A Mecke-type formula for STIT tessellation processes and some applications

Werner Nagel,

joint work with Christoph Thäle, Viola Weiß and Linh Ngoc Nguyen

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Random tessellations

Three reference models

Poisson-Voronoi

Poisson line

Translation invariant measure on the space of hyperplanes

- $(\mathcal{H},\mathfrak{H})$... the space of hyperplanes in \mathbb{R}^d ,
- Λ...translation invariant measure on (H, S) (directional distribution not concentrated on a set of hyperplanes parallel to one line)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Translation invariant measure on the space of hyperplanes

- $(\mathcal{H},\mathfrak{H})$... the space of hyperplanes in \mathbb{R}^d ,
- Λ ... translation invariant measure on (H, S) (directional distribution not concentrated on a set of hyperplanes parallel to one line)
- Consider the Poisson point process Γ on $\mathcal{H} \times (0, \infty)$ (hyperplanes marked with birth times) with intensity measure

 $\Lambda(dh) \frac{ds}{ds}$

(日) (日) (日) (日) (日) (日) (日) (日)

Translation invariant measure on the space of hyperplanes

- $(\mathcal{H},\mathfrak{H})$... the space of hyperplanes in \mathbb{R}^d ,
- Λ ... translation invariant measure on (H, S) (directional distribution not concentrated on a set of hyperplanes parallel to one line)
- Consider the Poisson point process Γ on $\mathcal{H} \times (0, \infty)$ (hyperplanes marked with birth times) with intensity measure

$\Lambda(dh) \frac{ds}{ds}$

• Space-time process (Γ_t , t > 0) with

$$\Gamma_t = \{(h, s) \in \Gamma : s \leq t\}$$

(日本本語を本書を本書を、「日本ののです。

W ... window, $[W] = \{h \in \mathcal{H} : h \cap W \neq \emptyset\},\$

 $\Lambda_{[W]}(\mathrm{d} h) \, \mathrm{d} s \qquad \qquad \Lambda_{[W]}(\mathrm{d} h) \, \mathrm{d} s$

,	- n	,	
i i i i i i i i i i i i i i i i i i i	1	1 1	
- i	1	1 1	
1	1	1 1	
1	1	1	
	1	1	
	i.		
	i.		
	i.		
	- i		
	i.		
•		·/	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

W ... window, $[W] = \{h \in \mathcal{H} : h \cap W \neq \emptyset\},\$

 $m \dots$ hyperplane parts inside W

 $\Lambda_{[W]}(\mathrm{d}h) \, \mathrm{d}s \qquad \qquad \Lambda_{[W]}(\mathrm{d}h) \, (1+2\sum \Lambda([m])) \mathrm{d}s$

W ... window, $[W] = \{h \in \mathcal{H} : h \cap W \neq \emptyset\},\$

 $m \dots$ hyperplane parts inside W

W ... window, $[W] = \{h \in \mathcal{H} : h \cap W \neq \emptyset\},\ m$... hyperplane parts inside W

 $\Lambda_{[W]}(\mathrm{d} h) \, \mathrm{d} s \qquad \qquad \Lambda_{[W]}(\mathrm{d} h) \, \left(1 + 2 \sum \Lambda([m])\right) \mathrm{d} s$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ の へ ()・

W ... window, $[W] = \{h \in \mathcal{H} : h \cap W \neq \emptyset\},\ m$... hyperplane parts inside W

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ の へ ()・

W ... window, $[W] = \{h \in \mathcal{H} : h \cap W \neq \emptyset\},\ m$... hyperplane parts inside W

