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FIRST MODEL (BERRY, 1977)

? Fix E > 0. The Berry random wave model on R2 with
parameter E, written

BE = {BE(x) : x ∈ R2},

is defined as the unique (in law) centred, isotropic Gaussian
field on R2 such that

∆BE + 4π2E · BE = 0, where ∆ =
∂2

∂x2
1
+

∂2

∂x2
2

.

? Equivalently, E[BE(x)BE(y)] = J0(2π
√

E‖x− y‖) (J0 = Bessel
function of the 1st kind ) or

BE(x) =
1√
2π

∫
S1

e2iπ
√

E〈z,x〉 G(dz),

where G := Hermitian Gaussian measure on the unit circle.
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SECOND MODEL (RUDNICK AND WIGMAN, 2007)

? Let T = R2/Z2 ' [0, 1)2 be the 2-dimensional flat torus.
? We are again interested in real (random) eigenfunctions of

∆, that is, solutions of the Helmholtz equation

∆ f + E f = 0,

for some adequate E > 0 (eigenvalue).
? A L2-complete orthonormal set of eigenfunctions of ∆ is

obtained as:

(x1, x2) 7→ exp
{

2iπ(λ1x1 + λ2x2)
}

,

with (λ1, λ2) ∈ Z2. Each one is associated with the eigen-
value 4π2(λ2

1 + λ2
2).
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SECOND MODEL (RUDNICK AND WIGMAN, 2007)

? The eigenvalues of ∆ are therefore given by the set

{En := 4π2n : n ∈ S},
where

S = {n : n = a2 + b2; a, b ∈ Z}.

? For n ∈ S, the dimension of the corresponding eigenspace is
Nn = r2(n) := #Λn, where Λn := {(λ1, λ2) : λ2

1 + λ2
2 = n}.

? We define the arithmetic random wave of order n as:

fn(x) =
1√
Nn

∑
λ∈Λn

aλe2iπ〈λ,x〉, x ∈ T,

where the aλ are i.i.d. complex standard Gaussian, except
for the relation aλ = a−λ.

? We know e.g. that r2(n) � nε, ∀ε > 0, and “pathological”
behaviours are possible.
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NODAL SETS

We are interested in the high-energy (respectively as E→ ∞ and
Nn → ∞) geometry of the nodal sets (components are the nodal
lines):

B−1
E ({0}) ∩D := {x ∈ D : BE(x) = 0},

f−1
n ({0}) := {x ∈ T : fn(x) = 0},

where D is a compact set with piecewise smooth boundary.

a From: Belyaev (2016) and Bourgain and Rudnick (2013) 5 / 21



OTHER MODELS

? The same question can be asked for random eigenfunctions
of the Laplacian on more general manifolds, like the sphere:

? Here, the eigenvalues are n(n + 1), n ∈N, and the random
eigenfunctions are called random spherical harmonics.
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NODAL LENGTHS AND SPECTRAL MEASURES

? Our aim is to characterise the fluctuations of the random
nodal lengths

Ln := length f−1
n ({0}), as Nn → ∞

LE := length B−1
E ({0}) ∩D, as E→ ∞.

? For Ln, crucial role played by the set of probability measures
on S1

µn(dz) :=
1
Nn

∑
λ∈Λn

δλ/
√

n(dz), n ∈ S

(invariant with respect to z 7→ z and z 7→ i · z.)
? Note that µn is the spectral measure of fn:

E[ fn(x) fn(y)] =
1
Nn

∑
λ∈Λn

e2iπ〈λ,x−y〉

=
∫

S1
e2iπ〈a,(x−y)

√
n〉µn(da) := rn(x− y).
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FROM {µn} TO PLANAR WAVES

? The set {µn : n ∈ S} is relatively compact and its adherent
points are an infinite strict subset of the class of invariant
probabilities on the circle (see Kurlberg and Wigman (2015)).

