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(a) An example of SEM image (b) An example of SEM image
that is considered normal. containing anomalous clots.
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Novelty detection is the task of classifying test data that differ in some respect from the data that
are available during “training”. This may be seen as “one-class classification”, in which a model is
constructed to describe “normal” data.The novelty detection approach is necessary because the
guantity of available “abnormal” data is insufficient to construct explicit models for non-normal
classes. In fact novelty detection occurs even in a single image.



This problem then encompasses all methods for estimating a probability density
from samples! This is for the « normal » data. The next question is: how far the
anomaly is it from being normal? how to decide that it is anomalous?
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Some 1500 references on
anomaly/fault/outlier detection...
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Detection principles illustrated by a few
classic methods



MULTISCALE ANOMALY DETECTION USING DIFFUSION MAPS AND SALIENCY SCORE

Gal Mishne and Israel Cohen

Principles 1 and 2: dimension reduction and multiscale detection
A multiscale approach to anomaly detection in images, combining diffusion maps for dimensionality
reduction and a nearest-neighbor-based anomaly score in the reduced dimension.

LetI' = {x1, ..,z } be a high-dimensional set of n data points.
A weighted graph is constructed with the data points as nodes and the

weights of the edges connecting two node 1s a measure of the similar-
ity between the two data points. The affinity matrix W = w(xz;, z;).
xi,x; € 1" is required to be symmetric and non-negative. A com-
mon choice is an RBF kernel w(z;, 7;) = exp {—||lz: — z;||*/o* }.
where o > 0 1s a scale parameter. Then, a random walk is created
on the data set by normalizing the kernel:

P=D'W, (1)

where D(i,i) = } , w(z:i,z;). The row-stochastic matrix P
satisfies p(:r.-a;‘, Ti) > D and ) . p(zi, ;r.:,,-} — 1 and can be viewed
as the transition matrix of a Markov chain on the data set I'. The

Euclidean distance in this new embedding. Retaining un]y.the first £
eigenvectors, the diffusion map is defined by
T

Uyt oz — (AiY(:), Aspa(zi), ..., Apbe(z:)) (3)

where ¢; and iy are the biorthogonal left and right eigenvectors,
respectively, and |Ag| = |A1] = ... = 0 are the sequence of eigen-
values.

anomaly score is given by

1 e dom(pi,ps)/205k

K 1 l+ﬂ'dpmilinn{ﬁ'hﬁj)} { )

S(i)py =1 — exp {—
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Fig. 1. Flowchart of the multiscale algorithm.



[a) (b) (c) (d)

Fig. 2. Top row: original side-scan sonar images, the sea-mines are indicated
by red (white 1n print) arrows. Bottom row: Anomaly score for detection based
on coarse resolution of the images. The images were down-sampled by a factor
of 2, and a third of the pixels were sampled in the construction of the diffusion
map. In (a) the detection 1s successiul. However, this method may result in false
alarms (b), low anomaly score (c) or a miss-detection (d).



Novelty Detection in Images by Sparse Representations
Giacomo Boracchi, Diego Carrera, Brendt Wohlberg

Principle 3 lifting to patches followed by sparse analysis of the normal data

We consider two different formulations of sparse coding.
namely the estimation of a sparse representation for a specific Here we adopt instead a bivariate anomaly indicator, thus
patch s, with respect to a given dictionary D: jointly accounting for both the reconstruction error and the
sparsity of the approximation given by D. In particular, given
a patch s.. we compute the sparse coding X.; solving the

The unconstrained problem )
BPDN (4) problem, and we define the vector

.

Xe1 = aigggfﬂ Ja(x,D.s.), (4) g(se) = [IDxc1 — sella, [1%c11l1], (8)

. . - as the bivariate anomaly indicator.
where the Jy(-) is a convex loss function defined as ’

When the bivariate indicator (8) 1s used, we can build a

. 1 - hen tf |
Jnx,D,s.) = E||]::|15.r,: — 5.-:”% + Al|x||1, (5)  two-dimensional region [24]
: N _ ) 2, : 14 R -
and A > 0 is a regularization parameter that balances Ry = {G‘J e R : \/(':D —p)TE N —p) < ,} (12)

the [‘ECG[]S[[‘LLCI]DHI crror ”DK N 5'3”%‘ and the Sparsity where g and X are the expectation and the covariance matrix
|x[|1 of the solution measured by the £' norm. There o F, respectively, and - is a suitably chosen threshold. Then,
are a number of methods for solving this Basis Pursuit  a patch s, is considered anomalous when it does not belong
DeNoising (BPDN) [20] problem, including Alternat- to R. ie.
ing Direction Method of Multipliers (ADMM) [21].

