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Novelty detection is the task of classifying test data that differ in some respect from the data that 

are available during “training”.This may be seen as “one-class classification”, in which a model is 

constructed to describe “normal” data.The novelty detection approach is necessary because the 

quantity of available “abnormal” data is insufficient to construct explicit models for non-normal 
classes.  In fact novelty detection occurs even in a single image.



This problem then encompasses all methods for estimating a probability density

from samples! This is for the « normal » data. The next question is: how far the 

anomaly is it from being normal? how to decide that it is anomalous?
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Some 1500 references on 
anomaly/fault/outlier detection…
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Detection principles illustrated by a few 
classic methods



MULTISCALE ANOMALY DETECTION USING DIFFUSION MAPS AND SALIENCY SCORE

Gal Mishne and Israel Cohen    

Principles 1 and 2: dimension reduction and multiscale detection

A multiscale approach to anomaly detection in images, combining diffusion maps for dimensionality 

reduction and a nearest-neighbor-based anomaly score in the reduced dimension. 





Novelty Detection in Images by Sparse Representations
Giacomo Boracchi, Diego Carrera, Brendt Wohlberg

Principle 3 lifting to patches followed by sparse analysis of the normal data



Clot detection in nanofibers 
Novelty Detection in Images by Sparse Representations
Giacomo Boracchi, Diego Carrera, Brendt Wohlberg



What Makes a Patch Distinct?
Ran Margolin Ayellet Tal Lihi Zelnik-Manor

Principle 3 again : sparsity, dimension reduction

Principle 4: locality of detection (image patches)





Principle 5:  Control the number of tests (otherwise you will see « crabs on Mars »)



SCALE-INVARIANT ANOMALY DETECTION WITH MULTISCALE GROUP-SPARSE MODELS

Diego Carrera Giacomo Boracchi Alessandro Foi Brendt Wohlberg ICIP 2016

For simplicity, in the following we illustrate the proposed solution assuming a single training image s is 

provided, even though multiple training images can be easily handled. Our solution is based on a 

dictionary D which is able to approximate any patch taken from an anomaly-free image as s=Dx; 

where the coefficients vector x sparse, i.e. has few nonzero or non-negligible components.  The 

dictionary D_i where i corresponds to various scales is learnt by 

Given the dictionary the best estimate of a patch x is given by  

Where  the last term is  to force the decomposition to choose few scales.    

To detect whether a patch s is normal or anomalous, we build a Gaussian confidence region R

from the three values of the terms in (5) computed from the normal patches in the training set:

Principle 6 : evaluate the model  by variational method (involving SPARSITY and NOISE)

Principle 7 : Define confidence regions or intervals for the « normal » patches



SCALE-INVARIANT ANOMALY 

DETECTION WITH MULTISCALE 

GROUP-SPARSE MODELS

Diego Carrera Giacomo Boracchi

Alessandro Foi Brendt Wohlberg

ICIP 2016



Our general anomaly detection tool



Thibaud  
Ehret’s
facility: 
testing all 
methods
online 





Desolneux, Agnes, Lionel Moisan, and Jean-Michel Morel. From gestalt theory to image analysis: a 

probabilistic approach. Vol. 34. Springer Science & Business Media, 2007.



N(k)= number of k polyominos
Polyominos are 4-connected unions of square on regular grid.  No 
closed form seems available for the number of polyominos of size n. 
In 2004, Iwan Jensen computed the number of fixed size polynomials 
up to n = 56 : For n=56, this number of approximately 6,915×1031.

https://fr.wikipedia.org/wiki/2004


Desolneux, Agnes, Lionel Moisan, and Jean-Michel Morel. From gestalt theory to image analysis: a 

probabilistic approach. Vol. 34. Springer Science & Business Media, 2007.



Sanity check: very minor detections here

With Bayesian model building:

Raad, L., Desolneux, A., & Morel, J. M. (2015). Conditional 

Gaussian models for texture synthesis. ICSS-VM-CV



Necessity of multiscal detection: side scan sonar detection, only at scale 2

Single image, patch based detection. Example from:

MULTISCALE ANOMALY DETECTION USING DIFFUSION MAPS AND SALIENCY SCORE

Gal Mishne and Israel Cohen    



A challenging
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average
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A challenging
example: 
projection on 
cone (sparse
model 
decomposition)
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A challenging
example: 
weigthed
average



Bayesian
Gaussian
detection



Bayesian
Gaussian
detection

Raad, L., Desolneux, A., & Morel, J. M. (2015). Conditional 

Gaussian models for texture synthesis. ICSS-VM-CV
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Thank you!   
Questions? 
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Detecting Anomalous Structures by Convolutional Sparse Models
Diego Carrera, Giacomo Boracchi, Alessandro Foi, Brendt Wohlberg



Detection theory

Given the fact that we can never train a machine learning system on all possible object classes whose data the system is likely to encounter, it 
becomes important that it is able to differentiate between known and unknown object information during testing. It has been realised in 
practice by several studies that the novelty detection is an extremely challenging task. . (Novelty detection: a review—part 1: statistical 
approaches Markos Markou, Sameer Singh)

An assumption is made that the abnormalities are uniformly distributed outside the boundaries of normality. The description of normality is 
made using the unconditional probability density estimation of the training data. If a test vector falls in a region of input space with a density 
under a pre-determined threshold then the test vector is considered to be novel. (L. Tarassenko, Novelty detection for the identification
of masses in mammograms, Proceedings of the 4th IEE International Conference on Artificial Neural Networks, Vol. 4, Cambridge, UK, 1995, pp. 
442–447.

