Constructing isotropic auto-covariance functions on graphs with Euclidean edges with respect to the shortest path distance and the resistance metric

Jesper Møller (in collaboration with Ethan Anderes and Jakob G. Rasmussen)

Aalborg University

Dendrite networks of neurons (green lines):

How do we construct an isotropic auto-covariance function C_o for the diameter Y (e.g. a GRF):

$$\operatorname{cov}(Y(u),Y(v))=C_o(d(u,v))$$

and what should the metric d be?

(日) (周) (三) (三)

Point patterns on linear networks:

How do we construct point processes with an isotropic (pseudo-stationary) pair correlation function

$$pcf(u, v) = g_o(d(u, v))$$

and what should the metric d be?

(日) (周) (三) (三)

Need for a more general definition than linear networks

Linear network = union of a finite collection of line segments in \mathbf{R}^2 ; distance = shortest path distance.

くほと くほと くほと

Need for a more general definition than linear networks

Linear network = union of a finite collection of line segments in \mathbf{R}^2 ; distance = shortest path distance.

Example (road networks):

- bridges and tunnels can generate networks which do not have a planar representation as a union of line segments in R²;
- varying speed limits or number of traffic lanes may require distances on line segments to be measured differently than their spatial extent.

くほと くほと くほと

A graph with Euclidean edges is a triple $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \{\varphi_e\}_{e \in \mathcal{E}})$ s.t.

 (a) Graph structure: (V, E) is a finite simple connected graph
 (V is finite; every pair of vertices is connected by a path; no multiple edges or loops).

A graph with Euclidean edges is a triple $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \{\varphi_e\}_{e \in \mathcal{E}})$ s.t.

- (a) Graph structure: (V, E) is a finite simple connected graph
 (V is finite; every pair of vertices is connected by a path; no multiple edges or loops).
- (b) **Edges are sets**: Each edge $e = \{u, v\} \in \mathcal{E}$ is associated with a set, also denoted e, where \mathcal{V} and all edge sets $e \in \mathcal{E}$ are mutually disjoint.

A graph with Euclidean edges is a triple $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \{\varphi_e\}_{e \in \mathcal{E}})$ s.t.

- (a) Graph structure: (V, E) is a finite simple connected graph
 (V is finite; every pair of vertices is connected by a path; no multiple edges or loops).
- (b) **Edges are sets**: Each edge $e = \{u, v\} \in \mathcal{E}$ is associated with a set, also denoted e, where \mathcal{V} and all edge sets $e \in \mathcal{E}$ are mutually disjoint.
- (c) Edge coordinates: If $e = \{u, v\} \in \mathcal{E}$, then $\{\underline{e}, \overline{e}\} := \varphi_e(\{u, v\}) \subset \mathbb{R}$ s.t. $\varphi_e : e \cup \{u, v\} \mapsto [\underline{e}, \overline{e}]$ is a bijection.

イロト 不得下 イヨト イヨト 二日

A graph with Euclidean edges is a triple $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \{\varphi_e\}_{e \in \mathcal{E}})$ s.t.

- (a) Graph structure: (V, E) is a finite simple connected graph
 (V is finite; every pair of vertices is connected by a path; no multiple edges or loops).
- (b) **Edges are sets**: Each edge $e = \{u, v\} \in \mathcal{E}$ is associated with a set, also denoted e, where \mathcal{V} and all edge sets $e \in \mathcal{E}$ are mutually disjoint.
- (c) Edge coordinates: If $e = \{u, v\} \in \mathcal{E}$, then $\{\underline{e}, \overline{e}\} := \varphi_e(\{u, v\}) \subset \mathbb{R}$ s.t. $\varphi_e : e \cup \{u, v\} \mapsto [\underline{e}, \overline{e}]$ is a bijection.
- (d) Distance consistency: If $e = \{u, v\} \in \mathcal{E}$, then

$$d_{\mathcal{V}}(u,v) = \mathsf{len}(e) := \overline{e} - \underline{e}$$

where $d_{\mathcal{V}}$ is the standard shortest-path weighted graph metric with edge weights given by len(e) for $e \in \mathcal{E}$.

The two graphs on the left are graphs with Euclidean edges (the blue dots represent the vertices, the grey lines (as subsets of \mathbf{R}^2) represent the edges, and edge coordinates are given by arc-length.)