W ... window, $[W] = \{h \in \mathcal{H} : h \cap W \neq \emptyset\},\$ $m \dots$ hyperplane parts inside W

vs. STIT tessellation processes

< ロ > < 同 > < 回 > < 回 > < 回 > = 回

If a hyperplane intersects more than one cell (polytope), z_1, \ldots, z_k , say, then select z_i for division with probability

$$\frac{\Lambda([z_j])}{\sum_{i=1}^k \Lambda([z_i])}, \quad j=1,\ldots,k,$$

where $[z_j] = \{h \in \mathcal{H} : h \cap z_j \neq \emptyset\}.$

vs. STIT tessellation processes

< ロ > < 同 > < 回 > < 回 > < 回 > = 回

If a hyperplane intersects more than one cell (polytope), z_1, \ldots, z_k , say, then select z_i for division with probability

$$\frac{\Lambda([z_j])}{\sum_{i=1}^k \Lambda([z_i])}, \quad j=1,\ldots,k,$$

where $[z_j] = \{h \in \mathcal{H} : h \cap z_j \neq \emptyset\}.$

Simulations of STIT tessellations

four directions

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ つへぐ

Simulations of STIT tessellations

isotropic model

Simulations of STIT tessellations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

3d isotropic STIT model (Ohser/Redenbach/Sych)

In any bounded window (convex polytope) *W*: This STIT construction yields a pure jump Markov process

 $(Y_t \wedge W, t \leq 0)$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

on the space of tessellations of W.

In any bounded window (convex polytope) *W*: This STIT construction yields a pure jump Markov process

```
(Y_t \wedge W, t \leq 0)
```

on the space of tessellations of W.

It has the initial state $Y_0 \wedge W = W$ and the generator

$$\mathbb{L}g(y) = \sum_{z \in y} \int_{[z]} \left[g(\oslash_{z,h}(y)) - g(y) \right] \Lambda(\mathrm{d}h)$$

for all nonnegative measurable functions g on the set of tessellations of W, and the operator

$$\oslash_{z,h}(y) := (y \setminus \{z\}) \cup \{z \cap h^+, z \cap h^-\}$$

i.e. $\oslash_{z,h}(y)$ is the tessellation that arises from y by splitting the cell z by the hyperplane h.

The process $(Y_t \land W, t \leq 0)$ is consistent in space, and therefore there is a STIT tessellation process on \mathbb{R}^d ,

 $(Y_t, t > 0)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The process $(Y_t \land W, t \leq 0)$ is consistent in space, and therefore there is a STIT tessellation process on \mathbb{R}^d ,

$$(Y_t,t>0)$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Important properties:

• Y_t is stationary in space (homogeneous) for all t > 0

The process $(Y_t \land W, t \leq 0)$ is consistent in space, and therefore there is a STIT tessellation process on \mathbb{R}^d ,

$$(Y_t,t>0)$$

Important properties:

Y_t is stationary in space (homogeneous) for all t > 0
t ⋅ Y_t ^D = Y₁ for all t > 0, but (t ⋅ Y_t, t > 0) is not stationary!!

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The process $(Y_t \land W, t \leq 0)$ is consistent in space, and therefore there is a STIT tessellation process on \mathbb{R}^d ,

$$(Y_t,t>0)$$

Important properties:

Y_t is stationary in space (homogeneous) for all t > 0
t · Y_t ^D = Y₁ for all t > 0, but (t · Y_t, t > 0) is not stationary!!
(e^t · Y_{e^t}, t ∈ ℝ) is stationary in time

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The process $(Y_t \land W, t \leq 0)$ is consistent in space, and therefore there is a STIT tessellation process on \mathbb{R}^d ,

$$(Y_t,t>0)$$

Important properties:

Y_t is stationary in space (homogeneous) for all t > 0
t · Y_t ^D = Y₁ for all t > 0, but (t · Y_t, t > 0) is not stationary!!
(e^t · Y_{e^t}, t ∈ ℝ) is stationary in time
Y_{s+t} ^D = Y_s ⊞ Y_t for all s, t > 0 (⊞ ... iteration/nesting of tessellations)

Intuitively:

If we are sitting in a fixed point of the space and only see, how the cell around this observation point develops in time,

we cannot distinguish (in distribution)

whether we are sitting in a STIT process or in a Poisson hyperplane tessellation process driven by the same hyperplane measure $\Lambda.$

(日) (日) (日) (日) (日) (日) (日) (日)

Intuitively:

If we are sitting in a fixed point of the space and only see, how the cell around this observation point develops in time,

we cannot distinguish (in distribution)

whether we are sitting in a STIT process or in a Poisson hyperplane tessellation process driven by the same hyperplane measure $\Lambda.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Intuitively:

If we are sitting in a fixed point of the space and only see, how the cell around this observation point develops in time,

we cannot distinguish (in distribution)

whether we are sitting in a STIT process or in a Poisson hyperplane tessellation process driven by the same hyperplane measure Λ .

(日) (日) (日) (日) (日) (日) (日) (日)

Intuitively:

If we are sitting in a fixed point of the space and only see, how the cell around this observation point develops in time,

we cannot distinguish (in distribution)

whether we are sitting in a STIT process or in a Poisson hyperplane tessellation process driven by the same hyperplane measure Λ .

Intuitively:

If we are sitting in a fixed point of the space and only see, how the cell around this observation point develops in time,

we cannot distinguish (in distribution)

whether we are sitting in a STIT process or in a Poisson hyperplane tessellation process driven by the same hyperplane measure Λ .

Intuitively:

If we are sitting in a fixed point of the space and only see, how the cell around this observation point develops in time,

we cannot distinguish (in distribution)

whether we are sitting in a STIT process or in a Poisson hyperplane tessellation process driven by the same hyperplane measure Λ .

Intuitively:

If we are sitting in a fixed point of the space and only see, how the cell around this observation point develops in time,

we cannot distinguish (in distribution)

whether we are sitting in a STIT process or in a Poisson hyperplane tessellation process driven by the same hyperplane measure Λ .

Mecke formula for Poisson hyperplane processes

Recall:

Theorem (Mecke formula for Poisson hyperplane processes with birth times)

Let Γ be a Poisson process on $\mathcal{H} \times (0, \infty)$ (of hyperplanes with birth times) with intensity measure $\Lambda(dh) ds$ and $g: \mathbb{N} \times \mathcal{H} \times (0, \infty) \to \mathbb{R}$ a nonnegative measurable function. Then

$$\int \sum_{(h,s)\in\gamma} g(\gamma,h,s) P_{\Gamma}(\mathrm{d}\gamma) = \int \int \int \int g(\gamma+\delta_{(h,s)},h,s,) P_{\Gamma}(\mathrm{d}\gamma) \Lambda(\mathrm{d}h) \, \mathrm{d}s.$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Mecke formula for Poisson hyperplane processes

Recall:

Theorem (Mecke formula for Poisson hyperplane processes with birth times)

Let Γ be a Poisson process on $\mathcal{H} \times (0, \infty)$ (of hyperplanes with birth times) with intensity measure $\Lambda(dh) ds$ and $g: \mathbb{N} \times \mathcal{H} \times (0, \infty) \to \mathbb{R}$ a nonnegative measurable function. Then

$$\int \sum_{(h,s)\in\gamma} g(\gamma,h,s) P_{\Gamma}(\mathrm{d}\gamma) = \int \int \int g(\gamma+\delta_{(h,s)},h,s,) P_{\Gamma}(\mathrm{d}\gamma) \Lambda(\mathrm{d}h) \, \mathrm{d}s.$$

Note: A hyperplane (h, s) of the Poisson hyperplane process (with birth times), does neither depend on the past nor it has an impact on the hyperplanes in future.