V&) — TS (g(s) — ) > 5. (13)



Original

Bivariate

LV, ey

" ﬂ"\ . ‘:"’;l \
"‘3%742‘5 G :..Ib,

SO V)
PN ," Ta
’ ~v &" 3 a-"'~ b QT
DTS I
TN SE AN R R,
\,;' v, "" Afl} ".?’lb"#. v..‘ é '.‘v.‘
X TR AR RN
00 G0 B e
VA ey A MG AR ey
Vit cs Wi
by b ’b‘" 20 é."-: ‘,la.‘>
\J’ “"r 4 Y bR

-
_—
2
v
/\\
Jot'
"

Q.-'.X“'-‘-:. A

Z
e
PR

Wt
ohat
4
o

-yt
"
o

X

-~

P ’

: 1

] ™ - - 4
ot KA i

o T, Y Wy
’/Zéﬁ”\v\/"ﬂ P
‘\’-’“’t\”, - s mepirs et
N o AL AT '.&”J. S
S R e
T AR PR S B PN
RO KA S 7t TR
TATIINT W A ; e W
BRPRIRPAL RERRCOCIA P

LTI W

-
-~ L e

_"'

Image 2

R T R TR T R T Y T &

S £ TR Y SN e
\\.\",-A"""“‘_ I‘\" ". q.l A ‘.‘1).' —
\Ohy Q?[.’u}.?’“"h}‘i‘;’fa’., T b

N
. >
-4
s
)
¥

& ¥
/I"«) R ""\‘ 3 ";I/"-‘ y :’ “a
‘ B s A i'-‘g_ s e S (VTR B .f, /&‘!;“f"a,’
gL ja.@,.'}.:s} Pt REA I T R ADRE I
- Py B N R ) N T N
bt LA o T # N a L (A% TN 7, ._‘?r
. f) ’ % o ‘
=/ (] A
A ! 4 '.5
- T N AP
% - A
LY 2,7
J‘d A ‘\'bc‘-'
e 2%
(¥ )
"!::- ! is: A5
;\ )‘:; ;5 ) ’F""
) N 1

NS T P>
1 AL WS Ay T8 et B AN P P P A e T
,{;‘/' I ety 2 ;'E\‘a;'-’?’l-'wh?'f’:q-.'s-.a‘_; .,z*s:?f.g;,,;‘p‘q‘;:!

v"“ ‘\"‘n\\." "- v - ] 2wl il Y
S A e IR e e

Y/ X PN Y L ‘(!; e ,'-"l'... /e AN
A Yo NN S N T g e
5/,"'[.\'_,"‘-\"‘ Ry -,,u‘,_;_.,g.ﬁ;-;,(/ 'Q‘ir’:*"’
Lrra N, (\‘,.-J.;;. *“t‘\'-‘g &-‘r-", X ;%-,\ b‘i’g‘gﬂ A
SRy RV | BT ) B P R WX
:;;‘;."6“\: 27 ‘.'.'\',s.:"" ,.‘:2"1 I:"" '.3 ”.i"“‘:‘.} ‘““;‘.’qée/‘? \
i : NS g il S N

“I“.g-
74
Q5
~ L 1"

4T
7,
N
A
=
2
RNy
LLATY
2
27
7]
-
s
A
\/
’.K
35
G
=
\4
i

&
e
AV
oY
.4‘ \
D e

: " Ko e ¢ Mt 2
N, R S A7 D PPV B
S N S s A NS A s
!.3-4_:* v s e v AN s e (§ MIVT g LN N8
Rl e U B D R A S A B
3;‘3-?"'-’;'5" S ¢ '-“"-\_.’.'“("‘l;‘«7'9&:5.-‘“" A
t i'ff;':ﬂm &: 4 \;‘?ﬁ-'ﬂ‘“" A {.ﬁgkﬂfi‘:’f“'?‘ ;
TN ",n“"“'£§"€'§§"s ) ‘%";‘.P"@r&.,‘*" N
fa f : A

L A
It o)

B
[N
wa-
—
oy
AN/
oy
-

B

Clot detection in nanofibers

Novelty Detection in Images by Sparse Representations
Giacomo Boracchi, Diego Carrera, Brendt Wohlberg
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What Makes a Patch Distinct?
Ran Margolin Ayellet Tal Lihi Zelnik-Manor

Principle 3 again : sparsity, dimension reduction

Principle 4: locality of detection (image patches)

Mathematically, this boils down to calculating the L,
norm of p, in PCA coordinates. Thus, pattern distinctness

P(p;) is defined as:

P(}UI) — ||ﬁ1‘||la (2)

where py, is p;'s coordinates in the PCA coordinate system.

