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FIRST MODEL (BERRY, 1977)

x Fix E > 0. The Berry random wave model on R? with
parameter E, written

Br = {Bg(x) : x € R%},

is defined as the unique (in law) centred, isotropic Gaussian
field on R? such that
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FIRST MODEL (BERRY, 1977)

x Fix E > 0. The Berry random wave model on R? with
parameter E, written

Br = {Bg(x) : x € R%},
is defined as the unique (in law) centred, isotropic Gaussian
field on R? such that
02 0>
ABE +47°E - B; = 0, where A = — + —.
ox? = ox3

x Equivalently, E[Bg(x)Bg(y)] = Jo(2rvVE||x —y||) (Jo = Bessel
function of the 1st kind ) or

BE x Zznfzx G(dz),

“ i e

where G := Hermitian Gaussian measure on the unit circle.



x Let T = R?/Z? ~ [0,1)? be the 2-dimensional flat torus.

*x We are again interested in real (random) eigenfunctions of
A, that is, solutions of the Helmholtz equation

Af+Ef =0,

for some adequate E > 0 (eigenvalue).

o) . . C ]
*x A L*-complete orthonormal set of eigenfunctions of A is
obtained as:

with (A1,A2) € Z2. Each one is associated with the eigen-
value 47(2(/\% + /\%).

3/21



SECOND MODEL (RUDNICK AND WIGMAN, 2007)

x Let T = R?/Z2 ~ [0,1)? be the 2-dimensional flat torus.

* We are again interested in real (random) eigenfunctions of
A, that is, solutions of the Helmholtz equation

Af+Ef =0,

for some adequate E > 0 (eigenvalue).



SECOND MODEL (RUDNICK AND WIGMAN, 2007)

x Let T = R?/Z2 ~ [0,1)? be the 2-dimensional flat torus.

* We are again interested in real (random) eigenfunctions of
A, that is, solutions of the Helmholtz equation

Af+Ef =0,

for some adequate E > 0 (eigenvalue).

*x A L%-complete orthonormal set of eigenfunctions of A is
obtained as:

(x1,x2) +— exp {Zin(/\lxl—i—/\zxz)},



SECOND MODEL (RUDNICK AND WIGMAN, 2007)

x Let T = R?/Z2 ~ [0,1)? be the 2-dimensional flat torus.

* We are again interested in real (random) eigenfunctions of
A, that is, solutions of the Helmholtz equation

Af+Ef =0,

for some adequate E > 0 (eigenvalue).

*x A L%-complete orthonormal set of eigenfunctions of A is
obtained as:

(x1,x2) +— exp {Zin(/\lxl—i—/\zxz)},

with (A1, Ap) € Z2.



SECOND MODEL (RUDNICK AND WIGMAN, 2007)

x Let T = R?/Z2 ~ [0,1)? be the 2-dimensional flat torus.

* We are again interested in real (random) eigenfunctions of
A, that is, solutions of the Helmholtz equation

Af+Ef =0,

for some adequate E > 0 (eigenvalue).

*x A L%-complete orthonormal set of eigenfunctions of A is
obtained as:

(x1,x2) +— exp {Zin(/\lxl—i—/\zxz)},

with (A1, A2) € Z2. Each one is associated with the eigen-
value 4712(A2 + A3).



* The eigenvalues of A are therefore given by the set
{E,:=4n’n:n €S},

where
S={n:n=a>+b*abcZ}
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* The eigenvalues of A are therefore given by the set
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Ny = ra(n) := #A,, where A, := {(A1,A2) : A2 + A = n}.
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{E, :=4r*n:n €S},

where
S = {n:n:a2+b2; a,beZ}.

* For n € S, the dimension of the corresponding eigenspace is
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x) = are”™Mx e T,
fu N Agn

where the a) are i.i.d. complex standard Gaussian, except
for the relation ay, = a_,.
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* The eigenvalues of A are therefore given by the set
{E, :=4r*n:n €S},

where
S = {n:n:a2+b2; a,beZ}.

