D. Then [Cheeger 1970]

$$\lambda_1 \ge \frac{(\operatorname{CHE}(D))^2}{4}$$

where the Cheeger constant of D is given by

$$\operatorname{CHE}(D) := \inf \left\{ \frac{|\partial_D A|}{|A|} : A \subset D, 0 < |A| \le |D|/2 \right\},\$$

 $\left|A\right|$ denotes the volume of A,

 $|\partial_D A|$ denotes the perimeter of A within D,

i.e. the surface measure of $\overline{A} \cap \overline{D \setminus A}$ (where \overline{A} means closure of A).

Parini 2015: Reverse inequality $\lambda_1 < \frac{\pi^2(\text{CHE}(D))^2}{4}$ for d = 2, D convex.

Random (weighted) geometric graphs

Let X_1, X_2, \ldots be i.i.d. uniform (D).

For $n \in \mathbb{N}$ and r > 0, let G(n, r) be the weighted graph on vertex set $V_n := \{X_1, \dots, X_n\}$ with weights

$$W_{xy} := \phi\left(\frac{|x-y|}{r}\right)$$

where $\phi(t) = \mathbf{1}_{[0,1]}(t)$, $t \ge 0$, and $|\cdot|$ is Euclidean.

i.e., connect any two points of V_n at Euclidean distance at most r_n .

[Could also consider non-uniform densities, and other weight functions ϕ such as $\phi(t) = \exp(-t^2)$]

Cheeger constant of a graph G (G = (V, W))

Also known as the *conductance* of G:

$$CHE(G) = \min\left\{\frac{\partial_G(U)}{\operatorname{vol}_G(U)} : U \subset V, 0 < \operatorname{vol}_G(U) \le 1/2\right\}$$

where we set

$$\partial_G(U) := \sum_{v \in U} \sum_{w \in V \setminus U} W_{vw}; \quad \operatorname{vol}_G(U) := \frac{\#(U)}{\#(V)}$$

so $vol_G(U) \in (0,1)$. The denominator penalizes unbalanced cuts.

[Alternatively could define vol(U) by counting edges rather than vertices, and/or change the denominator to $vol_G(U)vol_G(V \setminus U)$.] Uses: provides bounds on mixing times of random walk on graph, bounds on graph laplacian; reasonable criterion for optimal cut.

Machine learning

Aim: learn about D from the sample V_n . In particular:

Can we learn about CHE(D) from $CHE(G(n, r_n))$, given $(r_n)_{n\geq 1}$?

$$\begin{aligned} & \left[\text{Recall CHE}(D) := \inf \left\{ \frac{|\partial_D A|}{|A|} : A \subset D, 0 < |A| \le |D|/2 \right\} \\ & \text{CHE}(G) = \min \left\{ \frac{\partial_G(U)}{\operatorname{vol}_G(U)} : U \subset V, 0 < \operatorname{vol}_G(U) \le 1/2 \right\} \end{aligned}$$

[Raised by Arias-Castro et al. 2012. Could ask similar in manifolds]

Given $U \subset V_n$, we'll use notation

$$\partial_n(U) := \partial_{G(n,r_n)}(U),$$
$$\operatorname{vol}_n(U) := \operatorname{vol}_{G(n,r_n)}(U) = \#(U)/n.$$

 $D \subset \mathbb{R}^d$ open and connected.

Also assume |D| = 1, and that D has a Lipschitz boundary ∂D

[this holds e.g. if ∂D is smooth or D is a cube]

Also, assume that $r_n \ll 1$ and (unless stated otherwise) that

 $nr_n^d \gg \log n,$

where $a_n \ll b_n$ or $b_n \gg a_n$ means $(a_n/b_n) \to 0$ as $n \to \infty$.

