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Stationary Poisson processes

Setting

Let η be a stationary Poisson process on Rd with intensity β > 0.

η has intensity measure λ := β · λd .

The Poisson process η can be represented as η =
∑∞

n=1 δXn , where
the Xn, n ∈ N are random elements in Rd .
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The classical RCM

Setting

Let ϕ : Rd × Rd → [0, 1] be a measurable and symmetric connection
function.
Given η, connect any two points x , y ∈ η, x 6= y , with probability

ϕ(x , y) = P(x ↔ y)

independently of all other pairs.
This gives the random connection model Γϕ(η) = (η, χ), where χ is
the point process of the edges.

Franz Nestmann, Karlsruhe Institute of Technology Cluster counting in the random connection model



Cluster counting in the random connection model

Examples

ϕ(x , y) = 1{‖x − y‖ ≤ 2r}, x , y ∈ Rd with r > 0 (Gilbert graph)
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Examples

ϕ(x , y) = exp(−a‖x − y‖), x , y ∈ Rd with a > 0
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The marked RCM

Setting

Let η be an independent Q-marking of a stationary Poisson process η′

on Rd with intensity β > 0, where Q is a distribution on [0,∞). The
(marked) Poisson process η can be represented as

η =
∞∑
n=1

δ(Xn,Wn),

where the Xn, n ∈ N are random elements in Rd and (Wn)n∈N is an
iid-sequence of random variables on [0,∞) with distribution Q,
independent of (Xn)n∈N.

η is a Poisson process on Rd × [0,∞) with intensity measure
λ := βλd ⊗Q.

Franz Nestmann, Karlsruhe Institute of Technology Cluster counting in the random connection model



Cluster counting in the random connection model

The marked RCM

Setting

Let ϕ : (Rd × [0,∞))2 → [0, 1] be a measurable and symmetric
connection function.
Given η, connect any two points (x ,w), (y ,w ′) ∈ η, (x ,w) 6= (y ,w ′),
with probability

ϕ((x ,w), (y ,w ′)) = P((x ,w)↔ (y ,w ′))

independently of all other pairs.
This gives the marked random connection model Γϕ(η) = (η, χ),
where χ is the point process of the edges.
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Examples

ϕ((x ,w), (y ,w ′)) = 1{‖x − y‖ ≤ w + w ′},
(x ,w), (y ,w ′) ∈ Rd × [0, 1] (Gilbert graph with random radii)
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Examples

ϕ((x ,w), (y ,w ′)) = 1{‖x − y‖ ≤ w + w ′} · ψ(x , y),
(x ,w), (y ,w ′) ∈ Rd × [0, 1] with ψ : Rd × Rd → [0, 1]
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Connected components and isomorphic graphs

For k ∈ N let G be a connected graph with k vertices.

For a compact and convex set A ⊂ Rd with λd(A) > 0 define

ηϕ,G (A) := #{clusters of Γϕ(η) isomorphic to G

with lexicographic minimum in A}.
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Another picture
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Expectation

Proposition (Last, N., Schulte 2017+)

Let A ⊂ Rd be compact and convex with λd(A) > 0. Then,

Eηϕ,G (A) =

∫
1{x1 ∈ A× [0,∞)}pϕ,G (x1, . . . , xk)

× exp

(
β

∫ ( k∏
i=1

(1− ϕ(xi , y))− 1

)
λ(dy)

)
λk(d(x1, . . . , xk)),

where

pϕ,G (x1, . . . , xk) := 1{x1 < · · · < xk}P(Γϕ(δx1 + · · ·+ δxk ) ' G ),

x1, . . . , xk ∈ Rd × [0,∞).

The proof uses the multivariate Mecke equation and the formula for
the generating functional of a Poisson process.
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Assumptions

Let G be a connected graph with k vertices, that occurs in Γϕ(η)
with positive probability.

Let g : [0,∞)3 → [0,∞) be a measurable function, which is
symmetric and increasing in the first two arguments. For
(x ,w), (y ,w ′) ∈ Rd × [0,∞) assume that,

ϕ((x ,w), (y ,w ′)) = ϕ(‖x − y‖,w ,w ′) = P(‖x − y‖ ≤ g(w ,w ′,S)),

where S is a random variable on [0,∞), independent of everything.

g(w ,w ′, s) = w + w ′, w ,w ′, s ∈ [0,∞) yields the Gilbert graph with
random radii.
g(w ,w ′, s) = s, w ,w ′, s ∈ [0,∞) yields the classical RCM.
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A lower bound for the variance

Assume that ∫
Eϕ(‖x‖,W ,W ) dx <∞,

where W is a random variable on [0,∞) with distribution Q.

