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Definition
A random field is a measurable mapping X : (Ω,F ,P)→ (RRd

,S).

If there are functions m : Rd → R and C : Rd ×Rd → R symmetric and
positive-semidefinite, such that

(Xt1 , . . . ,Xtn) ∼ Nn

(
(m(ti ))

n
i=1, (C(ti , tj ))

n
i,j=1

)
,

for n ∈N and t1, . . . , tn ∈ Rd , then X is called Gaussian random field.

X is called stationary if (Xt1 , . . . ,Xtn) ∼ (Xt1+h, . . . ,Xtn+h), h ∈ Rd .

X is called isotropic if (Xt1 , . . . ,Xtn) ∼ (Xρt1 , . . . ,Xρtn), ρ ∈ SO(d).

X−1([u,∞)) is the excursion set of X to the level u ∈ R.
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Definition [1, Theorem 10.5.6]

For M ⊂ Rd nice enough the Lipschitz–Killing curvatures Lm(M) are
defined by

Hd (M + Bd
ε ) =

dim M

∑
i=0

εd−iκd−iLi (M),

where κk := Hk(Bk
1), Bd

r is the centered open ball of radius r > 0, ε < rc .

Example
Take M as the stratified manifold given by

M = cl Bd
N ∩ X−1([u,∞))

= Sd−1
N ∩ X−1({u}) ∪ Sd−1

N ∩ X−1((u,∞))

∪ Bd
N ∩ X−1({u}) ∪ Bd

N ∩ X−1((u,∞)).
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(A1) X is a centered, stationary, isotropic Gaussian field with
trajectories almost surely of class C3. The covariance function
C(t) := E [X (t)X (0)] satisfies C(0) = 1 and −D2C(0) = Id .

(A2) For 0 6= t ∈ Rd the covariance matrix of the vector(
X (t), (Dei X (t))d

i=1 , (D
ei ej X (t))1≤i≤j≤d , (Dei X (0))d

i=1

)
has full rank.

(A3) The mapping
ψ(t) := max

{∣∣Dej1
...ejk C(t)

∣∣ : k ∈ {0, . . . ,4},1 ≤ j1, . . . , jk ≤ d
}

,
t ∈ Rd , satisfies

ψ(t)
‖t‖→∞−→ 0 and ψ ∈ L1(Rd ).



Main Theorem

4 May 18, 2017

Theorem
Let X be a real Gaussian field on Rd , which satisfies the assumptions
(A1)–(A3) and let m ∈ {0, . . . ,d − 1}. Then

Lm
(
cl Bd

N ∩ X−1([u,∞))
)
−E

[
Lm

(
cl Bd

N ∩ X−1([u,∞))
)]

Hd (Bd
N)

1
2

D−→ N (0, σ2
m)

for N → ∞ and some σ2
m ≥ 0.

Predecessors:
• Estrade & León ([3]) in the case m = 0
• Kratz & León ([5]) in the case d = 2 and m = 1
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Lemma
Let X be a real Gaussian field on Rd , which satisfies the assumptions
(A1)–(A3) and let m ∈ {0, . . . ,d − 1}. Then

σ2
m ≥

[
d

d −m

]2

(2π)mf (0)Hd−m(u)
2φ(u)2.,

where
· f is the continuous spectral density of X , i.e. C(t) =

∫
Rd ei〈t,λ〉f (λ) dλ,

· Hk(x) := (−1)kex2/2 ∂
∂x e−x2/2 denotes the k-th Hermite polynomial,

· φ denotes the density of a standard normal distribution.
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Part 1: Establish a Hermite type expansion for the relevant part of the
standardized random variable of Lm

(
cl Bd

N ∩ X−1([u,∞))
)
.

Part 2: Embed the Gaussian field X and its derivatives into an
isonormal process on a suitable Hilbert space to obtain a
representation in terms of stochastic integrals.