We seek regions that are salient in both color and pat-
tern. Therefore, to integrate color and pattern distinctness
we simply take the product of the two:

D(pz) = P(pz) - C(pz)- (4)

This map is normalized to the range [0, 1].

u
K

To take these observations under consideration, we do
the following. We start by detecting the clusters of dis-
tinct pixels by iteratively thresholding the distinctness map
D(p,) using 10 regularly spaced thresholds between 0 and
1. We compute the center-of-mass of each threshold result
and place a Gaussian with & = 10000 at its location. We as-
sociate with each of these Gaussians an importance weight,

corresponding to its threshold value. In addition, to accom-
modate for the center prior, we further add a Gaussian at the
center of the image with an associated weight of 5. We then
generate a weight map G(p;) that is the weighted sum of
all the Gaussians.

Our final saliency map S(p,) is a simple product be-
tween the distinctness map and the Gaussian weight map:

S(pz) = G(pz) - D(pz). (3)



(b) Pattern (c) Color (d) Pattern (e) Organization (f) Final

distinctness distinctness & Color priors saliency
Figure 8. Combining the three considerations is essential: Given an input image (a), we compute for each pixel its pattern distinctness
(b) and its color distinctness (c). The two distinctness maps are combined (d) and then integrated with priors of image organization (e), to
obtain our final saliency results in (f). As can be seen, the final saliency maps are more accurate than each of the components.



Principle 5: Control the number of tests (otherwise you will see « crabs on Mars »)

Journey to the Surface of the MARS




Principle 6 : evaluate the model by variational method (involving SPARSITY and NOISE)

SCALE-INVARIANT ANOMALY DETECTION WITH MULTISCALE GROUP-SPARSE MODELS
Diego Carrera Giacomo Boracchi Alessandro Foi Brendt Wohlberg ICIP 2016

For simplicity, in the following we illustrate the proposed solution assuming a single training image s is
provided, even though multiple training images can be easily handled. Our solution is based on a
dictionary D which is able to approximate any patch taken from an anomaly-free image as s=Dx;
where the coefficients vector x sparse, i.e. has few nonzero or non-negligible components. The
dictionary D_i where i corresponds to various scales is learnt by

D; :mgmininﬂ—ﬂxﬁ + X (2)
D.x 2
Given the dictionary the best estimate of a patch x is given by

L
. 1 2 -
% = argmin 3 [|s = Dx[3 + Allxll, + €3 Ixl; - )

i=1
Where the last term is to force the decomposition to choose few scales.

Principle 7 : Define confidence regions or intervals for the « normal » patches

To detect whether a patch s is normal or anomalous, we build a Gaussian confidence region R
from the three values of the terms in (5) computed from the normal patches in the training set:

Ry = {:::514;3 : J(Q—E}’E_I[ﬁf’—gj”ﬂ?‘}~ (7)



Learned Filters Training Image W& TAS - L&

“H BB
iR v =

SCALE-INVARIANT ANOMALY
DETECTION WITH MULTISCALE
GROUP-SPARSE MODELS

Diego Carrera Giacomo Boracchi
Alessandro Foi Brendt Wohlberg
ICIP 2016

Fig. 4: Example of anomaly-detection performance for the
Convolutional Group algorithm. Any detection (red pixels) on
the left half represents a false positive, while any detection on
the right half a true positive. The ideal anomaly detector would
here detect all the points in the left half and none on the right
half. Patches across the vertical boundary are not considered
in the anomaly detection to avoid artifacts. As shown in the
highlighted regions, most of false positives in this example are
due to structure that do not conform to the normal 1image in
Figure 2(a).



Our general anomaly detection tool



Thibaud
Ehret’s
facility:
testing all
methods
online

. IPOL Journal - Image Processing On Line

HOME - ABOUT - ARTICLES - PREPRINTS -

Novelty filter based on self-similarity

article ‘ demo | archive

WORKSHOPS - NEWS - SEARCH

Please cite the reference article if you publish results obtained with this onling demo.