A hyper-sphere is drawn to separate known regions from unknown regions. Novel objects should ideally fall outside this hypersphere. An 
appropriate threshold separates known from new test objects. (L. Parra, G. Deco, S. Miesbach, Statistical independence and novelty detection 
with information preserving non-linear maps, Neural Comput. 8 (2) (1995) 260–269.

The nearest neighbor method: The distance of the new object and its nearest neighbour in the training set is found and the distance of this 
nearest neighbour and its nearest neighbour in the training set is also found. The quotient between the first and the second distance is taken as 
indication of the novelty of the object. ( D.M.J. Tax, R.P.W. Duin, Outlier detection using classifier instability, in: Advances in Pattern Recognition, 
the Joint IAPR International Workshops, Sydney, Australia, 1998, pp. 593–601.)   See also David Lowe, SIFT method.

In this paper we have presented a survey of novelty detection using statistical approaches. Most of such research is driven by modelling data 
distributions and then estimating the probability of test data to belong to such distributions. In such model-based approaches, one does need 
to specify or make assumptions on the nature of training data. In addition, the amount and quality of training data becomes very important in 
the robust determination of training data distribution parameters. (Novelty detection: a review—part 1: statistical approaches Markos Markou, 
Sameer Singh)



Anomaly detection based on an iterative

local statistics approach
Arnon Goldman, Israel Cohen Signal Processing 2004

This is a clear cut hypothesis testing framework, but the authors do not take into account the number of tests they are 
making, which may well explain their overdetection. Their probably incorrect interpretation is that their decision rule is not 
sufficient. Thus they iterate several times the division between background and foreground, each time reestimating the 
covariance matrix for the background.



DETECTION OF ANOMALIES IN TEXTURES BASED ON MULTI-RESOLUTION FEATURES 
Lior Shadhan and Israel Cohen   2006

Compared to the preceding reference, the main difference is the way the descriptor is built.



The fact that the feature vector v(s) would be a Gaussian
vector is surprising.  Again in this paper the authors neglect
the fact that they are doing multiple testing.  They compute a 
probability of false alarms by reducing the test on a Gaussian
test to a Chi2 test.



This paper has similar aspects to what we are doing, but so 
confusing that I rubbed my eyes.  The idea is to apply NL-
means to all patches of the source image, NL-means being 
computed with respect to a reference image which is not 
itself anomalous.   Here the NL-means parameter 
$\epsilon$ is crucial, because the threshold is on the sum of 
weights: if this sum is too small, then the patch is not 
reconstructed and detected as an anomaly.   Thus $\epsilon$ 
is fixed just large enough so that any patch in the reference 
image can be reconstructed with non-zero weights.  But if 
one thinks about it, one is led to the conclusion that the 
algorithm can be summarized much more simply as: a) fix a 
similarity threshold learned in the reference image and b) 
compare each patch of the source image to the patches of 
the reference; if the distance is higher than the similarity 
threshold, then the patch is an anomaly.   

Defect detection in patterned wafers using anisotropic 

kernels
Maria Zontak · Israel Cohen



RARE2012: a multi-scale rarity-based saliency detection with

its comparative statistical analysis

Rather than detailling the method, which is not stated in a very reproducible way, I describe the the principle. The idea
is to build a saliency map based on rarity. To do so, at each point some 32 multiscale orientation features are computed
using Gabor functions.  But the most contrasted channels are privileged by a weight for reconstructing a unique 
orientation channel for each orientation. Then the histograms of these channels are computed and a pixel is given a 
weight which is roughty inversely proportional to its rarity in the histogram. The same idea is applied to the colors after
PCA.  Then summing all of these saliency maps one obtains something similar to what is observed with gaze trackers: 
the salient regions are the most visited.  We could do the same directly by comparing a patch to all other patches and 
weighting inversely the patches that are less similar.



Exploiting Local and Global Patch Rarities for Saliency 

Detection Ali Borji Laurent Itti

We introduce a saliency model based on two key ideas.

The first one is considering local and global image patch

rarities as two complementary processes. The second 

one is based on our observation that for different 

images, oneof the RGB and Lab color spaces 

outperforms the other in saliency detection. We propose 

a framework that measures patch rarities in each color 

space and combines them in a final map. For each color 

channel, first, the input image is partitioned into non-

overlapping patches and then each patch is represented 

by a vector of coefficients that linearly reconstruct it from 

a learned dictionary of patches from natural scenes. 

Next, two measures of saliency (Local and Global) are 

calculated and fused to indicate saliency of each patch. 

Local saliency is distinctiveness of a patch from its 

surrounding patches. Global saliency is the inverse of a 

patch’s probability of happening over the entire image. 

The final saliency map is built by normalizing and fusing 

local and global saliency maps of all channels from both 

color systems.


