

A central limit theorem for Lipschitz–Killing curvatures of Gaussian excursions

Dennis Müller

Fundamentals

Definition

A **random field** is a measurable mapping $X: (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathbb{R}^{\mathbb{R}^d}, \mathcal{S})$.

If there are functions $m\colon \mathbb{R}^d \to \mathbb{R}$ and $G\colon \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ symmetric and positive-semidefinite, such that

$$(X_{t_1},\ldots,X_{t_n}) \sim \mathcal{N}_n\left((m(t_i))_{i=1}^n, (C(t_i,t_j))_{i,j=1}^n\right),$$

for $n \in \mathbb{N}$ and $t_1, \ldots, t_n \in \mathbb{R}^d$, then X is called **Gaussian random field**.

X is called **stationary** if $(X_{t_1}, \ldots, X_{t_n}) \sim (X_{t_1+h}, \ldots, X_{t_n+h}), h \in \mathbb{R}^d$.

X is called **isotropic** if $(X_{t_1}, \ldots, X_{t_n}) \sim (X_{\rho t_1}, \ldots, X_{\rho t_n}), \rho \in SO(d)$.

 $X^{-1}([u,\infty))$ is the **excursion set** of X to the level $u \in \mathbb{R}$.

Fundamentals

Definition [1, Theorem 10.5.6]

For $M \subset \mathbb{R}^d$ nice enough the **Lipschitz–Killing curvatures** $\mathcal{L}_m(M)$ are defined by

$$\mathcal{H}^d(M+B^d_{\varepsilon}) = \sum_{i=0}^{\dim M} \varepsilon^{d-i} \kappa_{d-i} \mathcal{L}_i(M),$$

where $\kappa_k := \mathcal{H}^k(B_1^k)$, B_r^d is the centered open ball of radius r > 0, $\varepsilon < r_c$.

Example

Take *M* as the stratified manifold given by

$$M = \operatorname{cl} B_N^d \cap X^{-1}([u, \infty))$$

$$= S_N^{d-1} \cap X^{-1}(\{u\}) \quad \cup \quad S_N^{d-1} \cap X^{-1}((u, \infty))$$

$$\cup \quad B_N^d \cap X^{-1}(\{u\}) \quad \cup \quad B_N^d \cap X^{-1}((u, \infty)).$$

Conditions for the Main Theorem

- (A1) X is a centered, stationary, isotropic Gaussian field with trajectories almost surely of class \mathcal{C}^3 . The covariance function $C(t) := \mathbb{E}\left[X(t)X(0)\right]$ satisfies C(0) = 1 and $-D^2C(0) = I_d$.
- (A2) For $0 \neq t \in \mathbb{R}^d$ the covariance matrix of the vector

$$\left(X(t), (D^{e_i}X(t))_{i=1}^d, (D^{e_ie_j}X(t))_{1 \leq i \leq j \leq d}, (D^{e_i}X(0))_{i=1}^d\right)$$

has full rank.

(A3) The mapping $\psi(t) := \max\{\left|D^{e_{j_1}\dots e_{j_k}}C(t)\right|: k\in\{0,\dots,4\}, 1\leq j_1,\dots,j_k\leq d\}, t\in\mathbb{R}^d$, satisfies

$$\psi(t) \stackrel{\|t\| \to \infty}{\longrightarrow} 0$$
 and $\psi \in L^1(\mathbb{R}^d)$.

Main Theorem

Theorem

Let X be a real Gaussian field on \mathbb{R}^d , which satisfies the assumptions (A1)–(A3) and let $m \in \{0, \dots, d-1\}$. Then

$$\frac{\mathcal{L}_{\textit{m}}\left(\text{cl}\,\textit{B}^{\textit{d}}_{\textit{N}}\cap\textit{X}^{-1}([\textit{u},\infty))\right)-\mathbb{E}\left[\mathcal{L}_{\textit{m}}\left(\text{cl}\,\textit{B}^{\textit{d}}_{\textit{N}}\cap\textit{X}^{-1}([\textit{u},\infty))\right)\right]}{\mathcal{H}^{\textit{d}}(\textit{B}^{\textit{d}}_{\textit{N}})^{\frac{1}{2}}}\stackrel{\mathcal{D}}{\longrightarrow}\mathcal{N}(0,\sigma_{\textit{m}}^{2})$$

for $N \to \infty$ and some $\sigma_m^2 \ge 0$.