The two graphs on the left are graphs with Euclidean edges (the blue dots represent the vertices, the grey lines (as subsets of \mathbf{R}^2) represent the edges, and edge coordinates are given by arc-length.)

However, the right most graph is **not** a graph with Euclidean edges: there are multiple edges; and distance consistency is violated.

A linear network...

3

イロン イ団と イヨン イヨン

A linear network... is clearly a graph with Euclidean edges

A graph with Euclidean edges which is not a linear network (has no planar representation):

.

Write $u \in \mathcal{G}$ as a synonym for $u \in \mathcal{V} \cup \bigcup_{e \in \mathcal{E}} e$.

3

イロト イポト イヨト イヨト

Write $u \in \mathcal{G}$ as a synonym for $u \in \mathcal{V} \cup \bigcup_{e \in \mathcal{E}} e$.

The length of an edge or partial edge of the form $\varphi_e^{-1}(I)$ $(I \subseteq [\underline{e}, \overline{e}])$ is given by the Euclidean length of I.

イロト イポト イヨト イヨト

Write $u \in \mathcal{G}$ as a synonym for $u \in \mathcal{V} \cup \bigcup_{e \in \mathcal{E}} e$.

The length of an edge or partial edge of the form $\varphi_e^{-1}(I)$ $(I \subseteq [\underline{e}, \overline{e}])$ is given by the Euclidean length of I.

Similarly, define the **length of a path** p_{uv} between two points $u, v \in \mathcal{G}$.

Write $u \in \mathcal{G}$ as a synonym for $u \in \mathcal{V} \cup \bigcup_{e \in \mathcal{E}} e$.

The length of an edge or partial edge of the form $\varphi_e^{-1}(I)$ $(I \subseteq [\underline{e}, \overline{e}])$ is given by the Euclidean length of I.

Similarly, define the **length of a path** p_{uv} between two points $u, v \in \mathcal{G}$.

The **geodesic metric on** \mathcal{G} (shortest path distance): For $u, v \in \mathcal{G}$,

 $d_G(u, v) := \inf\{\operatorname{len}(p_{uv}) : \operatorname{paths} p_{uv} \operatorname{connecting} u \operatorname{and} v\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Write $u \in \mathcal{G}$ as a synonym for $u \in \mathcal{V} \cup \bigcup_{e \in \mathcal{E}} e$.

The length of an edge or partial edge of the form $\varphi_e^{-1}(I)$ $(I \subseteq [\underline{e}, \overline{e}])$ is given by the Euclidean length of I.

Similarly, define the **length of a path** p_{uv} between two points $u, v \in \mathcal{G}$.

The **geodesic metric on** \mathcal{G} (shortest path distance): For $u, v \in \mathcal{G}$,

 $d_G(u, v) := \inf\{\operatorname{len}(p_{uv}) : \operatorname{paths} p_{uv} \operatorname{connecting} u \operatorname{and} v\}.$

As soon argued, we want in addition another metric related to electrical network theory...

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Electrical network

Definition from physics: For a finite (or countable) graph with each edge representing a resistor, the **resistance** between nodes u and v is the voltage drop from u to v when a current of one ampere flows from u to v.

Define the resistance metric as the variogram of an auxiliary random field $Z_{\mathcal{G}}$:

$$d_R(u,v) := \operatorname{var}(Z_{\mathcal{G}}(u) - Z_{\mathcal{G}}(v)) \qquad u, v \in \mathcal{G},$$

イロン イ理シ イヨン ・ ヨン・

Define the resistance metric as the variogram of an auxiliary random field $Z_{\mathcal{G}}$:

$$d_R(u,v) := \operatorname{var}(Z_{\mathcal{G}}(u) - Z_{\mathcal{G}}(v)) \qquad u, v \in \mathcal{G},$$

where $Z_{\mathcal{G}}$ is a finite sum of independent, mean zero, GRFs:

$$Z_{\mathcal{G}}(u) := Z_{\mu}(u) + \sum_{e \in \mathcal{E}(\mathcal{G})} Z_{e}(u)$$