* For n € S, the dimension of the corresponding eigenspace is
Ny = ra(n) := #A,, where A, := {(A1,A2) : A2 + A = n}.
* We define the arithmetic random wave of order 7 as:

1 2i7t(A,x)
x) = are”™Mx e T,
fu N Agn

where the a) are i.i.d. complex standard Gaussian, except
for the relation ay, = a_,.

* We know e.g. that r,(n) < n¢, Ve > 0, and “pathological”
behaviours are possible.
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NODAL SETS

We are interested in the high-energy (respectively as E — oo and
N, — ) geometry of the nodal sets (components are the nodal
lines):

1{0)ND := {x € D: Bg(x) =0},

({0} = {x e T: fu(x) =0},

where D is a compact set with piecewise smooth boundary.
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a From: Belyaev (2016) and Bourgain and Rudnick (2013)
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OTHER MODELS

* The same question can be asked for random eigenfunctions
of the Laplacian on more general manifolds, like the sphere:




OTHER MODELS

* The same question can be asked for random eigenfunctions
of the Laplacian on more general manifolds, like the sphere:

* Here, the eigenvalues are n(n + 1), n € IN, and the random
eigenfunctions are called random spherical harmonics.



* Our aim is to characterise the fluctuations of the random
nodal lengths

L, := length f, 1 ({0}), as N, —
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NODAL LENGTHS AND SPECTRAL MEASURES

* Our aim is to characterise the fluctuations of the random
nodal lengths
L, := length f,71({0}), as N, — o
Lg :=lengthB;'({0})ND, as E — c.

* For L, crucial role played by the set of probability measures
on S!
Un(dz) : /\/ Y. Syuldz), nes
mAeA,
(invariant with respecttoz — zand z — i - z.)
* Note that y,, is the spectral measure of f:

E(fa(x)fu(y)] = Z 2i(Ax—y)

” AEA,

- /sl ATV Y (da) = (x — ).



FROM {p, } TO PLANAR WAVES

* The set {u, : n € S} is relatively compact and its adherent
points are an infinite strict subset of the class of invariant
probabilities on the circle (see Kurlberg and Wigman (2015)).
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* The set {u, : n € S} is relatively compact and its adherent
points are an infinite strict subset of the class of invariant
probabilities on the circle (see Kurlberg and Wigman (2015)).

* Quick demonstration (see Krishnapur, Kurlberg and Wig-
man (2013)): the adherent points of the set

= ([ mia), nes,

are given by the whole interval [0, 1].
*x Remark: if Hn, = 1, then fnj admits a (non-universal) local
scaling limit: for (x,y) € R?

E |fo, (x\/E/n}) fu, (vy/E/m)) | _>/5162i7r\/ﬁ(a,(x—y)>y(da).

If y is uniform, this is the covariance of Bg.
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* Geometric study of excursion sets of isotropic random fields.

* When applied to other manifolds (like e.g. the sphere) high-
energy limit theorems can be regarded as high-resolution
limit theorems. Typical applications in Cosmology (CMB:
see Marinucci and Peccati, 2011).

* An amplification of Berry’s universality conjecture (1977)
states that the high-energy behaviour of Laplace eigenfunc-
tions on a Riemaniann surface coincides with the average
behaviour of the Random Wave Model on a comparable pla-
nar domain (see Zelditch, 2009). Used to heuristically test
open problems on the geometry of deterministic nodal sets,
like e.g. Yau’s conjecture.
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MEAN AND VARIANCE — PLANAR WAVES

* Berry (J. Phys. A, 2002) : semi-rigorous computations lead

to:
2 E D

_ N\f’ Var(LE)Narea
2v2

although the natural guess for the order of the variance is ~

VE.

E[Lg]
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MEAN AND VARIANCE — PLANAR WAVES

* Berry (J. Phys. A, 2002) : semi-rigorous computations lead

to:

2 E D
_ N\f’ Var(Lg) ~ area
2V2

although the natural guess for the order of the variance is ~
VE. Such a variance reduction “... results from a cancellation
whose meaning is still obscure... ” (Berry (2002), p. 3032).