? Quick demonstration (see Krishnapur, Kurlberg and Wig-
man (2013)): the adherent points of the set

µ̂n(4)2 :=
(∫

S1
z−4 µn(dz)

)2

, n ∈ S,

are given by the whole interval [0, 1].
? Remark: if µnj ⇒ µ, then fnj admits a (non-universal) local

scaling limit: for (x, y) ∈ R2

E
[

fnj

(
x
√

E/nj

)
fnj

(
y
√

E/nj

)]
→
∫

S1
e2iπ

√
E〈a,(x−y)〉µ(da).

If µ is uniform, this is the covariance of BE.
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CHLADNI PLATES (1787)
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SOME MOTIVATIONS

? Geometric study of excursion sets of isotropic random fields.
? When applied to other manifolds (like e.g. the sphere) high-

energy limit theorems can be regarded as high-resolution
limit theorems. Typical applications in Cosmology (CMB:
see Marinucci and Peccati, 2011).

? An amplification of Berry’s universality conjecture (1977)
states that the high-energy behaviour of Laplace eigenfunc-
tions on a Riemaniann surface coïncides with the average
behaviour of the Random Wave Model on a comparable pla-
nar domain (see Zelditch, 2009). Used to heuristically test
open problems on the geometry of deterministic nodal sets,
like e.g. Yau’s conjecture.
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MEAN AND VARIANCE – PLANAR WAVES

? Berry (J. Phys. A, 2002) : semi-rigorous computations lead
to:

E[LE] =
2π
√

E
2
√

2
, Var(LE) ∼

areaD
512π

log E,

although the natural guess for the order of the variance is ∼√
E. Such a variance reduction “... results from a cancellation

whose meaning is still obscure... ” (Berry (2002), p. 3032).

? Constants rigorously confirmed in the model of random
spherical harmonics (Wigman (CMP, 2007)).
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MEAN AND VARIANCE – ARITHMETIC WAVES

? Rudnick and Wigman (Ann. I.H.P., 2008): For every n ∈ S,
E[Ln] =

√
En

2
√

2
. Moreover, Var(Ln) = O

(
En/N 1/2

n
)
. Conjec-

ture: Var(Ln) = O(En/Nn).
? Krishnapur, Kurlberg and Wigman (Ann. Math., 2013): if
{nj} ⊂ S is such that Nnj → ∞, then

Var(Lnj) =
Enj

N 2
nj

× c(nj) + O(Enj R5(nj)),

where

c(nj) =
1 + µ̂nj(4)

2

512
; R5(nj) =

∫
T
|rnj(x)|5dx = o

(
1/N 2

nj

)
.

? Two phenomena: (i) cancellation, and (ii) non-universality.
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NEXT STEP: SECOND ORDER RESULTS

? For E > 0 and n ∈ S, define the normalized quantities

L̃E :=
LE −E(LE)

Var(LE)1/2 , and L̃n :=
Ln −E(Ln)

Var(Ln)1/2 .

? Task: Assume that E,Nnj → ∞; characterise the law of those
r.v.’s Y, Z such that

L̃E
LAW−→ Y,

and
L̃n′j

LAW−→ Z,

for some {n′j} ⊂ S.

? Questions: is Y Gaussian? Is the law of Z universal (inde-
pendent of {n′j}), or rather non-Gaussian?
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STRATEGY

? Step 1. Let V = fn or BE, and L = LE or Ln. Use the
representation (based on the coarea formula)

L =
∫

δ0(V(x))‖∇V(x)‖ dx, in L2(P),

to deduce the Wiener chaos expansion of L.
? Step 2. Show that exactly one chaotic projection L(4) :=

proj(L |C4) dominates in the high-energy limit – thus ac-
counting for the cancellation phenomenon.

? Step 3. Study by “bare hands” the limit behaviour of L(4).
? Examples of previous use of Wiener chaos: Sodin and Tsirelson

(2002) (Gaussian analytic functions), Azaïs and Leon’s proof
(2011) of the Granville-Wigman CLT for zeros of trigonomet-
ric polynomials.