Theorem (Last, N., Schulte 2017+)

There is a constant c > 0 such that

Var (ηϕ,G (A)) ≥ c · λd(A),

for all compact and convex sets A ⊂ Rd .
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Probability distances

Definition (Kolmogorov distance)

For two random variables X and Y in R let

dK (X ,Y ) := sup
u∈R
|P(X ≤ u)− P(Y ≤ u)| .

Definition (Wasserstein distance)

For two random variables X and Y in R let

d1(X ,Y ) := sup
h∈Lip(1)

|Eh(X )− Eh(Y )| ,

where Lip(1) is the set of all functions h : R→ R with a Lipschitz
constant less than or equal to one.
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Quantitative CLT for the classical RCM

Classical RCM: η is a stationary Poisson process on Rd .

Let N be a standard Gaussian random variable.

Let r(A) denote the inradius of a compact and convex set A ⊂ Rd .

Theorem (Last, N., Schulte 2017+)

Assume that ∫
Rd

ϕ(‖x‖)1/3 dx <∞.

Then, there is a constant c > 0 such that

dK

(
ηϕ,G (A)− Eηϕ,G (A)√

Var (ηϕ,G (A))
,N

)
≤ c√

λd(A)
,

for all compact and convex sets A ⊂ Rd with r(A) ≥ 1.

The assertion also holds for the Wasserstein distance.
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Quantitative CLT for the marked RCM

Marked RCM: η is an independent Q-marking of a stationary
Poisson process η′ on Rd .

Remember: ϕ(‖x − y‖,w ,w ′) = P(‖x − y‖ ≤ g(w ,w ′,S)).

Theorem (Last, N., Schulte 2017+)

Assume that
Eg(W ,W ,S)11d+1 <∞.

Then, there is a constant c > 0 such that

dK

(
ηϕ,G (A)− Eηϕ,G (A)√

Var (ηϕ,G (A))
,N

)
≤ c√

λd(A)
,

for all compact and convex sets A ⊂ Rd with r(A) ≥ 1.

The assertion also holds for the Wasserstein distance.
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CLT for the RCM

Remark

Penrose ’03 proved the CLT for the Gilbert graph with deterministic radii
while van de Brug and Meester ’04 proved the CLT for the classical RCM
in the case of a connection function with compact support.
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Pairwise marking of Poisson processes

Let η be a Poisson process on a measurable space (X,X ) with
σ-finite intensity measure λ. η can be represented as

η =
κ∑

n=1

δXn ,

where the Xn, n ∈ N are random elements in X and κ is a random
element in N ∪ {0,∞}.
Let (M,M) be a further measurable space and let (Zm,n)m,n∈N be
iid-sequence of random elements in M with common distribution M,
independent of η. Then

ξ :=
κ∑

m,n=1

1{Xm < Xn}δ({Xm,Xn},Zm,n),

where < is a partial order on X.
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The classical RCM again

To define the RCM we use M = [0, 1] and M = λ1( · ∩ [0, 1]). Then

χ :=
κ∑

m,n=1

1{Xm < Xn}1{Zm,n ≤ ϕ(Xm,Xn)}δ{Xm,Xn}

is the point process of the edges.
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Adding deterministic points

Let Lξ be the space of all σ(ξ)-measurable random variables of R.

For each F ∈ Lξ there is a measurable representative f such that
F = f (ξ).

Extend the sequence (Zm,n)m,n∈N to (Zm,n)m,n∈Z.

For x1, x2 ∈ X define

ξx1 :=
∑

m,n∈{−1,1,...,κ}

1{Xm < Xn}δ({Xm,Xn},Zm,n),

ξx1,x2 :=
∑

m,n∈{−2,−1,1,...,κ}

1{Xm < Xn}δ({Xm,Xn},Zm,n),

where X−i := xi , i ∈ {1, 2}.
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The difference operators

For x1, x2 ∈ X and F = f (ξ) ∈ Lξ define

∆x1F := f (ξx1)− f (ξ),

∆2
x1,x2F := f (ξx1,x2)− f (ξx1)− f (ξx2) + f (ξ).
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Second order Poincaré inequality

Theorem (Last, N., Schulte 2017+)

Let F ∈ Lξ be such that EF = 0 and Var F = 1. Then, under further
integrability assumptions on F ,

d1(F ,N) ≤ γ1 + γ2 + γ3,

where

γ1 := 2

[∫ [
E(∆x1F )2(∆x2F )2

]1/2
×
[
E(∆2

x1,x3F )2(∆2
x2,x3F )2

]1/2
λ3(d(x1, x2, x3))

]1/2
,

γ2 :=

[∫
E(∆2

x1,x3F )2(∆2
x2,x3F )2λ3(d(x1, x2, x3))

]1/2
,

γ3 :=

∫
E|∆xF |3λ(dx).

Franz Nestmann, Karlsruhe Institute of Technology Cluster counting in the random connection model



Cluster counting in the random connection model

Thank you for your attention!
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