E[Lg]

* Constants rigorously confirmed in the model of random
spherical harmonics (Wigman (CMP, 2007)).
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* Rudnick and Wigman (Ann. L.H.P,, 2008): For every n € S,
E[L,] = VE; Moreover, Var(L,) = O (En/j\/’nlﬂ), Conjec-

22
ture: Var(L,) = O(E,/N,).
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MEAN AND VARIANCE — ARITHMETIC WAVES

* Rudnick and Wigman (Ann. L.H.P,, 2008): For every n € S,
E[L,] = ;/5;’ Moreover, Var(L,) = O (En/./\/;}/z). Conjec-
ture: Var(L,) = O(E,/N,).

* Krishnapur, Kurlberg and Wigman (Ann. Math., 2013): if
{n;} C Sis such that Ny, — co, then

Var(Ly,) x ¢(n;) + O(EnRs(n))),

_ E”f
N2

n;
where

1+, (4)%
c(nj) = 51/2(); Rs(nj) = /T \rn,.(x)Ide =0 (1//\/',%) )
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MEAN AND VARIANCE — ARITHMETIC WAVES

* Rudnick and Wigman (Ann. L.H.P,, 2008): For every n € S,
E[L,] = ;/5;’ Moreover, Var(L,) = O (En/./\/;}ﬁ). Conjec-
ture: Var(L,) = O(E,/N,).

* Krishnapur, Kurlberg and Wigman (Ann. Math., 2013): if
{n;} C Sis such that Ny, — co, then

Var(Ly,) x ¢(n;) + O(EnRs(n))),

_ E”f
N2

n;
where

1+, (4)%
c(nj) = 51/2(); Rs(nj) = /T \rn,.(x)Ide =0 (1//\/',72]_) )

* Two phenomena: (i) cancellation, and (ii) non-universality.
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* For E > 0and n € S, define the normalized quantities

 Lg—E(Lg)

= —_—, l .

= Var(L,)V/2"

* Task: Assume that E,.‘\e',,s — 00; characterise the law of those
r.v.’s Y, Z such that

~ LA
L — Y,
and
~  LAW
L, — Z,

for some {n’} C S.

*x Questions: is Y Gaussian? Is the law of Z universal (inde-
pendent of { n; }), or rather non-Gaussian?
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NEXT STEP: SECOND ORDER RESULTS

* For E > 0and n € S, define the normalized quantities

~ Lg —E(L
Lp:= E (E)

=~ Ly—E(Ly)
= W, and L?l =

~ Var(L,)1/2"
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r.v.’s Y, Z such that
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LE — Y,
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* For E > 0and n € S, define the normalized quantities

~ Lg —E(L
Lp:= E (E)
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* Task: Assume that E,./\/n]. — o00; characterise the law of those

r.v.’s Y, Z such that

~ LAW
LE — Y,

and

¥ LAW
L, — Z,
]

for some {n;} CS.

* Questions: is Y Gaussian? Is the law of Z universal (inde-
pendent of {n;-}), or rather non-Gaussian?
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Step1. Let V = f, or Bg, and L = Lg or L,. Use the
representation (based on the coarea formula)

L= / S(V(x)IVV(x)||dx, in L2(P),

to deduce the Wiener chaos expansion of L.

Step 2. Show that exactly one chaotic projection L(4) :=
proj(L | C4) dominates in the high-energy limit — thus ac-
counting for the cancellation phenomenon.

Step 3. Study by “bare hands” the limit behaviour of L(4).
Examples of previous use of Wiener chaos: Sodin and Tsirelson
(2002) (Gaussian analytic functions), Azais and Leon’s proof
(2011) of the Granville-Wigman CLT for zeros of trigonomet-
ric polynomials.
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* Consider a generic Gaussian field G = {G(u) : u € % }.
* Foreveryq=0,1,2..., set

P, := ﬁ{p((}(ulr),...,G(u,,.)) :d°p < q}.

Then: P; C Pyy1.
* Define the family of orthogonal spaces {C; : ¢ > 0} as
Co=Rand C; :=P;N P]L 1, one has

[/

L*(0(G)) = PG,
t]fU

x C4 = gth Wiener chaos of G.