Select input(s) [-]
Upload data  Thumbnail size 128 v | px [credits (titles

{— Input(s) [-] T — Param [-]
Size of patches 8
Number of patches for the search 16
Similarity parameter 0
Rank 4
Coefficient for type 1 detection 3 |
Coefficient for type 2 detection 3
Same images U
Type of search Local ® Global
/By average
_'By projection on subspace
Type of reconstruction /By projection on cone
'® By Bayesian reconstruction
' By weighted average




Building the image model
(the parameter values are realistic examples)

e Decompose the image u into all of its 8 x 8 patches P

e Find for each patch P the 16 most similar patches P;, ¢ = 1,...,16 (located
elsewhere in the image)

e Find the best estimate of P from the F; according to one of :

1. Mean

2. Mean weighted by kernel-type distance

3. Projection of P on Span(/Fy,---, P

4. sparse Projection of P on the positive cone generated by P, -+, Pg
5. Bayesian estimate of PP given the P, and a "noise” standard deviation

e Reconstruct an normal image model @ by aggregating all patch estimates (a
simple mean)

e Compute the difference containing noise + anomalies N ;=1 —u



Type 1 Anomaly detection

e Compute the standard deviation o of the noise difference N := u —u. It will
be treated as white noise in the a contrario model

e Detect all exceptional pixels z, such that P(N(z)) > so, (s=4)
e For k£ € N find all 4-connected components with £ exceptional pixels

e Compute the Number of false alarms of the exceptional connected com-

ponent,
NFA(k,s) := N(k).P(N(z) > so)*

Desolneux, Agnes, Lionel Moisan, and Jean-Michel Morel. From gestalt theory to image analysis: a
probabilistic approach. Vol. 34. Springer Science & Business Media, 2007.



NFA(k,s) = N(k).P(N(z) > so)*

N(k)= number of k polyominos

Polyominos are 4-connected unions of square on regular grid. No
closed form seems available for the number of polyominos of size n.
In 2004, Iwan Jensen computed the number of fixed size polynomials
up to n =56 : For n=56, this number of approximately 6,915x103!.

B JIL R
T o o e 9 PP L



https://fr.wikipedia.org/wiki/2004

Type 2 Anomaly detection

e Take the difference image N = 1 — u where u is the estimated image model. N
should be white noise.

e Compute the standard deviation o of N
e Detect all exceptional pixels -, such that P(N(x)) > so, (s=4)

e For each square window W with size n (e.g. n = 169); count the number k of
exceptional pixels in W

e Compute the Number of false alarms of the exceptional square window,

NFA(k,s):=n' ( g ) P(N(zx) > so)*. (n' is the number of tested regions)

T

Desolneux, Agnes, Lionel Moisan, and Jean-Michel Morel. From gestalt theory to image analysis: a
probabilistic approach. Vol. 34. Springer Science & Business Media, 2007.
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Necessity of multiscal detection: side scan sonar detection, only at scale 2

Single image, patch based detection. Example from:
MULTISCALE ANOMALY DETECTION USING DIFFUSION MAPS AND SALIENCY SCORE
Gal Mishne and Israel Cohen



A challenging

| |’ | i WE # Al ] example:
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.-1;;13.;!: 1l il B RN | weighted
B Sk TGRS TN 00 A0 AW [EE TR BRI D G R average
— Param [-
reset
Size of patches 1
Number of patches for the 1
search

Similarity parameter
Rank 1000
Coefficient for type 1 detection
Coefficient for type 2 detection

Same images

Type of search (Local ® Global

By average

QBy projection on subspace
Type of reconstruction (By projection on cone

QBy Bayesian reconstruction
(® By weighted average




A challenging
example:
weighted
average

Size of patches

Number of patches for the
search

Similarity parameter
Rank
Coefficient for type 1 detection

Coefficient for type 2 detection

Same images
Type of search

Type of reconstruction

1
1

1000

4
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o
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(By projection on subspace
(By projection on cone

(' By Bayesian reconstruction
® By weighted average




A challenging
example:
weighted
average

Size of patches

Number of patches for the
search
Similarity parameter

Rank
Coefficient for type 1 detection

Coefficient for type 2 detection

Same images
Type of search

Type of reconstruction

16
16

1000

Local '® Global

By average

By projection on subspace

By projection on cone

By Bayesian reconstruction
® By weighted average




A challenging
example:
weighted
average

Size of patches

Number of patches for the
search

Similarity parameter
Rank
Coefficient for type 1 detection

Coefficient for type 2 detection

Same images
Type of search

Type of reconstruction

1
1

1000

Local ® Global

By average

(By projection on subspace
(By projection on cone

(' By Bayesian reconstruction
® By weighted average




A challenging

| |’ | i WE # Al ] example:
i :.:"‘ ' i K 3 ‘ -' °
.-1;;13.;!: 1l il B RN | weighted
B Sk TGRS TN 00 A0 AW [EE TR BRI D G R average
— Param [-
reset
Size of patches 1
Number of patches for the 1
search