Mecke formula for Poisson hyperplane processes

Recall:

Theorem (Mecke formula for Poisson hyperplane processes with birth times)

Let Γ be a Poisson process on $\mathcal{H} \times (0, \infty)$ (of hyperplanes with birth times) with intensity measure $\Lambda(dh) ds$ and $g: \mathbb{N} \times \mathcal{H} \times (0, \infty) \to \mathbb{R}$ a nonnegative measurable function. Then

$$\int \sum_{(h,s)\in\gamma} g(\gamma,h,s) P_{\Gamma}(\mathrm{d}\gamma) = \int \int \int \int g(\gamma+\delta_{(h,s)},h,s,) P_{\Gamma}(\mathrm{d}\gamma) \Lambda(\mathrm{d}h) \, \mathrm{d}s.$$

Note: A hyperplane (h, s) of the Poisson hyperplane process (with birth times), does neither depend on the past nor it has an impact on the hyperplanes in future.

In contrast, if a hyperplane divides a cell of STIT at a time s then this has an impact on the cell division after time s.

Recall the construction of STIT

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ● のへで

Recall the construction of STIT

The birth time of the maximal polytopes is essential!

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ の へ の

Recall the construction of STIT

The birth time of the maximal polytopes is essential!

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ の へ の

Theorem (Mecke type theorem for STIT; N./N./Th./W.) Let M be the process of birth time marked maximal (d-1)-polytopes of a STIT tessellation process ($Y_t, t > 0$) driven by a hyperplane measure Λ . Then

 $\mathbb{P}_{Y_s}(\mathrm{d} y_s) \Lambda(\mathrm{d} h) \mathrm{d} s$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem (Mecke type theorem for STIT; N./N./Th./W.) Let *M* be the process of birth time marked maximal (d-1)-polytopes of a STIT tessellation process ($Y_t, t > 0$) driven by a hyperplane measure Λ . Then

$$\int \sum_{(p,s)\in m} g(z(p,s), p, s) \mathbb{P}_{M}(dm)$$
$$= \int \int \int \int \sum_{z\in y_{s}} g(z, z\cap h, s)$$

 $\mathbb{P}_{Y_s}(\mathrm{d} y_s) \Lambda(\mathrm{d} h) \mathrm{d} s$

- ロト - 4 日 - 4 日 - 4 日 - 9 0 0

Theorem (Mecke type theorem for STIT; N./N./Th./W.) Let M be the process of birth time marked maximal (d-1)-polytopes of a STIT tessellation process ($Y_t, t > 0$) driven by a hyperplane measure Λ . Then

$$\begin{split} &\int \sum_{(p,s)\in m} g\left(m \wedge z(p,s), z(p,s), p, s\right) \mathbb{P}_{M}(\mathrm{d}m) \\ &= \int \int \int \int \sum_{z\in y_{s}} \int g\left(\left(m_{(+s)}^{(1)} \wedge (z \cap h^{+})\right) &, z, z \cap h, s\right) \\ &\mathbb{P}_{M}(\mathrm{d}m^{(1)}) & \mathbb{P}_{Y_{s}}(\mathrm{d}y_{s}) \Lambda(\mathrm{d}h) \mathrm{d}s \end{split}$$

Theorem (Mecke type theorem for STIT; N./N./Th./W.) Let M be the process of birth time marked maximal (d-1)-polytopes of a STIT tessellation process ($Y_t, t > 0$) driven by a hyperplane measure Λ . Then

$$\int \sum_{(p,s)\in m} g(m \wedge z(p,s), z(p,s), p, s) \mathbb{P}_{M}(dm)$$

=
$$\int \int \int \int \sum_{z\in y_{s}} \int \int g((m_{(+s)}^{(1)} \wedge (z \cap h^{+})) \cup (m_{(+s)}^{(2)} \wedge (z \cap h^{-})), z, z \cap h, s)$$

$$\mathbb{P}_{M}(dm^{(1)}) \mathbb{P}_{M}(dm^{(2)}) \mathbb{P}_{Y_{s}}(dy_{s}) \wedge (dh) ds$$

The proof uses the 'global construction' (rather involved !!) by Joseph Mecke of STIT tessellations and the Mecke formula for Poisson point processes.