14 / 21
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VIGNETTE: WIENER CHAOS

? Consider a generic Gaussian field G = {G(u) : u ∈ U }.
? For every q = 0, 1, 2..., set

Pq := v.s.
{

p
(
G(u1), ..., G(ur)

)
: d◦p ≤ q

}
.

Then: Pq ⊂ Pq+1.
? Define the family of orthogonal spaces {Cq : q ≥ 0} as

C0 = R and Cq := Pq ∩ P⊥q−1; one has

L2(σ(G)) =
∞⊕

q=0

Cq.

? Cq = qth Wiener chaos of G.
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A RIGID ASYMPTOTIC STRUCTURE

For fixed q ≥ 2, let {Fk : k ≥ 1} ⊂ Cq (with unit variance).

? Nourdin and Poly (2013): If Fk ⇒ Z, then Z has necessarily a
density (and the set of possible laws for Z does not depend
on G).

? Nualart and Peccati (2005): Fk ⇒ Z ∼ N (0, 1) if and only if
EF4

k → 3(= EZ4).
? Peccati and Tudor (2005): Componentwise convergence to

Gaussian implies joint convergence.
? Nourdin, Nualart and Peccati (2015): given {Hk} ⊂ Cp, then

Fk, Hk are asymptotically independent if and only if
Cov(H2

k , F2
k )→ 0.
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MAIN RESULTS – I

Theorem (Nourdin, P., & Rossi, 2017)

1. (Cancellation) For every fixed E > 0,

proj(LE |C2q+1) = 0, q ≥ 0,

and proj(L̃E |C2) reduces to a “negligible boundary term”, as
E→ ∞.

2. (4th chaos dominates) Let E→ ∞. Then,

L̃E = proj(L̃E |C4) + oP(1).

3. (CLT) As E→ ∞,
L̃E ⇒ Z ∼ N(0, 1).
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MAIN RESULTS – II

Theorem (Marinucci, P., Rossi & Wigman, GAFA 2016+)

1. (Exact Cancellation) For every fixed n ∈ S,

proj(Ln |C2) = proj(Ln |C2q+1) = 0, q ≥ 0.

2. (4th chaos dominates) Let {nj} ⊂ S be such that Nnj → ∞.
Then,

L̃nj = proj(L̃nj |C4) + oP(1).

3. (Non-Universal/Non-Gaussian) If |µ̂nj(4)| → η ∈ [0, 1],
then

L̃nj ⇒ M(η) :=
1

2
√

1 + η2

(
2− (1− η)Z2

1 − (1 + η)Z2
2
)

,

where Z1, Z2 independent standard normal.
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IDEA OF THE PROOF

? Write Ln(u) = length f−1
n (u). One has that

proj(Ln(u) |C2) = ce−u2/2u2
∫

T
( fn(x)2 − 1)dx

= c
e−u2/2u2

Nn
∑

λ∈Λn

(|aλ|2 − 1)

(this is the dominating term for u 6= 0; it verifies a CLT).
? Prove that proj(Ln |C4) has the form√

En

N 2
n
×Qn,

where Qn is a quadratic form, whose arguments are sums of
the type ∑

λ∈Λn

(|aλ|2 − 1)c(λ, n)

? Characterise proj(Ln |C4) as the dominating term, and com-
pute the limit by Lindeberg and continuity. 19 / 21
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CONCLUDING REMARKS

? The cancellation of the second chaos and the dominance
of the fourth seems to be a general phenomenon, valid for
more general manifolds and more general geometric func-
tionals (nodal intersections, critical points, Euler Poincaré
characteristics).

? Quantitative versions are available: e.g. (Peccati and Rossi,
2017)

Wass1(L̃n, M(µ̂n(4))) = inf
X∼L,Y∼M

E|X−Y| = O
(

1
N 1/4

n

)
.

? Phase singularities in complex random waves (Dalmao,
Nourdin, Peccati and Rossi, 2016).
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