Predecessors:

- Estrade & León ([3]) in the case m = 0
- Kratz & León ([5]) in the case d = 2 and m = 1

Main Theorem

Lemma

Let X be a real Gaussian field on \mathbb{R}^d , which satisfies the assumptions (A1)–(A3) and let $m \in \{0, \dots, d-1\}$. Then

$$\sigma_m^2 \ge {d \brack d-m}^2 (2\pi)^m f(0) H_{d-m}(u)^2 \phi(u)^2.,$$

where

- f is the continuous spectral density of X, i.e. $C(t) = \int_{\mathbb{R}^d} e^{i\langle t, \lambda \rangle} f(\lambda) d\lambda$,
- $\cdot H_k(x) := (-1)^k e^{x^2/2} \frac{\partial}{\partial x} e^{-x^2/2}$ denotes the *k*-th Hermite polynomial,
- \cdot ϕ denotes the density of a standard normal distribution.

Strategy of Proof

- Part 1: Establish a Hermite type expansion for the relevant part of the standardized random variable of \mathcal{L}_m (cl $\mathcal{B}_N^d \cap X^{-1}([u,\infty))$).
- Part 2: Embed the Gaussian field *X* and its derivatives into an isonormal process on a suitable Hilbert space to obtain a representation in terms of stochastic integrals.
- Part 3: Verify the conditions of a central limit theorem in Nourdin, Peccati: Normal approximation with Malliavin calculus, [7].

An application of the Crofton formula yields

$$\mathcal{L}_m\left(\operatorname{cl} B_N^d\cap X^{-1}([u,\infty))\right) = \int_{A_{d-m}^d} \mathcal{L}_0\left(\operatorname{cl} B_N^d\cap X^{-1}([u,\infty))\cap F\right)\mu(dF),$$

where \mathcal{L}_0 is the Euler characteristic. By Morse's theorem (cf. [1, 9.3.5])

$$\mathcal{L}_{0}(\operatorname{cl} B_{N}^{d} \cap X^{-1}([u,\infty)) \cap F)$$

$$= \#\{t \in B_{N}^{d} \cap F \mid X(t) \geq u, \nabla(X|_{F})(t) = 0, \iota_{-X,B_{N}^{d} \cap F}(t) \text{ even}\}$$

$$- \#\{t \in B_{N}^{d} \cap F \mid X(t) \geq u, \nabla(X|_{F})(t) = 0, \iota_{-X,B_{N}^{d} \cap F}(t) \text{ odd}\}$$

$$+ e(X, N, F),$$
ere $e(X, N, F)$ is given by

where e(X, N, F) is given by

$$\begin{split} \#\{t \in \mathcal{S}_N^{d-1} \cap F \mid X(t) \geq u, \nabla(X|_{\mathcal{S}_N^{d-1} \cap F})(t) &= 0, \iota_{-X,\mathcal{S}_N^{d-1} \cap F}(t) \text{ even}\} \\ -\#\{t \in \mathcal{S}_N^{d-1} \cap F \mid X(t) \geq u, \nabla(X|_{\mathcal{S}_N^{d-1} \cap F})(t) &= 0, \iota_{-X,\mathcal{S}_N^{d-1} \cap F}(t) \text{ odd}\}. \end{split}$$

Lemma

Let X satisfy the conditions (A1)-(A2). Then

$$\mathcal{H}^d(B_N^d)^{-1}\int_{A_{d-m}^d} e(X,N,F)\,\mu(dF) \stackrel{\mathbb{P}}{\longrightarrow} 0 \quad \text{ as } N \to \infty.$$

Proof

Apply the Rice formula (cf. [2, Theorem 6.2]), which states that for a nice enough Gaussian field $Z \colon \Omega \times \mathbb{R}^d \to \mathbb{R}^d$ and a measurable set $B \subset \mathbb{R}^d$

$$\mathbb{E}\left[\#\{t \in B \mid Z(t) = 0\}\right] = \int_{B} \mathbb{E}\left[|\det Z'(t)| \mid Z(t) = 0\right] \rho_{Z(t)}(0) dt.$$

