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Random marked closed set

�usc = f(X ; f ) : X � Rd is closed; f : X ! �R is u.s.c.g

� : (X ; f ) 7! f(x ; t) 2 X � �R : t � f (x )g; (X ; f ) 2 �usc

� (X ; f ) is closed subset of Rd � �R (hypograph)

(
;A;P) . . . complete probability space

(�;�) : 
! �usc is a random marked closed set (RMCS) if

f! 2 
 : � ((�;�)(!)) \K 6= ;g 2 A

for every compact set K in Rd � �R

Ballani, Kabluchko, Schlather (2012)
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Special examples

Marked point process
� . . . union of points of the point process f�ig in Rd

�(�i ) . . . real-valued mark corresponding to the point �i

Random field
� . . . deterministic closed subset of Rd

�(x ) . . . real-valued random variable associated with x
x 7! �(x ) upper semicontinuous

Labelled random closed set
� . . . random closed set split into several closed subsets �i
�(�i ) . . . nominal value for labelling of �i

Molchanov (1984), Ayala and Simó (1995)

Marked sets generated by excursions of random fields
Nott and Wilson (2000)
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Excursion set

�(x ) = Z (x ) � independent of �
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Marked Boolean model of balls

�(x ) = c�
X
i�i

k
�
kx � �ik

Ri

�
� independent of �
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Random field model

� . . . random closed set in Rd

� . . . random u.s.c. function on Rd , independent of �

then (�;�) is called a random field model

non-parametric test of independence

Koubek, Pawlas, Brereton, Kriesche and Schmidt
(2016)

based on second-order summary characteristics
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Material data
Molecular Materials and Nanosystems, Eindhoven University of
Technology
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Radar data
Deutscher Wetterdienst (DWD)
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Weighted random measure

	 . . . random measure in Rd

C (A� U) = E	(A)1f	 2 Ug . . . Campbell measure of 	
w : suppC ! W . . . weight function

Then the tuple (	;w) is called a weighted random measure in
Rd with weight space W .

Special case: 	 point process, (	;w) marked point process

(	;w) induces a random measure e	 on Rd �W :

e	(B �D) = 	(fx 2 B : w(x ;	) 2 Dg); B 2 Bd ; D 2 B(W ):

Stoyan and Ohser (1984)

Z. Pawlas Asymptotics for random marked closed sets



Random measure generated by random closed set

	d . . . random volume measure generated by �:

	d(B) = j� \B j; B 2 Bd ;

or 	k (B) = Hk (� \B) if � is a random Hk -set

w(x ;	k ) = �(x ); x 2 � (W = R)

(	k ;w) is weighted random measure

e	k (B �D) = Hk (fx 2 B \ � : �(x ) 2 Dg)
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Stationary RMCS
A RMCS (�;�) is called stationary if � (�;�) + (x ; 0) and
� (�;�) have the same distribution for all x 2 Rd .

(�;�) stationary ) � stationary ) 	k stationary )

E	k (B) = �k jB j

�k = EHk (� \ [0; 1]d) is called intensity – assumed to be
positive

for k = d :
�d = Ej� \ [0; 1]d j = P(o 2 �)

intensity of 	d = volume fraction of �

Ee	k (B �D) = �k jB jQ(D); B 2 Bd ; D 2 B

Q is called the mark distribution
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Estimation of mark distribution

a single realization of (�;�) observed within a bounded convex
window W � Rd

b�k =
Hk (� \W )

jW j
=

	k (W )

jW j

Q̂(D) =
e	k (W �D)b�k jW j

=
e	k (W �D)e	k (W � R)

increasing domain asymptotics
If e	k is ergodic, then Q̂(D) is strongly consistent estimator of
Q(D).
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Palm distribution

	 stationary random measure in Rd with intensity � > 0

Palm distribution of 	

Po(U) =
1

�jB j
E
Z
B

1f	� x 2 Ug	(dx )

if 	 = 	d is a random volume measure generated by �

Po(U) =
1

�d jB j
E
Z
B

1f	d � x 2 U ; x 2 �gdx

=
1

�d jB j

Z
B
P(	d � x 2 U ; x 2 �)dx

=
1
�d

P(	d 2 U ; o 2 �) = P(	d 2 U j o 2 �)
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Reduced second-order moment measure

	 stationary random measure in Rd with intensity � > 0 and
Palm distribution Po

reduced second-order moment measure of 	

K(B) =
1
�

Z
�(B n fog)Po(d�); B 2 Bd

K -function of 	

K (r) = K(b(o; r)); r > 0

K(B) =
1

�2jAj
E
Z
A
	((B n fog) + x )	(dx )
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Second-order characteristics of stationary random
closed sets

two-point probability function:

C (h) = P(o 2 �; h 2 �); h 2 Rd

K -function of 	d (or �):

K�(r) =
1
�d

Eo	d(b(o; r))

�dK�(r) is the mean volume of � within a ball of radius r
centred at a ‘typical’ point of �

K�(r) =
1
�2

d
E
Z
b(o;r)

1fo 2 �; h 2 �gdh =
1
�2

d

Z
b(o;r)

C (h)dh
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Random measure generated by stationary RMCS

We assume non-negative marks: �(x ) � 0.