Similarity parameter
Rank 1000
Coefficient for type 1 detection
Coefficient for type 2 detection

Same images

Type of search (Local ® Global

By average

QBy projection on subspace
Type of reconstruction (By projection on cone

QBy Bayesian reconstruction
(® By weighted average




A challenging
example:
projection on
cone (sparse
model
decomposition)

Size of patches
Number of patches for the search
Similarity parameter

Rank

1NN

Coefficient for type 1 detection

Coefficient for type 2 detection |4
I
Same images v
Type of search Local ®Global
By average
QB\; projection on subspace
Type of reconstruction '® By projection on cone

QBy Bayesian reconstruction
By weighted average



A challenging

example:

projection on

cone

Size of patches

Number of patches for the search
Similarity parameter

Rank

Coefficient for type 1 detection

Coefficient for type 2 detection

Same images
Type of search

Type of reconstruction

1NN

:

'Local ®Global

By average

By projection on subspace
® By projection on cone
By Bayesian reconstruction
By weighted average



A challenging

example:

projection on

cone

Size of patches

Number of patches for the search
Similarity parameter

Rank

Coefficient for type 1 detection

Coefficient for type 2 detection

Same images
Type of search

Type of reconstruction

1NN

:

'Local ®Global

By average

By projection on subspace
® By projection on cone
By Bayesian reconstruction
By weighted average



A challenging
example:
weigthed
average

Size of patches

Number of patches for the
search

Similarity parameter
Rank
Coefficient for type 1 detection

Coefficient for type 2 detection

Same images
Type of search

Type of reconstruction

1
1

1000

Local ® Global

By average

(By projection on subspace
(By projection on cone

(' By Bayesian reconstruction
® By weighted average




Bayesian

Gaussian

detection
Size of patches 8
Number of patches for the 30
search
Similarity parameter 0
Rank 2]
Coefficient for type 1 detection |4
Coefficient for type 2 detection |4

Same images @
Type of search (Local ® Global
By average
By projection on subspace
Type of reconstruction By projection on cone
® By Bayesian reconstruction
By weighted average



Bayesian

Gaussian

detection
Size of patches 8
Number of patches for the 30
search
Similarity parameter 0
Rank 2]
Coefficient for type 1 detection |4
Coefficient for type 2 detection |4

Raad, L., Desolneux, A., & Morel, J. M. (2015). Conditional
Gaussian models for texture synthesis. ICSS-VM-CV

Same images @
Type of search (Local ® Global
By average
By projection on subspace
Type of reconstruction By projection on cone
® By Bayesian reconstruction
By weighted average



Bayesian

Gaussian
detection
Size of patches 8
Number of patches for the 30
search
Similarity parameter 0
Rank 8
Coefficient for type 1 detection |4
Coefficient for type 2 detection |4
Same images 4
Type of search Local '® Global
By average
By projection on subspace
Type of reconstruction By projection on cone

® By Bayesian reconstruction
By weighted average



Bayesian

Gaussian
detection
Size of patches 8
Number of patches for the 30
search
Similarity parameter 0
Rank 8
Coefficient for type 1 detection |4
Coefficient for type 2 detection |4
Same images
Type of search (Local ® Global
By average
By projection on subspace
Type of reconstruction By projection on cone

® By Bayesian reconstruction
By weighted average



Bayesian
Gaussian
detection

Size of patches 8

Number of patches for the
search

Similarity parameter

Rank

Coefficient for type 1 detection

Coefficient for type 2 detection

& bk 2 o O

Same images
Type of search (Local ® Global

By average

By projection on subspace
Type of reconstruction By projection on cone

® By Bayesian reconstruction

By weighted average



Bayesian

Gaussian
detection
Size of patches 8
Number of patches for the 30
search
Similarity parameter 0
Rank 8
Coefficient for type 1 detection |4
Coefficient for type 2 detection |4
Same images 4
Type of search Local '® Global
By average
By projection on subspace
Type of reconstruction By projection on cone

® By Bayesian reconstruction
By weighted average



Bayesian

Gaussian
detection
Size of patches 8
Number of patches for the 30
search
Similarity parameter 0
Rank 8
Coefficient for type 1 detection |4
Coefficient for type 2 detection |4
Same images
Type of search (Local ® Global
By average
By projection on subspace
Type of reconstruction By projection on cone

® By Bayesian reconstruction
By weighted average















Original Modeéle Différence Détection

Thank you!
Questions?