Hence, in the following we consider

$$\begin{split} \zeta_{\textit{m},\textit{N}} := \int_{A^{\textit{d}}_{\textit{d}-\textit{m}}} \# \{t \in B^{\textit{d}}_{\textit{N}} \cap \textit{F} : \textit{X}(t) \geq \textit{u}, \nabla(\textit{X}|_{\textit{F}})(t) = 0, \iota_{-\textit{X},B^{\textit{d}}_{\textit{N}} \cap \textit{F}}(t) \text{ even} \} \\ - \# \{t \in B^{\textit{d}}_{\textit{N}} \cap \textit{F} : \textit{X}(t) \geq \textit{u}, \nabla(\textit{X}|_{\textit{F}})(t) = 0, \iota_{-\textit{X},B^{\textit{d}}_{\textit{N}} \cap \textit{F}}(t) \text{ odd} \} \, \mu(\textit{dF}) \end{split}$$

and approximate this random variable by

$$\begin{split} \zeta_{m,N}^{\varepsilon} &:= (-1)^{d-m} \int_{A_{d-m}^d} \int_{B_N^d \cap F} & \delta_{\varepsilon}(\nabla(X|_F)(t)) \mathbb{1}\{X(t) \geq u\} \\ & \times \det(D^2(X|_F)(t)) \ dt \ \mu(dF), \end{split}$$

where $\delta_{\varepsilon} \colon \mathbb{R}^d \to \mathbb{R}$, $x \mapsto \frac{1}{\varepsilon^{d-m}\kappa_{d-m}} \mathbb{1}_{B^d_{\varepsilon}}(x)$, so that for $E \in G^d_{d-m}$ and $f \colon E \to \mathbb{R}$ continuous $\lim_{\varepsilon \to 0} \int_E \delta_{\varepsilon}(x) f(x) \, dx = f(0)$.

Hence, in the following we consider

$$\begin{split} \zeta_{\textit{m},\textit{N}} := \int_{A^{\textit{d}}_{\textit{d}-\textit{m}}} \# \{ t \in B^{\textit{d}}_{\textit{N}} \cap \textit{F} : \textit{X}(t) \geq \textit{u}, \nabla(\textit{X}|_{\textit{F}})(t) = 0, \iota_{-\textit{X},B^{\textit{d}}_{\textit{N}} \cap \textit{F}}(t) \text{ even} \} \\ - \# \{ t \in B^{\textit{d}}_{\textit{N}} \cap \textit{F} : \textit{X}(t) \geq \textit{u}, \nabla(\textit{X}|_{\textit{F}})(t) = 0, \iota_{-\textit{X},B^{\textit{d}}_{\textit{N}} \cap \textit{F}}(t) \text{ odd} \} \, \mu(\textit{dF}) \end{split}$$

and approximate this random variable by

$$\begin{split} \zeta_{m,N}^{\varepsilon} &:= (-1)^{d-m} \int_{A_{d-m}^d} \int_{B_N^d \cap F} & \delta_{\varepsilon}(\nabla(X|_F)(t)) \mathbb{1}\{X(t) \geq u\} \\ & \times \det(D^2(X|_F)(t)) \ \mathit{dt} \ \mu(\mathit{dF}). \end{split}$$

Lemma

Let X satisfy (A1) and (A2). Then

$$\zeta_{m,N}^{\varepsilon} \stackrel{L^{2}(\mathbb{P})}{\longrightarrow} \zeta_{m,N} \quad \text{as } \varepsilon \to 0.$$

Proof: Applications of Rice formulas and lengthy calculations.

