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Fundamentals ﬂ(“.

Definition .
A random field is a measurable mapping X: (Q, F,P) — (RR" S).

If there are functions m: R — R and C: R? x RY — R symmetric and
positive-semidefinite, such that

Xty Xi0) ~ N (), (Gt )7y )
forne Nandt,..., t, € RY, then X is called Gaussian random field.
X is called stationary if (X, ..., Xi,) ~ (Xty+ho -2 Xpppn), h € RY.
X is called isotropic if (X, ..., X)) ~ (Xoty,-- -, Xot,), p € SO(d).

X~1([u, o)) is the excursion set of X to the level u € RR.
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Fundamentals ﬂ(“.

Definition [1, Theorem 10.5.6]

For M C RY nice enough the Lipschitz—Killing curvatures £,(M) are
defined by

dimM )

HIM+BY) = Y e kg iLi(M),

i=0
where xy := HK(BY), BY is the centered open ball of radius r > 0, & < r;.
Example
Take M as the stratified manifold given by

M =cl BN X1 ([u,))
= S{TnxTT({u) U SETnXT((u00))
U BInXT{u}) U B{NX((u ).
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Conditions for the Main Theorem ﬂ(IT

(A1) X is a centered, stationary, isotropic Gaussian field with
trajectories almost surely of class C2. The covariance function
C(t) := E [X(t)X(0)] satisfies C(0) = 1 and —D?C(0) = I,.
(A2) For 0 # t € RY the covariance matrix of the vector

(X0, (DPX()Ly . (DTIX(1))1<icjea (DTX(0))E4)

has full rank.

(A3) The mapping
P(t) :=max {| D%k C(t)| : k € {0,...,4},1 <jq,..., Jk < d},
t € RY, satisfies

l[tl] =0

¥(t) "= 0and y € L'(RY).
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Main Theorem AT

Theorem
Let X be a real Gaussian field on R, which satisfies the assumptions
(A1)—(A3) and let m € {0, ..., d—1}. Then

Lo (c B,‘i’,ﬁx_1([“’ ©))) —E [ﬁm (cl B,‘{’,ﬂX—1([u, 00)))] D, N(0,02)
”Hd(BK,)% 7

for N — oo and some ¢, > 0.

Predecessors:
e Estrade & Ledn ([3]) inthe case m =0
e Kratz & Leon ([5]) inthe case d =2 and m =1
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Main Theorem AT

Lemma
Let X be a real Gaussian field on IR?, which satisfies the assumptions
(A1)—(A3) and let m € {0, ..., d—1}. Then

2
=[] @O OH a0,
where

- fis the continuous spectral density of X, i.e. C(t) = [rq €N F(A) dA,

- Hg(x) := (—1)keX*/2.2e=x*/2 denotes the k-th Hermite polynomial,
- ¢ denotes the density of a standard normal distribution.
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Strategy of Proof

Part 1:

Part 2:

Part 3:
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Establish a Hermite type expansion for the relevant part of the
standardized random variable of £, (¢l B§ N X~ ([u, ))).

Embed the Gaussian field X and its derivatives into an
isonormal process on a suitable Hilbert space to obtain a
representation in terms of stochastic integrals.

Verify the conditions of a central limit theorem in Nourdin,
Peccati: Normal approximation with Malliavin calculus, [7].



Strategy of Proof: Part 1 ﬂ(IT
An application of the Crofton formula yields

L (01BN X ([ = [

Lo (1 BF N X~V ([u,00)) N F) u(dF),
d—m
where L is the Euler characteristic. By Morse’s theorem (cf. [1, 9.3.5])
Lo(clBYN X ([u,)) NF)
=#{tec BYNF|X(t)>u V(X|F)(t) =0, x5y (1) even}
—#{te B{NF | X(t) > u V(X|F)(t) =0, L_x gy (t) odd}

+e(X,N,F),
where e(X, N, F) is given by

#{te ST NF|X(t) > U, V(X[ gg-1) (1) = 0,1_y so-1(1) even}
—#{te ST NF|X(t) > u, V(X[ gg-10p) (1) =0,1_y ga-1£(t) 0dd}.
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Strategy of Proof: Part 1 ﬂ(IT

Lemma
Let X satisfy the conditions (A1)-(A2). Then

219(Bg)1 /Ad e(X,N,F) u(dF) T30 asN - co.

d—m

Proof
Apply the Rice formula (cf. [2, Theorem 6.2]), which states that for a nice
enough Gaussian field Z: Q x R? — R? and a measurable set B ¢ R?