Part 3: Verify the conditions of a central limit theorem in Nourdin,
Peccati: Normal approximation with Malliavin calculus, [7].
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An application of the Crofton formula yields

Lm

(
cl Bd

N ∩ X−1([u,∞))
)
=
∫

Ad
d−m

L0

(
cl Bd

N ∩ X−1([u,∞)) ∩ F
)

µ(dF ),

where L0 is the Euler characteristic. By Morse’s theorem (cf. [1, 9.3.5])

L0(cl Bd
N ∩ X−1([u,∞)) ∩ F )

= #{t ∈ Bd
N ∩ F | X (t) ≥ u,∇(X |F )(t) = 0, ι−X ,Bd

N∩F (t) even}

−#{t ∈ Bd
N ∩ F | X (t) ≥ u,∇(X |F )(t) = 0, ι−X ,Bd

N∩F (t) odd}

+ e(X ,N,F ),

where e(X ,N,F ) is given by

#{t ∈ Sd−1
N ∩ F | X (t) ≥ u,∇(X |Sd−1

N ∩F )(t) = 0, ι−X ,Sd−1
N ∩F (t) even}

−#{t ∈ Sd−1
N ∩ F | X (t) ≥ u,∇(X |Sd−1

N ∩F )(t) = 0, ι−X ,Sd−1
N ∩F (t) odd}.
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Lemma
Let X satisfy the conditions (A1)-(A2). Then

Hd (Bd
N)
−1
∫

Ad
d−m

e(X ,N,F ) µ(dF )
P−→ 0 as N → ∞.

Proof
Apply the Rice formula (cf. [2, Theorem 6.2]), which states that for a nice
enough Gaussian field Z : Ω×Rd → Rd and a measurable set B ⊂ Rd

E [#{t ∈ B | Z (t) = 0}] =
∫

B
E
[
| det Z ′(t)| | Z (t) = 0

]
pZ (t)(0) dt .
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Hence, in the following we consider

ζm,N :=
∫

Ad
d−m

#{t ∈ Bd
N ∩ F : X (t) ≥ u,∇(X |F )(t) = 0, ι−X ,Bd

N∩F (t) even}

−#{t ∈ Bd
N ∩ F : X (t) ≥ u,∇(X |F )(t) = 0, ι−X ,Bd

N∩F (t) odd} µ(dF )

and approximate this random variable by

ζε
m,N := (−1)d−m

∫
Ad

d−m

∫
Bd

N∩F
δε(∇(X |F )(t))1{X (t) ≥ u}

× det(D2(X |F )(t)) dt µ(dF ),

where δε : Rd → R, x 7→ 1
εd−mκd−m

1Bd
ε
(x), so that for E ∈ Gd

d−m and

f : E → R continuous limε→0
∫

E δε(x)f (x) dx = f (0).
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Hence, in the following we consider

ζm,N :=
∫

Ad
d−m

#{t ∈ Bd
N ∩ F : X (t) ≥ u,∇(X |F )(t) = 0, ι−X ,Bd

N∩F (t) even}

−#{t ∈ Bd
N ∩ F : X (t) ≥ u,∇(X |F )(t) = 0, ι−X ,Bd

N∩F (t) odd} µ(dF )

and approximate this random variable by

ζε
m,N := (−1)d−m

∫
Ad

d−m

∫
Bd

N∩F
δε(∇(X |F )(t))1{X (t) ≥ u}

× det(D2(X |F )(t)) dt µ(dF ).
Lemma
Let X satisfy (A1) and (A2). Then

ζε
m,N

L2(P)−→ ζm,N as ε→ 0.

Proof: Applications of Rice formulas and lengthy calculations.
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Lemma
Let ε > 0. Then

ζε
m,N =

∫
Gd

d−m

∫
Bd

N

Gε(Y (F , t)) dt ν(dF ),

for a suitable Gε ∈ L2
(
RD, φD(x)dx

)
, where

Y (F , t) := Λ−1
(
(Dvi X (t))d−m

i=1 , (Dvi vj X (t))1≤i≤j≤d−m ,X (t)
)

for t ∈ Rd ,F ∈ G(d ,d −m) and (vi ) denoting an orthonormal basis of F ,
where Λ is the root of the covariance matrix of the vector(
(Dvi X (t))d−m

i=1 , (Dvi vj X (t))1≤i≤j≤d−m ,X (t)
)
.
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The Hermite expansion

Gε =
∞

∑
q=0

∑
n∈ND,|n|=q

c(Gε,n)H̃n,

with H̃n(x1, . . . , xD) = ∏D
i=1 Hni (xi ), x ∈ RD, yields

Lemma
Let X satisfy (A1) and (A2) and let ε > 0. Then

ζε
m,N

L2(P)
= ∑

q≥0
∑

n∈ND,|n|=q

∫
Gd

d−m

c(Gε,n)
∫

Bd
N

H̃n(Y (F , t)) dt ν(dF ).