FIGURE 10 — Détections grace au détecteur d’anomalies sur des images de fis-
sures trouvées sur internet






Four features retained :

» inter-channel image movement : application of an
algorithm (optical flow) on each pairs of channels of an

image, giving a dense displacement map;

» image texture characterization : usage of a robust (to

noise, blur, contrast changes) descriptor (SIF

— scale

invariant feature transform), describing the spatial gradient

distribution in the neighborhood of a keypoint;

» inter-image emergence : usage of a novelty filter
highlighting differences of a given image regarding the set of

other images;

» image brightness : comparision of the luminance levels in the
aeras not yet suspected to be clouds by the 3 others criteria.



Detection theory

For each of the four features, we learn the distribution of the
features when no cloud is present, and with the NFA (Number of
False Alarms) statistical test, we compare the answers of the
features to the modelled distributions, and combine them to create

the cloud mask.



Detection theory
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Detection theory
Given Yi.....Y, Past images, and Z current image.

Basic Novelty filters : Look at the residual after projection on
the space of previous images (usually using PCA to limit the space
dimension when you have more images than dimensions).

n
minimize HZ—ZXJ'YIHQ
- i=1

The noveltyis R=2 -5 xY;

Problem : small artifacts can be used to “explain” novelties.



Detection theory

n
minimize  |[Z =) x Y[
, i=1

subject to x; > 0/ € [|1, nl].

— The quality of the novelty images is improved significantly !



Detecting Anomalous Structures by Convolutional Sparse Models
Diego Carrera, Giacomo Boracchi, Alessandro Foi, Brendt Wohlberg

Dictionary learning is formulated as the following optimization
problem

M M
1
arg min — E dn*lm—Sn + A E [zmlly -
{dm} {zm} 2 m=1 m=1 )

mE{l,...,ﬂI}z

where {d,,} and {x,,} denote the collections of M filters and
coefficient maps, respectively.

subject to ||dm|l, =1,

The indicator based on the high frequency components of
the image 1s defined as

ITLe (s = 3, i 5 ) |
gh(ﬂ) = Zm, ||HCIIH||1 1 (QJ'
2 m I

c'-{-'m”g

2) Sparse Coding: The computation of coefficient maps
{xy, } of an input image s; with respect to a dictionary {d,, }
is referred to as sparse coding, and consists in solving the
following optimization problem [2]:

p)
mﬂmm— de ¥ T — Sh —I—/\Z||;L'm||1, (7)
{Tm } :

where filters {d,,} were previously learned from (4).

3) Detecting Anomalous Patches: We treat indicators as
random vectors and detect as anomalous all the patches yield-
ing indicators that can be considered outhliers. Therefore, we
build a confidence region R, around the mean vector [20] for
normal patches, namely:

RT:{MRE : \/{é—E}TE_l(qﬁ—E)Eﬁ}, (12)

where g and X denote the sample mean and sample covariance
matrix of indicators extracted from normal images in T, and
~ > 0 is a suitably chosen threshold. R, represents an high-
density regions for indicators extracted from normal patches,



Detection theory

Given the fact that we can never train a machine learning system on all possible object classes whose data the system is likely to encounter, it
becomes important that it is able to differentiate between known and unknown object information during testing. It has been realised in
practice by several studies that the novelty detection is an extremely challenging task. . (Novelty detection: a review—part 1: statistical
approaches Markos Markou, Sameer Singh)

An assumption is made that the abnormalities are uniformly distributed outside the boundaries of normality. The description of normality is
made using the unconditional probability density estimation of the training data. If a test vector falls in a region of input space with a density
under a pre-determined threshold then the test vector is considered to be novel. (L. Tarassenko, Novelty detection for the identification

of masses in mammograms, Proceedings of the 4th IEE International Conference on Artificial Neural Networks, Vol. 4, Cambridge, UK, 1995, pp.
442-447.

A hyper-sphere is drawn to separate known regions from unknown regions. Novel objects should ideally fall outside this hypersphere. An
appropriate threshold separates known from new test objects. (L. Parra, G. Deco, S. Miesbach, Statistical independence and novelty detection
with information preserving non-linear maps, Neural Comput. 8 (2) (1995) 260-269.

The nearest neighbor method: The distance of the new object and its nearest neighbour in the training set is found and the distance of this
nearest neighbour and its nearest neighbour in the training set is also found. The quotient between the first and the second distance is taken as
indication of the novelty of the object. ( D.M.J. Tax, R.P.W. Duin, Outlier detection using classifier instability, in: Advances in Pattern Recognition,
the Joint IAPR International Workshops, Sydney, Australia, 1998, pp. 593—601.) See also David Lowe, SIFT method.