・ロト ・聞ト ・ヨト ・ヨト

Define the resistance metric as the variogram of an auxiliary random field $Z_{\mathcal{G}}$:

$$d_R(u,v) := \operatorname{var}(Z_{\mathcal{G}}(u) - Z_{\mathcal{G}}(v)) \qquad u, v \in \mathcal{G},$$

where $Z_{\mathcal{G}}$ is a finite sum of independent, mean zero, GRFs:

$$Z_{\mathcal{G}}(u) := Z_{\mu}(u) + \sum_{e \in \mathcal{E}(\mathcal{G})} Z_{e}(u)$$

where

- Z_{μ} is defined on
 - ▶ V(G) using a covariance matrix related to the so-called graph Laplacian in electrical network theory (...)
 - on each edge by linear interpolation;

イロト 不得下 イヨト イヨト 二日

Define the resistance metric as the variogram of an auxiliary random field $Z_{\mathcal{G}}$:

$$d_R(u, v) := \operatorname{var}(Z_{\mathcal{G}}(u) - Z_{\mathcal{G}}(v)) \qquad u, v \in \mathcal{G},$$

where $Z_{\mathcal{G}}$ is a finite sum of independent, mean zero, GRFs:

$$Z_{\mathcal{G}}(u) := Z_{\mu}(u) + \sum_{e \in \mathcal{E}(\mathcal{G})} Z_{e}(u)$$

where

- Z_{μ} is defined on
 - ▶ V(G) using a covariance matrix related to the so-called graph Laplacian in electrical network theory (...)
 - on each edge by linear interpolation;
- $Z_e(u) = B_e(\varphi_e(u))$ if $u \in e$, where B_e is an independent Brownian bridge defined over $[\underline{e}, \overline{e}]$, and $Z_e(u) = 0$ if $u \notin e$.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

• Physical meaning: resistance makes it natural for applications associated with flow and travel time across road networks.

- Physical meaning: resistance makes it natural for applications associated with flow and travel time across road networks.
- Purely mathematical reason: solve a key degeneracy problem for developing isotropic auto-covariance functions w.r.t. d_G (more later).

- Physical meaning: resistance makes it natural for applications associated with flow and travel time across road networks.
- Purely mathematical reason: solve a key degeneracy problem for developing isotropic auto-covariance functions w.r.t. d_G (more later).

Theorem 1 $d_R(u, v)$ is a metric which is an extension of the classic (effective) resistance metric when viewing \mathcal{G} as an electrical network over nodes \mathcal{V} and with resistors given by len(e) for $e \in \mathcal{E}$.

• • = • • = •

- Physical meaning: resistance makes it natural for applications associated with flow and travel time across road networks.
- Purely mathematical reason: solve a key degeneracy problem for developing isotropic auto-covariance functions w.r.t. d_G (more later).

Theorem 1 $d_R(u, v)$ is a metric which is an extension of the classic (effective) resistance metric when viewing \mathcal{G} as an electrical network over nodes \mathcal{V} and with resistors given by len(e) for $e \in \mathcal{E}$.

Theorem 2 $d_R(u, v) \leq d_G(u, v)$ with equality iff \mathcal{G} is a tree.

- Physical meaning: resistance makes it natural for applications associated with flow and travel time across road networks.
- Purely mathematical reason: solve a key degeneracy problem for developing isotropic auto-covariance functions w.r.t. d_G (more later).

Theorem 1 $d_R(u, v)$ is a metric which is an extension of the classic (effective) resistance metric when viewing \mathcal{G} as an electrical network over nodes \mathcal{V} and with resistors given by len(e) for $e \in \mathcal{E}$.

Theorem 2 $d_R(u, v) \leq d_G(u, v)$ with equality iff \mathcal{G} is a tree.

Theorem 3 $d_R(u, v)$ is invariant to splitting edges and to merging edges at degree two vertices.