Note: $\exists c > 0$: if $nr_n^d \leq c \log n$ then G is not connected so CHE(G) = 0. Need at least $nr_n^d \geq c \log n$ to have any chance of learning anything from $CHE(G(n, r_n))$. But want r_n small for computational reasons. Choose $A \subset D$ to minimize $|\partial_D A|/|A|$ subject to $0 < |A| \le \frac{1}{2}$. Let $U_n = V_n \cap A$. By the SLLN, $\operatorname{vol}_n(U_n) \to |A|$. Also,

$$\mathbb{E}[\partial_n(U_n)] = n^2 \int_A \int_{D \setminus A} \mathbf{1}_{[0,r_n]}(|y-x|) dy dx$$
$$\sim |\partial_D A| \sigma n^2 r_n^{d+1},$$

with $\sigma := (1/2) \int_{\mathbb{R}^d} x_1 \mathbf{1}_{[0,1]}(|x|) dx$. ['Surface tension' of $\phi = \mathbf{1}_{[0,1]}$], at least if $\partial_D A$ is smooth. So assuming $n^{-2}r_n^{-d-1}\partial_n(U_n)$ is concentrated, and using the Strong Law of Large Numbers for $\mathrm{vol}_n(U_n)$, this gives

$$\limsup n^{-2} r_n^{-d-1} \operatorname{CHE}(G(n, r_n)) \le \limsup n^{-2} r_n^{-d-1} \left(\frac{\partial_n(U_n)}{\operatorname{vol}_n(U_n)} \right)$$

$$= \frac{\sigma |\partial_D A|}{|A|} = \sigma \text{CHE}(D)$$

THEOREM (García Trillos et al. '16; Müller and P.)

$$\begin{aligned} & \left[\text{Recall CHE}(D) := \inf \left\{ \frac{|\partial_D A|}{|A|} : A \subset D, 0 < |A| \le |D|/2 \right\} \\ & \text{CHE}(G) = \min \left\{ \frac{\partial_G(U)}{\operatorname{vol}_G(U)} : U \subset V(G), 0 < \operatorname{vol}_G(U) \le 1/2 \right\} \end{aligned}$$

Under our conditions (|D| = 1, ∂D Lipschitz, $r_n \to 0$, $nr_n^d \gg \log n$), a.s.:

•
$$n^{-2}r_n^{-d-1}CHE(G(n, r_n)) \to \sigma CHE(D)$$
. [already shown \leq]

• If $A \subset D$ is the (essentially) unique Cheeger minimizer, i.e. |A| < 1/2and $\frac{|\partial_D A|}{|A|} < \frac{\partial_D A'}{|A'|}$ for all $A' \subset D$ with $|A' \triangle A| \neq 0$, then

$$n^{-1}\sum_{x\in A_n}\delta_x \to \operatorname{Leb}_d|_A$$
 weakly.

If A is not unique, we still have convergence on a subsequence.
G. Trillos et al. needed the additional conition nr²_n ≫ (log n)^{3/2} if d = 2.

- García Trillos *et al.*, in their proof, divide D into n cubes of side $n^{-1/d}$.
- They use minimax grid matching results (Leighton and Shor '89, Shor and Yukich '91) to associate each point of V_n with a nearby cube.
- Hence convert discrete set $U_n \subset V_n$ into a union of cubes.
- Grid matchings need $nr_n^2 \ge C(\log n)^{3/2}$ if d = 2.
- In the Müller and P. proof, instead divide D into larger cubes (boxes) of side $\gamma_n r_n$, with $\gamma_n \to 0$ but $n(\gamma_n r_n)^d \gg \log n$.
- Convert U_n into set of boxes, namely boxes containing 'mostly' points of U_n .

- Arias-Castro, E., Pelletier, B. and Pudlo, P. (2012) The normalized graph cut and Cheeger constant: from discrete to continuous. *Adv. Appl. Probab.* **44**, 907-937.
- García Trillos, N. and Slepčev, D. (2016) Continuum limit of total variation on point clouds. *Arch. Ration. Mech. Anal.* **220**, 193-241.
- García Trillos, N., Slepčev, D., von Brecht, J., Laurent, T. and Bresson, X. (2016) Consistency of Cheeger and ratio cuts. *Journal of Machine Learning Research*.
- Müller, T. and Penrose, M.D. (2017+) Optimal Cheeger cuts and bisections of random geometric graphs. In preparation.