E[#{te B 2(t)=0}] = [ E[|detZ/(6) | Z(t) = 0] pz;)(0) .
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Strategy of Proof: Part 1 ﬂ(IT

Hence, in the following we consider
N = /Agm #{t€ BYNF:X(1) > u V(X|F)(t) = 0.ty ga- (1) even}
—#{te BYNF:X(t) > u V(X|g)(t) =0, _x, g () 0dd} pu(dF)
and approximate this random variable by
= OO [ BT XX > 0)
x det(D?(X|f)(t)) dt u(dF),

where 6.: RY — R, x — Wﬂsg(x), so that for £ € GY_, and
f: E — R continuous lim,_,q [ J:(x)f(x) dx = f(0).
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Strategy of Proof: Part 1 AT
Hence, in the following we consider

N = /Ad #{te BYNF:X(t) > u V(X|p)(t) = 0.4y o r(1) even}
—#{te BYNF: X(t) > u, V(X|g)(t) =0, t_x gynF(t) odd} p(dF)

and approximate this random variable by
e = —1d—m/ / S(V(X|F) () L{X(1) > u
= (D7 [ Jog BVXIRNONHX(0) = 0}
x det(D?(X|r)(t)) dt u(dF).
Lemma
Let X satisfy (A1) and (A2). Then

L2(P)
s
mN —— {mn ase—0.

Proof: Applications of Rice formulas and lengthy calculations.
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Strategy of Proof: Part 1 ﬂ(IT

Lemma
Lete > 0. Then

;,,N_/Gd / )) dtv(dF),

for a suitable G, € L? (RP, 4>D( )dx), where

Y(F. 1) = A7 ((DX(0)E5", (D"™X(0)1<icjeg-m. X(D)

for t € RY, F € G(d,d — m) and (v;) denoting an orthonormal basis of F,
where A is the root of the covariance matrix of the vector

((DYX(£)E™, (D5 X(1))1<icjcq-mo X(D))-
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Strategy of Proof: Part 1 ﬂ(IT

The Hermite expansion

[ee]

G=Y Y c(G.n)Hn,

d=0neND,|n|=q
with Hp(xy, ..., xp) = I124 Hn,(x;), x € RP, yields

Lemma
Let X satisfy (A1) and (A2) and let ¢ > 0. Then

L2(P
YR DD DI |

d
G>0 neND |n|=q "~ “d-m

¢(Ge, n) /Bd Fn(Y(F, 1)) dtv(dF).
N

Theorem

Let X satisfy (A1) and (A2) and ¢(n) := lim._,o ¢(G, n). Then

(
(o Py v /G c(n) /Bd An(Y(F. 1)) dtv(dF).

d
G=0 neN®,|n|=q "~ “d-m
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Strategy of Proof: Part 2 ﬂ(IT
Definition
We define the real Hilbert space

9= {h: RY — C | h(—x) = h(x), /Rd |h(x)|?f(x) dx < oo}

with the inner product (g, h) 12((x)ax) 1= Jre 9(X)h(x)f(X) dx and the
isonormal process W, i.e. the centered Gaussian field on $ with

E[W(H)W(9)] = (f.9) 12(#(x)a)-

Lemma
There are explicitly known functions (pfj € 9, so that

E[Yi(F, ) Yi(F, )] = (@} o} ) 20100 a0)
and therefore
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Strategy of Proof: Part 2 ﬂ(IT

This leads to
b D b . ®@n4 ‘®np
HH”/(Y/'('v“)) =HHn,-<W(qv‘.,,-)) Il 1" ®...® ¢ pP),

where /5 denotes the g-th multiple Wiener—It6 integral. Hence, we obtain
the representation

gmN IEgmN D -
Tuagg e 2 lalone)
where
1 " F F
INg = / Prp, @@ @y dtv(dF).
i Hd(Bﬁ/)”z ke{1 ,,,,, pya’Ci m By ha
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Strategy of Proof: Part 3 ﬂ(IT

Theorem 6.3.1 in [7]

Let Fy € L?(IP), for N € IN, such that IE[Fy] = 0. Then there exist
functions gn,q € 59, for N, q € IN, such that Fy = Yq1 lg(gn,q)-
Suppose that the following conditions

(i) for fixed g > 1 there exists 02 > 0 such that q![|gn,q|%.q 5 02,
(i) 0% :=Ygs108 < oo,
N—oo
(iiiy foralg>2andr=1,..., g—1:|lgng ®rgN'quJ®(2q,2r) =20,
(iV) “mano lim SUPN 0 220:0+1 q!HgN,qH%@oq =0

are true. Then F,, —25 A(0,02).

Verification of (i)-(iv): Heavily relies on (A3) and uses the ideas of Estrade
& Leon with extra attention for the integration on Gg_m and the different

observation window Bg).
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Ongoing work ﬂ(IT

e A multivariate central limit theorem, i.e.

(CoN,---» Ca—1.n) —E[(Con: -, Cd-1.N)]
oN d 1;V{d(3ﬁl)1/gN d—1,N &Nd(o,Z)

and conditions that guarantee the positive definiteness of X.

e A multivariate central limit theorem for integrated level functionals, i.e.
establish for

(X, A) ::/R/)H(umAh(VX(t),02X(t),X(t))Hd—1(dt) du

where h: RP — R¥ nice enough, the limit

h _ h
=& Aﬁdmﬂigl“ AL 2y Ni(0.57)  as Ay 7 R?

and conditions that guarantee the positive definiteness of =/
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