Theorem
Let X satisfy (A1) and (A2) and c(n) := limε→0 c(Gε,n). Then

ζm,N
L2(P)
= ∑

q≥0
∑

n∈ND,|n|=q

∫
Gd

d−m

c(n)
∫

Bd
N

H̃n(Y (F , t)) dt ν(dF ).
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Definition
We define the real Hilbert space

H :=
{

h : Rd → C | h(−x) = h(x),
∫

Rd
|h(x)|2f (x) dx < ∞

}
with the inner product 〈g,h〉L2(f (x)dx) :=

∫
Rd g(x)h(x)f (x) dx and the

isonormal process W , i.e. the centered Gaussian field on H with

E [W (f )W (g)] = 〈f ,g〉L2(f (x)dx).

Lemma
There are explicitly known functions ϕF

t,j ∈ H, so that

E[Yi (F , t)Yj (F
′, t ′)] = 〈ϕF

t,i , ϕF ′
t ′,j 〉L2(f (x)dx)

and therefore

Y (·, ··) D=
(
W (ϕ···,1), . . . ,W (ϕ···,D)

)
.
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This leads to

D

∏
i=1

Hni (Yi (·, ··))
D
=

D

∏
i=1

Hni (W (ϕ···,i )) = Iq(ϕ·⊗n1
··,1 ⊗ . . .⊗ ϕ

·⊗nD
··,D ),

where Iq denotes the q-th multiple Wiener–Itô integral. Hence, we obtain
the representation

ζm,N −E[ζm,N ]

Hd (Bd
N)

1/2
D
=

∞

∑
q=1

Iq(gN,q),

where

gN,q :=
1

Hd (Bd
N)

1/2 ∑
k∈{1,...,D}q

∫
Gd

d−m

b(k)
∫

Bd
N

ϕF
t,k1
⊗ . . .⊗ ϕF

t,kq
dt ν(dF ).
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Theorem 6.3.1 in [7]
Let FN ∈ L2(P), for N ∈N, such that E[FN ] = 0. Then there exist
functions gN,q ∈ H�q, for N,q ∈N, such that FN = ∑q≥1 Iq(gN,q).
Suppose that the following conditions

(i) for fixed q ≥ 1 there exists σ2
q ≥ 0 such that q!‖gN,q‖2

H⊗q
N→∞−→ σ2

q ,

(ii) σ2 := ∑q≥1 σ2
q < ∞,

(iii) for all q ≥ 2 and r = 1, . . . ,q − 1: ‖gN,q ⊗r gN,q‖H⊗(2q−2r)
N→∞−→ 0,

(iv) limQ→∞ lim supN→∞ ∑∞
q=Q+1 q!‖gN,q‖2

H⊗q = 0

are true. Then Fn
D−→ N (0, σ2).

Verification of (i)-(iv): Heavily relies on (A3) and uses the ideas of Estrade
& León with extra attention for the integration on Gd

d−m and the different
observation window Bd

N .
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• A multivariate central limit theorem, i.e.

(ζ0,N , . . . , ζd−1,N)−E [(ζ0,N , . . . , ζd−1,N)]

Hd (Bd
N)

1/2
D−→ Nd (0,Σ)

and conditions that guarantee the positive definiteness of Σ.
• A multivariate central limit theorem for integrated level functionals, i.e.

establish for

Ψh(X ,A) :=
∫

R

∫
X−1(u)∩A

h(∇X (t),D2X (t),X (t))Hd−1(dt) du

where h : RD → Rk nice enough, the limit

Ψh(X ,AN)−E
[
Ψh(X ,AN)

]
Hd (AN)1/2

D−→ Nk(0,Σh) as AN ↗ Rd

and conditions that guarantee the positive definiteness of Σh.
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