<ロト 4 目 ト 4 目 ト 4 目 ト 1 目 9 9 0 0</p>

Application: Maximal k-polytopes

STIT process in \mathbb{R}^d ,

the *d*-dim. cells are divided by (d-1)-dim. hyperplanes $\Rightarrow (d-1)$ -dim. maximal polytopes

the k-dimensional faces of maximal (d - 1)-polytopes, k = 0, ..., d - 2,

maximal k-polytopes

They appear as the intersection of certain sequences of d - k maximal polytopes of dimension d - 1.

For k = 0, ..., d - 2 consider a tuple

$$((p_1, s_1), \ldots, (p_{d-k}, s_{d-k}))$$

of maximal (d-1)-polytopes together with their birth times with $s_1 < \ldots < s_{d-k}$, and

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\overline{\mathbf{p}} = \bigcap_{i=1}^{d-k} p_i$ is a maximal *k*-polytope.

For k = 0, ..., d - 2 consider a tuple

$$((p_1, s_1), \ldots, (p_{d-k}, s_{d-k}))$$

of maximal (d-1)-polytopes together with their birth times with $s_1 < \ldots < s_{d-k}$, and

 $\overline{\mathbf{p}} = \bigcap_{i=1}^{d-k} p_i$ is a maximal *k*-polytope.

For a fixed time t and j = 0, ..., k denote by

$$\mathbb{Q}_{(\overline{\mathbf{P}},\beta_1,\ldots,\beta_{d-k}),t}^{(j)}$$

the distribution of the typical V_j -weighted maximal k-polytope (marked with the birth times) of STIT.

Theorem Let $d \ge 2$, $k \in \{0, ..., d-1\}$, $j \in \{0, ..., k\}$ and t > 0. The marginal distribution $\mathbb{Q}_{\beta,t}^{(j)}$ of the birth times $\beta = (\beta_1, ..., \beta_{d-k})$ of the typical V_j -weighted maximal k-polytope has the density

$$(s_1, \ldots, s_{d-k}) \mapsto (d-j)(d-k-1)! rac{s_{d-k}^{k-j}}{t^{d-j}} \mathbf{1}\{0 < s_1 < \ldots < s_{d-k} < t\}$$

- ロト - 4 日 - 4 日 - 4 日 - 9 0 0

with respect to the Lebesgue measure on \mathbb{R}^{d-k} .

Corollary Let $d \ge 2$, $k \in \{0, \dots, d-1\}$ and $j \in \{0, \dots, k\}$. The marginal distribution $\mathbb{Q}_{\beta_{d-k},t}^{(j)}$ of the last birth time of the typical V_j -weighted maximal k-polytope has the density

$$s_{d-k} \mapsto (d-j) rac{s_{d-k}^{d-j-1}}{t^{d-j}} \mathbf{1} \{ 0 < s_{d-k} < t \}$$

(日) (日) (日) (日) (日) (日) (日) (日)

with respect to the Lebesgue measure on \mathbb{R} .

Corollary For all $s_{d-k} < t$, the conditional distribution $\mathbb{Q}_{(\beta_1,\ldots,\beta_{d-k-1}),t|\beta_{d-k}=s_{d-k}}^{(j)}$ of the birth times $(\beta_1,\ldots,\beta_{d-k-1})$, given $\beta_{d-k} = s_{d-k}$ has the density

$$(s_1, \ldots, s_{d-k-1}) \mapsto (d-k-1)! \, s_{d-k}^{-(d-k-1)} \, \mathbf{1}\{0 < s_1 < \ldots < s_{d-k}\}$$