In this paper we have presented a survey of novelty detection using statistical approaches. Most of such research is driven by modelling data
distributions and then estimating the probability of test data to belong to such distributions. In such model-based approaches, one does need
to specify or make assumptions on the nature of training data. In addition, the amount and quality of training data becomes very important in
the robust determination of training data distribution parameters. (Novelty detection: a review—part 1: statistical approaches Markos Markou,
Sameer Singh)



Anomaly detection based on an iterative

local statistics approach

Arnon Goldman, Israel Cohen Signal Processing 2004

Let u= Ela;|Hnl
denote the expected feature vector and 2 = E[(gq; —

1)(q; — w)'|Hy] the covariance matrix under H,
hypothesis. Let the normalized distance of g; from its
expected vector, u, be defined by

d(q;)=(q; — W' 27 (q; — p). (3)

Then the decision rule is given by
d(q;)2 D, (4)

where D is the threshold to determine whether a given
pixel is anomalous or not. This decision rule is based
on the statistics of the background only. No knowl-

edge about the anomalies statistics is taken into con-
sideration. The threshold, D, can be determined ac-
cording to a specified confidence level, 1, which is
the probability of correctly deciding on H, given H,
is true. The threshold, D, and the confidence level, #,
are related by

n = Pr(Ho|Ho) = Pr(d(g;:) < D|Hp). (5)

In case the feature vector, ¢;, is a Gaussian random
vector of dimension n, the pdf of d*(g; ) under the H,
hypothesis, denoted by p;2((), is the gamma density
function with parameters f =n/2 — 1 and o« = 1/2
[5]. Accordingly, the relation between n and D can be
written as

DJ
1= [ pe
0

1 VDt 1w
,(H 2]26 ':.Edl;‘

b
_/D 2721 (n/2) °

(6)

This is a clear cut hypothesis testing framework, but the authors do not take into account the number of tests they are

making, which may well explain their overdetection. Their probably incorrect interpretation is that their decision rule is not

sufficient. Thus they iterate several times the division between background and foreground, each time reestimating the

covariance matrix for the background.



DETECTION OF ANOMALIES IN TEXTURES BASED ON MULTI-RESOLUTION FEATURES

Lior Shadhan and Israel Cohen 2006

Compared to the preceding reference, the main difference is the way the descriptor is built.

Let {y;(s)},_, ,, denote the jth layer wavelet
coefficients obtained from the mean normalized 1image ob-
servations y(s) using a RDWT with (m — 1)/3 levels. Let
{tj(8)};—1 _, denote the logarithm of the GSM hidden

multipliers estimate, given by:

3
Rl (3)

where R denotes a given set of indices representing the
N > N local neighborhood of a pixel. Let {v;(s)},_;

. ]
denote the proposed feature space, given by:
> ti(s+r)
I‘Eﬁ.g .
vi(8) = ; +
J[: :} er2| : (<)

where Ro denotes a given set of indices represent-
ing the M x M local neighborhood of a pixel. Let
v(s) = [v1(s), va(s), ..., vm(s)]" denote the feature vector
representing pixel s € (2. Let py and peq denote the ex-

pectancy of the random feature vector v(s) under hypothe-
ses Hy and Hy respectively. Let 2y and ¥, denote the co-
variance matrix of the random feature vector v(s) under hy-
potheses Hy and Hy respectively. Following the assumption
that the anomalous targets are rare and can be regarded as
transients:

{:‘-ﬂ ~ E[v(s)]

. N 3)

S0 = B |(v(s) — o) (v(s) — )] .

The Mahalanobis distance for pixel s € €2 is then given by:
d(s) = (v(s) — po)" By (V(s) — Ho) - (6)

Following the SHT scheme. the decision rule for pixel s € (1
is defined as follows:

H
d(s) Z m, (7)
Hy

where 7 is the threshold that determines if a given pixel s € {2
is regarded as an anomaly or background clutter. This deci-



The feature vec-
tor v(s) is a linear combination of Gaussian random vectors
with dimension m [10, 11] and as such. it 1s also a Gaussian
random vector. Since the covariance matrix g is a positive
definite matrix, equation (6) can be formulated as follows:

d(s) = z(s)" z(s), (8)

A o—1/2 . :
where z(s) = X, ' (v(s) — pty). The random vector z(s)
1s distributed according to:

E(E’”H{] ~N {D I} ;

A (s—1/2 _ (9)
z(s)|m, ~ N (E{] iy _H-u}szulzl)-

As such, the Mahalanobis distance under hypothesis Hy, is
chi-square distributed with m degrees of freedom. regardless
of the background clutter:

d(SHHn ~ X?n({])-

The false alarm. as formulated in equation (2) is then given
by:

-

(10)

Pra=1—p(xn(0)<n). (11)

The fact that the feature vector v(s) would be a Gaussian
vector is surprising. Again in this paper the authors neglect
the fact that they are doing multiple testing. They compute a
probability of false alarms by reducing the test on a Gaussian
test to a Chi2 test.