Lemma

Let $\varepsilon > 0$. Then

$$\zeta_{m,N}^{\varepsilon} = \int_{G_{d-m}^d} \int_{B_N^d} G_{\varepsilon}(Y(F,t)) dt \, \nu(dF),$$

for a suitable $G_{\varepsilon} \in L^{2}\left(\mathbb{R}^{D}, \phi_{D}(x)dx\right)$, where

$$Y(F,t) := \Lambda^{-1} \left((D^{v_i}X(t))_{i=1}^{d-m}, (D^{v_iv_j}X(t))_{1 \le i \le j \le d-m}, X(t) \right)$$

for $t \in \mathbb{R}^d$, $F \in G(d, d-m)$ and (v_i) denoting an orthonormal basis of F, where Λ is the root of the covariance matrix of the vector $\left((D^{v_i}X(t))_{i=1}^{d-m}, (D^{v_iv_j}X(t))_{1 \leq i \leq j \leq d-m}, X(t)\right)$.

The Hermite expansion

$$G_{\varepsilon} = \sum_{q=0}^{\infty} \sum_{n \in \mathbb{N}^{D}, |n|=q} c(G_{\varepsilon}, n) \widetilde{H}_{n},$$

with
$$\widetilde{H}_n(x_1,\ldots,x_D)=\prod_{i=1}^D H_{n_i}(x_i),\,x\in\mathbb{R}^D$$
, yields

Lemma

Let X satisfy (A1) and (A2) and let $\varepsilon > 0$. Then

$$\zeta_{m,N}^{\epsilon} \overset{L^2(\mathbb{P})}{=} \sum_{q \geq 0} \sum_{n \in \mathbb{N}^D, |n| = q} \int_{G_{d-m}^d} c(G_{\epsilon}, n) \int_{B_N^d} \widetilde{H}_n(Y(F, t)) \ dt \ \nu(dF).$$

Theorem

Let X satisfy (A1) and (A2) and $c(n) := \lim_{\epsilon \to 0} c(G_{\epsilon}, n)$. Then

$$\zeta_{m,N} \stackrel{L^2(\mathbb{P})}{=} \sum_{q \geq 0} \sum_{n \in \mathbb{N}^D, |n| = q} \int_{G^d_{d-m}} c(n) \int_{B^d_N} \widetilde{H}_n(Y(F,t)) dt \, \nu(dF).$$

Definition

We define the real Hilbert space

$$\mathfrak{H}:=\left\{h\colon \mathbb{R}^d\to \mathbb{C}\mid h(-x)=\overline{h(x)},\ \int_{\mathbb{R}^d}|h(x)|^2f(x)\ dx<\infty\right\}$$

with the inner product $\langle g,h\rangle_{L^2(f(x)dx)}:=\int_{\mathbb{R}^d}g(x)\overline{h(x)}f(x)\,dx$ and the isonormal process W, i.e. the centered Gaussian field on $\mathfrak H$ with

$$\mathbb{E}\left[W(f)W(g)\right] = \langle f, g \rangle_{L^2(f(x)dx)}.$$

Lemma

There are explicitly known functions $\varphi_{t,i}^F \in \mathfrak{H}$, so that

$$\mathbb{E}[Y_i(F,t)Y_j(F',t')] = \langle \varphi_{t,i}^F, \varphi_{t',j}^{F'} \rangle_{L^2(f(x)dx)}$$

and therefore

$$Y(\cdot, \cdot) \stackrel{\mathcal{D}}{=} (W(\varphi_{\cdot, 1}), \ldots, W(\varphi_{\cdot, D})).$$

This leads to

$$\prod_{i=1}^D H_{n_i}(Y_i(\cdot,\cdot)) \stackrel{\mathcal{D}}{=} \prod_{i=1}^D H_{n_i}(W(\phi_{\cdot\cdot,i})) = I_q(\phi_{\cdot\cdot,1}^{\cdot\otimes n_1} \otimes \ldots \otimes \phi_{\cdot\cdot,D}^{\cdot\otimes n_D}),$$

where I_q denotes the q-th multiple Wiener–Itô integral. Hence, we obtain the representation

$$\frac{\zeta_{m,N} - \mathbb{E}[\zeta_{m,N}]}{\mathcal{H}^d(B_N^d)^{1/2}} \stackrel{\mathcal{D}}{=} \sum_{q=1}^\infty I_q(g_{N,q}),$$

where

$$g_{N,q} := \frac{1}{\mathcal{H}^d(\mathcal{B}_N^d)^{1/2}} \sum_{k \in \{1,\dots,D\}^q} \int_{\mathcal{G}_{d-m}^d} b(k) \int_{\mathcal{B}_N^d} \varphi_{t,k_1}^F \otimes \ldots \otimes \varphi_{t,k_q}^F \, dt \, \nu(dF).$$