In particular, this conditional distribution does not depend on j, and it is the uniform distribution on the (d - k - 1)-simplex $\{(s_1, \ldots, s_{d-k-1}) \in \mathbb{R}^{d-k-1} : 0 < s_1 < \ldots < s_{d-k-1} < s_{d-k}\}.$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Theorem Let $d \ge 2$, $k \in \{0, ..., d-1\}$, $j \in \{0, ..., k\}$, t > 0, $g : \mathcal{P}_k \times (0, t)^{d-k} \to \mathbb{R}$ non-negative and measurable. Then $\int g(q, \mathbf{s}) \mathbb{Q}_{(\overline{\mathbf{P}}, \beta_1, ..., \beta_{d-k}), t}^{(j)} (\mathrm{d}(q, \mathbf{s})) = \int \int \int g(q, \mathbf{s})$

$$\mathbb{Q}^{(j)}_{\beta_{d-k}}(\mathrm{d} s_{d-k})$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem Let $d \ge 2$, $k \in \{0, \ldots, d-1\}$, $j \in \{0, \ldots, k\}$, t > 0, $g: \mathcal{P}_k \times (0, t)^{d-k} \to \mathbb{R}$ non-negative and measurable. Then $\int g(q,\mathbf{s}) \mathbb{Q}_{(\overline{\mathbf{P}},\beta_1,...,\beta_{d-k}),t}^{(j)}(\mathrm{d}(q,\mathbf{s})) = \int \int \int g(q,\mathbf{s})$ $\mathbb{Q}^{(j)}_{\overline{\mathbf{P}},t|\beta_{d-k}=s_{d-k}}(\mathrm{d} q) \mathbb{Q}^{(j)}_{(\beta_1,\ldots,\beta_{d-k-1}),t|\beta_{d-k}=s_{d-k}}(\mathrm{d}(s_1,\ldots,s_{d-k-1}))$ $\mathbb{Q}^{(j)}_{\beta_d}$ $(\mathrm{d} s_{d-k})$

Theorem Let $d \ge 2$, $k \in \{0, \ldots, d-1\}$, $j \in \{0, \ldots, k\}$, t > 0, $g: \mathcal{P}_k \times (0, t)^{d-k} \to \mathbb{R}$ non-negative and measurable. Then $\int g(q,\mathbf{s}) \mathbb{Q}_{(\overline{\mathbf{P}},\beta_1,...,\beta_{d-k}),t}^{(j)}(\mathrm{d}(q,\mathbf{s})) = \int \int \int g(q,\mathbf{s})$ $\mathbb{Q}^{(j)}_{\overline{\mathbf{P}},t|\beta_{d-\nu}=s_{d-\nu}}(\mathrm{d} q) \mathbb{Q}^{(j)}_{(\beta_1,\ldots,\beta_{d-k-1}),t|\beta_{d-k}=s_{d-k}}(\mathrm{d}(s_1,\ldots,s_{d-k-1}))$ $\mathbb{Q}^{(j)}_{\mathcal{B}_{d-k}}(\mathrm{d} s_{d-k})$

i.e. the typical V_j -weighted maximal k-polytope \mathbf{P} and $(\beta_1, \ldots, \beta_{d-k-1})$ are conditionally independent, given the last birth time $\beta_{d-k} = s_{d-k}$. This can also be interpreted as a Markov property for functionals of the STIT tessellation processes.

Theorem (N./Nguyen/Thäle/Weiß)

Let $d \ge 2$, t > 0. The probabilities $p_{1,1}(n)$ for exactly n nodes in the relative interior of the length weighted typical maximal segment are given by

 $p_{1,1}(n)$

$$=(n+1)(d-1)!$$

$$\int_{0}^{t} \int_{0}^{s_{d-1}} \cdots \int_{0}^{s_{2}} \frac{s_{d-1}^{2}}{t^{d-1}} \frac{(d \cdot t - 2s_{d-1} - s_{d-2} - \dots - s_{1})^{n}}{(d \cdot t - s_{d-1} - s_{d-2} - \dots - s_{1})^{n+2}} \mathrm{d}s_{1} \dots \mathrm{d}s_{d-1}$$

for $n \in \{0, 1, 2, \ldots\}$.