Algorithm 1 Defect Detection using NL-means estimation

-

1: {s - pixel index, f - source image, [ - reconstructed source image }
2: foralls € f do
3: P <= construct a patch of size [sy x §y] around pixel s

4. i< 1

5: {r - pixel index. frr - reference image, N5- search region neigh-
borhood of s}

6: forallr e N5 do

71 P! < construct a patch of size [s, x sy] around pixel r

8 Wi <= exp{—w} { p - a distance metric}

0: i<=i+1
10: 151,1: = E,-"l'ﬂlv’!'E
11: if Sy = 0 then
12: for all i do

13: W'<=0

14:  else

15: for allido
- o W

16: W' <= Sy

17: IE'_.; =" Plf {source image patch estimation using reference
neighboring patches}

18: D(s) « | .'5,,- — F||» {difference image value at pixel s calcula-
tion } |

19:  f(s) < ZyiW' - frer(Ti)

20: if f(s) = 0 then

21: s € A {.Ais a set of defect regions }

Defect detection in patterned wafers using anisotropic

kernels

Maria Zontak - Israel Cohen

This paper has similar aspects to what we are doing, but so
confusing that | rubbed my eyes. The idea is to apply NL-
means to all patches of the source image, NL-means being
computed with respect to a reference image which is not
itself anomalous. Here the NL-means parameter
S\epsilon$ is crucial, because the threshold is on the sum of
weights: if this sum is too small, then the patch is not
reconstructed and detected as an anomaly. Thus S\epsilon$
is fixed just large enough so that any patch in the reference
image can be reconstructed with non-zero weights. But if
one thinks about it, one is led to the conclusion that the
algorithm can be summarized much more simply as: a) fix a
similarity threshold learned in the reference image and b)
compare each patch of the source image to the patches of
the reference; if the distance is higher than the similarity
threshold, then the patch is an anomaly.



RARE2012: a multi-scale rarity-based saliency detection with
Its comparative statistical analysis

Rather than detailling the method, which is not stated in a very reproducible way, | describe the the principle. The idea
is to build a saliency map based on rarity. To do so, at each point some 32 multiscale orientation features are computed
using Gabor functions. But the most contrasted channels are privileged by a weight for reconstructing a unique
orientation channel for each orientation. Then the histograms of these channels are computed and a pixel is given a
weight which is roughty inversely proportional to its rarity in the histogram. The same idea is applied to the colors after
PCA. Then summing all of these saliency maps one obtains something similar to what is observed with gaze trackers:
the salient regions are the most visited. We could do the same directly by comparing a patch to all other patches and
weighting inversely the patches that are less similar.
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Figure 2: Illustration of the rarity mechanism on a single scale. Rarity function (green curve in the middle graph) is
computed from a histogram (blue curve) of a feature map (left image) to a given scale. This process is repeated at several
scales. Output is a reconstruction of the map where high values are given for the most “rare™ areas (right image).



Exploiting Local and Global Patch Rarities for Saliency
Detection Ali Borji Laurent Itti

We introduce a saliency model based on two key ideas.
The first one is considering local and global image patch
rarities as two complementary processes. The second
one is based on our observation that for different
images, oneof the RGB and Lab color spaces
outperforms the other in saliency detection. We propose
a framework that measures patch rarities in each color
space and combines them in a final map. For each color
channel, first, the input image is partitioned into non-
overlapping patches and then each patch is represented
by a vector of coefficients that linearly reconstruct it from
a learned dictionary of patches from natural scenes.
Next, two measures of saliency (Local and Global) are
calculated and fused to indicate saliency of each patch.
Local saliency is distinctiveness of a patch from its
surrounding patches. Global saliency is the inverse of a
patch’s probability of happening over the entire image.
The final saliency map is built by normalizing and fusing
local and global saliency maps of all channels from both
color systems.
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Figure 2. Diagram of our proposed model. First, the input image is
transformed into Lab and RGB formats. Then, in each channel of a color
space, a global saliency map based on rarity of an image patch in the entire
scene, and a local saliency map, the dissimilarity between a patch and its
surrounding window, are computed, normalized, and combined. Outputs
of color channels (i.e.. L, a, or b, similarly for RGB) are normalized and

combined once more to form the output of a color system. The final map
is the summation of the normalized maps in two color spaces.