Theorem 6.3.1 in [7]

Let $F_N \in L^2(\mathbb{P})$, for $N \in \mathbb{N}$, such that $\mathbb{E}[F_N] = 0$. Then there exist functions $g_{N,q} \in \mathfrak{H}^{\odot q}$, for $N, q \in \mathbb{N}$, such that $F_N = \sum_{q \geq 1} I_q(g_{N,q})$. Suppose that the following conditions

- (i) for fixed $q \ge 1$ there exists $\sigma_q^2 \ge 0$ such that $q! \|g_{N,q}\|_{\mathfrak{H}^{\otimes q}}^2 \stackrel{N \to \infty}{\longrightarrow} \sigma_q^2$,
- (ii) $\sigma^2 := \sum_{q \geq 1} \sigma_q^2 < \infty$,
- (iii) for all $q \geq 2$ and $r = 1, \ldots, q-1$: $\|g_{N,q} \otimes_r g_{N,q}\|_{\mathfrak{H}^{\otimes(2q-2r)}} \stackrel{N \to \infty}{\longrightarrow} 0$,
- (iv) $\lim_{Q\to\infty}\limsup_{N\to\infty}\sum_{q=Q+1}^{\infty}q!\|g_{N,q}\|_{\mathfrak{H}^{\otimes q}}^2=0$

are true. Then $F_n \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N}(0, \sigma^2)$.

Verification of (i)-(iv): Heavily relies on (A3) and uses the ideas of Estrade & León with extra attention for the integration on G_{d-m}^d and the different observation window B_N^d .

Ongoing work

A multivariate central limit theorem, i.e.

$$\frac{(\zeta_{0,N},\ldots,\zeta_{d-1,N}) - \mathbb{E}\left[(\zeta_{0,N},\ldots,\zeta_{d-1,N})\right]}{\mathcal{H}^d(B_N^d)^{1/2}} \xrightarrow{\mathcal{D}} \mathcal{N}_d(0,\Sigma)$$

and conditions that guarantee the positive definiteness of Σ .

 A multivariate central limit theorem for integrated level functionals, i.e. establish for

$$\Psi^h(X,A):=\int_{\mathbb{R}}\int_{X^{-1}(u)\cap A}h(\nabla X(t),D^2X(t),X(t))\,\mathcal{H}^{d-1}(dt)\,du$$

where $h: \mathbb{R}^D \to \mathbb{R}^k$ nice enough, the limit

$$\frac{\Psi^h(X,A_N) - \mathbb{E}\left[\Psi^h(X,A_N)\right]}{\mathcal{H}^d(A_N)^{1/2}} \xrightarrow{\mathcal{D}} \mathcal{N}_k(0,\Sigma^h) \quad \text{ as } A_N \nearrow \mathbb{R}^d$$

and conditions that guarantee the positive definiteness of Σ^h .

References

R.J. Adler and J.E. Taylor, Random Fields and Geometry, Springer, 2009.

J.M. Azaïs and M. Wschebor, *Level Sets and Extrema of Random Processes and Fields*, Wiley, 2009.

A. Estrade and J.R. León, A central limit theorem for the Euler characteristic of a Gaussian excursion set, Ann. Probab. 44 (2016), no. 6, 3849–3878.

M. Kratz and S. Vadlamani, *Central Limit Theorem for Lipschitz–Killing Curvatures of Excursion Sets of Gaussian Random Fields*, J. Theor. Probab. (2017), 1–30.

M.F. Kratz and J.R. León, *Central limit theorems for level functionals of stationary Gaussian processes and fields*, J. Theoret. Probab. **14** (2001).

D. Müller, *A central limit theorem for Lipschitz–Killing curvatures of Gaussian excursions*, J. Math. Anal. Appl. **452** (2017), no. 2, 1040 – 1081.

I. Nourdin and G. Peccati, *Normal approximations with Malliavin calculus: From Stein's method to Universality*, Cambridge Univ. Press, 2012.