15/21



* Consider a generic Gaussian field G = {G(u) : u € % }.
* Foreverygq =0,1,2..., set

P, = ﬁ{p(G(ul),...,G(u,)) (d°p < q}.

Then: P; C Pyy1.
* Define the family of orthogonal spaces {C; : g > 0} as
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* C; = gth Wiener chaos of G.

15/21



VIGNETTE: WIENER CHAOS

* Consider a generic Gaussian field G = {G(u) : u € % }.
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A RIGID ASYMPTOTIC STRUCTURE

For fixed g > 2, let {F; : k > 1} C C, (with unit variance).

* Nourdin and Poly (2013): If F, = Z, then Z has necessarily a
density (and the set of possible laws for Z does not depend
on G).
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MAIN RESULTS — |

Theorem (Nourdin, P., & Rossi, 2017)
1. (Cancellation) For every fixed E > 0,

proj(Lg | Coq41) =0, g2>0,

and proj(Lg | Cy) reduces to a “negligible boundary term”, as
E — co.
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MAIN RESULTS — |

Theorem (Nourdin, P., & Rossi, 2017)
1. (Cancellation) For every fixed E > 0,

proj(Le | Cog41) =0, q>0,

and proj(Lg | Cy) reduces to a “negligible boundary term”, as
E — co.

2. (4" chaos dominates) Let E — oo. Then,

EE = pI‘Oj(ZE ’ C4) + 0]13(1>.
3. (CLT) As E — oo,
Lr = Z ~ N(0,1).

712



MAIN RESULTS — 11

Theorem (Marinucci, P., Rossi & Wigman, GAFA 2016+)

1. (Exact Cancellation) For every fixedn € S,

proj(Lu [ C2) = proj(Ly | Cag1) =0, 4 2>0.
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Theorem (Marinucci, P., Rossi & Wigman, GAFA 2016+)

1. (Exact Cancellation) For every fixedn € S,

proj(Lu [ C2) = proj(Ly | Cag1) =0, 4 2>0.

2. (4" chaos dominates) Let {n;} C S be such that Ny, — .
Then,
Ly, = proj(Ly, | C4) + op(1).

3. (Non-Universal/Non-Gaussian) If [ji, (4)| — 17 € [0,1],

then
T = M(y) = —

I 21472

where Z1, Zy independent standard normal.

2-(1-nzi—QQ+n)Z3),
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x Write L, (u) = length f,7! (). One has that

Proj(La(u)| C2) = e [ (£, (x)? — 1)y
e—u2/2u2

= N Y (laa*=1)

AEA"
(this is the dominating term for u # 0; it verifies a CLT).
x Prove that proj(L, | C4) has the form

E}I
X
“‘\‘”2 QII/
where Q,, is a quadratic form, whose arguments are sums of
the type Y (Jaal* = D)e(A,n)
AEN,
* Characterise proj(L;, | C4) as the dominating term, and com-

pute the limit by Lindeberg and continuity. 19/21
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| N
n
where Q,, is a quadratic form, whose arguments are sums of
4o}
the type Yo ( (|lay|? —1)c(A, n)

AEA,
n | C4) as the dominating term, and com-

* Characterise proj(L
pute the limit by Lindeberg and continuity:

19/21



x Write L, (u) = length f,7! (). One has that

proj(Lu(u) [ C) = e/ [ (fu()? ~ 1)x
T
—u2/2u2

a?—1
- L (k=)

(this is the dominating term for u # 0; it verifies a CLT).

e
= C

19/21



IDEA OF THE PROOF
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CONCLUDING REMARKS

* The cancellation of the second chaos and the dominance
of the fourth seems to be a general phenomenon, valid for
more general manifolds and more general geometric func-
tionals (nodal intersections, critical points, Euler Poincaré
characteristics).
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* Phase singularities in complex random waves (Dalmao,
Nourdin, Peccati and Rossi, 2016).

20/21



THANK YOU FOR YOUR ATTENTION!

21/21