イロト 不得下 イヨト イヨト 二日

One main result (reproducible Hilbert space embedding)

Definition 4 For an arbitrary chosen origin $u_o \in \mathcal{V}$, let \mathcal{F} be the class of functions $f : \mathcal{G} \mapsto \mathbf{R}$ continuous with respect to d_G s.t. for all $e \in \mathcal{E}$, the restriction of f to e, f_e , is absolutely continuous and $f'_e \in L^2([\underline{e}, \overline{e}])$. Define

$$\langle f,g
angle_{\mathcal{F}} := f(u_o)g(u_o) + \sum_{e \in \mathcal{E}(\mathcal{G})} \int_{\underline{e}}^{\overline{e}} f'_e(t)g'_e(t) dt, \qquad f,g \in \mathcal{F}.$$

One main result (reproducible Hilbert space embedding)

Definition 4 For an arbitrary chosen origin $u_o \in \mathcal{V}$, let \mathcal{F} be the class of functions $f : \mathcal{G} \mapsto \mathbf{R}$ continuous with respect to d_G s.t. for all $e \in \mathcal{E}$, the restriction of f to e, f_e , is absolutely continuous and $f'_e \in L^2([\underline{e}, \overline{e}])$. Define

$$\langle f,g \rangle_{\mathcal{F}} := f(u_o)g(u_o) + \sum_{e \in \mathcal{E}(\mathcal{G})} \int_{\underline{e}}^{\overline{e}} f'_e(t)g'_e(t) dt, \qquad f,g \in \mathcal{F}.$$

Theorem 4 (RPHS) $(\mathcal{F}, \langle \cdot, \cdot \rangle_{\mathcal{F}})$ is an *infinite-dimensional Hilbert space* with (reproducing kernel) $R_{\mathcal{G}}(u, v) = \operatorname{cov}(Z_{\mathcal{G}}(u), Z_{\mathcal{G}}(v)) = \dots$ (see expression in the paper) and hence we have an explicit expression for

$$d_R(u,v) = R_{\mathcal{G}}(u,u) + R_{\mathcal{G}}(v,v) - 2R_{\mathcal{G}}(u,v)$$

One main result (reproducible Hilbert space embedding)

Definition 4 For an arbitrary chosen origin $u_o \in \mathcal{V}$, let \mathcal{F} be the class of functions $f : \mathcal{G} \mapsto \mathbf{R}$ continuous with respect to d_G s.t. for all $e \in \mathcal{E}$, the restriction of f to e, f_e , is absolutely continuous and $f'_e \in L^2([\underline{e}, \overline{e}])$. Define

$$\langle f,g
angle_{\mathcal{F}} := f(u_o)g(u_o) + \sum_{e \in \mathcal{E}(\mathcal{G})} \int_{\underline{e}}^{\overline{e}} f'_e(t)g'_e(t) dt, \qquad f,g \in \mathcal{F}.$$

Theorem 4 (RPHS) $(\mathcal{F}, \langle \cdot, \cdot \rangle_{\mathcal{F}})$ is an *infinite-dimensional Hilbert space* with (reproducing kernel) $R_{\mathcal{G}}(u, v) = \operatorname{cov}(Z_{\mathcal{G}}(u), Z_{\mathcal{G}}(v)) = \dots$ (see expression in the paper) and hence we have an explicit expression for

$$d_R(u,v) = R_{\mathcal{G}}(u,u) + R_{\mathcal{G}}(v,v) - 2R_{\mathcal{G}}(u,v)$$

$$= \sup_{f\in\mathcal{F}} \Big\{ |f(u)-f(v)|^2 : \|f\|_{\mathcal{F}} \leq 1 \Big\}.$$

Another main result (Hilbert space embedding)

Definition 5 If (X, d) is a distance space, then C_o is an **isotropic** auto-covariance function on (X, d) iff $C_o(d(x, y)): X \times X \mapsto \mathbf{R}$ is p.s.f.

イロト イポト イヨト イヨト

Another main result (Hilbert space embedding)

Definition 5 If (X, d) is a distance space, then C_o is an **isotropic auto-covariance function on** (X, d) iff $C_o(d(x, y))$: $X \times X \mapsto \mathbf{R}$ is p.s.f.

To obtain isotropic auto-covariance functions on (\mathcal{G}, d_R) and (\mathcal{G}, d_G) , we use certain Hilbert space embeddings, including

Theorem 5 $(\mathcal{G}, d_G) \stackrel{\sqrt{\cdot}}{\hookrightarrow} H$

and based on deep results of von Neumann and Schoenberg from the 1930's and 1940's...

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Yet another main result — for the resistance metric!