Stationary random measure generated by (�;�):

	�(B) =

Z
B
�(x )	d(dx ); B 2 Bd :

Its intensity is

�� = E�(o)1fo 2 �g = �dEo�(o):

Palm distribution becomes

Po(U) =
E1f	� 2 Ug�(o)1fo 2 �g

E�(o)1fo 2 �g
=

Eo�(o)1f	� 2 Ug

Eo�(o)
:
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Estimation of mean mark

b�d =
j� \W j

jW j

Êo�(o) =
	�(W )b�d jW j

=
	�(W )

	d(W )

under ergodicity assumption, it is strongly consistent estimator
of Eo�(o)
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Reduced second-order moment measure of 	�

K�(B) =
E	�(B n fog)�(o)1fo 2 �g

��E�(o)1fo 2 �g
=

1
�2
�

Z
B

C�(h)dh ;

where C�(h) = E�(o)�(h)1fo 2 �; h 2 �g

mark-weighted K -function of 	�: K�(r) = K�(b(o; r))

mark-weighted multiparameter K -function

K�(r1; : : : ; rd) = K�([�r1; r1]� � � � � [�rd ; rd ]); r1; : : : ; rd > 0
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f -weighted K -function

f -weighted reduced second-order moment measure

Kf (B) =
Eo
R
B f (�(o);�(h))	d(dh)

�d
R R

f (
1; 
2)Q(d
1)Q(d
2)
; r > 0;

where Q(�) = P(�(o) 2 � j o 2 �) is the mark distribution

f (
1; 
2) = 
1
2 yields Kf (B) = K�(B)

f (
1; 
2) = 
1 yields

K
�(B) =
Eo�(o)	d(B)

�dEo�(o)

K
�(r) = K
�(b(o; r))

random field model ) K
�(r) = K�(r)
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Estimation of mark-weighted K -function
a single realization of (�;�) observed within a bounded window
W � Rd

select test points �1; : : : ; �N 2 W

�̂dK
�(B) =

PN
i=1 �(�i )1f�i 2 �gj(B + �i ) \ �jPN

i=1 �(�i )1f�i 2 �g

is a ratio-unbiased estimator of �dK
�(B)

E
PN

i=1 �(�i )1f�i 2 �g	d(B + �i )

E
PN

i=1 �(�i )1f�i 2 �g
=

NEo�(o)	d(B)

NEo�(o)

= �dK
�(B)

�̂dK
�(B) may require information from outside W

edge corrections – minus sampling
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Test points – regular grid
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Continuous version of the estimator

�̂dK
�(B) =

R
�\W �(y)j(B + y) \ �jdyR

�\W �(y)dy

is a ratio-unbiased estimator of �dK
�(B)

�̂dK
�(B) =

R
�\W

R
� �(y)1fx � y 2 Bgdx dyR

�\W �(y)dy

translation edge correction:

�̂dK
�(B) =

R
�\W

R
�\W �(y) 1fx�y2BgjW j

j(W�x )\(W�y)j dx dyR
�\W �(y)dy

is a ratio-unbiased estimator of �dK
�(B)
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Weak consistency
Wn % Rd sequence of compact and convex windows

bKn(B) =
jWn j

jWn \ �j

P
�2Zd\Wn\�

�(�)j(B + �) \ �j

P
�2Zd\Wn\�

�(�)

if X
z2Zd

��cov��(o)1fo 2 �g;�(z )1fz 2 �g
��� <1;

X
z2Zd

��cov��(o)	d(B)1fo 2 �g;�(z )	d(B + z )1fz 2 �g
��� <1;

Z
jC (h)� �2

d jdh <1;

then bKn(B)
P
�!
n!1

K
�(B)
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Weak consistency for marked Boolean model

� =
[
i�1

b(�i ;Ri )

�(x ) = c�
X
i�i

k
�
kx � �ik

Ri

�

k is a bounded probability density function with support [0; 1]

if ER4d
i <1, then

bKn(B)
P
�!
n!1

K
�(B)
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m-dependent RMCS

We say that RMCS (�;�) is m-dependent for some m > 0 if
� (� \ A;�) and � (� \ B ;�) are independent for any bounded
A;B 2 Bd such that d(A;B) > m .

Examples:
� � Boolean model with bounded grains and � m-dependent

random field
� � excursion set of an m-dependent random field �

(e.g. Gaussian random field with finite dependence range)

Z. Pawlas Asymptotics for random marked closed sets



Asymptotic normality
Wn = [�(n + 1=2);n + 1=2]d sequence of observation windows

�̂dKn(B) =

P
�2Zd\Wn\�

�(�)j(B + �) \ �j

P
�2Zd\Wn\�

�(�)

assume that (�;�) is m-dependent stationary RMCS and

var�(o)1fo 2 �g <1; var�(o)	d(B)1fo 2 �g <1;

then q
jWn j

�
�̂dKn(B)� �dK
�(B)

�
d
�!
n!1

N (0; �2
B )
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Approximation by m-dependent random fields

marked Boolean model of balls, ER4d
i <1

q
jWn j

�
�̂dKn(B)� �dK
�(B)

�
d
�!
n!1

N (0; �2
B )

X
�2Zd\Wn

U� =
X

�2Zd\Wn

U (m)
� +

X
�2Zd\Wn

R(m)
�

fU (m)
� : � 2 Zdg m-dependent

1
jWn j

supn2N E
�P

�2Zd\Wn
R(m)

�

�2
! 0 as m !1
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http://s4g.karlin.mff.cuni.cz/
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Thank You for Your Attention
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