Theorem 6 For σ^2 , $\beta > 0$, we have parametric families of isotropic auto-covariance functions on (\mathcal{G}, d_R) :

• Power exponential covariance function:

$$\mathcal{C}_o(s) = \sigma^2 \exp\left(-eta s^lpha
ight), \quad lpha \in (0,1].$$

• Generalized Cauchy covariance function:

$$C_o(s) = \sigma^2 \left(\beta s^{lpha} + 1\right)^{-\xi/lpha}, \quad lpha \in (0,1], \ \xi > 0.$$

• The Matérn covariance function:

$$\mathcal{C}_o(s) = \sigma^2 rac{\left(eta s
ight)^lpha \mathcal{K}_lpha \left(eta s
ight)}{\Gamma(lpha)2^{lpha-1}}, \quad lpha \in (0,1/2].$$

• The Dagum covariance function:

$$\mathcal{C}_o(s) = \sigma^2 \left[1 - \left(rac{eta s^lpha}{1 + eta s^lpha}
ight)^{\xi/lpha}
ight], \quad lpha, \xi \in (0, 1].$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Yet another main result — for the resistance metric!

Theorem 6 For σ^2 , $\beta > 0$, we have parametric families of isotropic auto-covariance functions on (\mathcal{G}, d_R) :

• Power exponential covariance function:

$$\mathcal{C}_o(s) = \sigma^2 \exp\left(-eta s^lpha
ight), \quad lpha \in (0,1].$$

• Generalized Cauchy covariance function:

$$C_o(s) = \sigma^2 \left(\beta s^{lpha} + 1\right)^{-\xi/lpha}, \quad lpha \in (0,1], \ \xi > 0.$$

• The Matérn covariance function:

$$\mathcal{C}_o(s) = \sigma^2 rac{ig(eta sig)^lpha \mathcal{K}_lphaig(eta sig)}{\Gamma(lpha)2^{lpha-1}}, \quad lpha \in (0,1/2].$$

• The Dagum covariance function:

$$\mathcal{C}_o(s) = \sigma^2 \left[1 - \left(rac{eta s^lpha}{1 + eta s^lpha}
ight)^{\xi/lpha}
ight], \quad lpha, \xi \in (0, 1].$$

Each Co is strictly p.d. and completely monotonic.

For the geodesic metric!

Theorem 7 Theorem 6 applies also on (\mathcal{G}, d_G) provided \mathcal{G} is a tree, a cycle or a finite 1-sum of trees and cycles.

(日) (周) (三) (三)

For the geodesic metric!

Theorem 7 Theorem 6 applies also on (\mathcal{G}, d_G) provided \mathcal{G} is a tree, a cycle or a finite 1-sum of trees and cycles.

Definition 6 Suppose $\mathcal{G}_1 = (\mathcal{V}_1, \mathcal{E}_1, \{\varphi_e\}_{e \in \mathcal{E}_1})$ and $\mathcal{G}_2 = (\mathcal{V}_2, \mathcal{E}_2, \{\varphi_e\}_{e \in \mathcal{E}_2})$ have only a vertex v_o in common, i.e. $\mathcal{G}_1 \cap \mathcal{G}_2 = \{v_o\}$. The **1-sum** of \mathcal{G}_1 and \mathcal{G}_2 is $\mathcal{G} = (\mathcal{V}_1 \cup \mathcal{V}_2, \mathcal{E}_1 \cup \mathcal{E}_2, \{\varphi_e\}_{e \in \mathcal{E}_1 \cup \mathcal{E}_2})$.

Forbidden graph for the geodesic metric

Theorem 8 If \mathcal{G} has three paths which have common endpoints but are otherwise pairwise disjoint, then $\exists \beta > 0$ s.t. $s \mapsto \exp(-\beta s)$ ($s \ge 0$) is **not** an isotropic auto-covariance function on (\mathcal{G}, d_G).

Some other results

Theorem 9 Let C_o be one of the functions given in (I)-(IV) in Theorem 6 but with α outside the parameter range ($\alpha > 1$ in (I), (II), or (IV), and $\alpha > 1/2$ in (III)). Then there exists a star-shaped graph with Euclidean edges \mathcal{G} s.t. $s \mapsto \exp(-\beta s)$ ($s \ge 0$) is an isotropic auto-covariance function on (\mathcal{G}, d_G), but C_o is **not** an isotropic covariance function on (\mathcal{G}, d_G).

- 4 回 ト 4 ヨ ト - 4 ヨ ト -

Some other results

Theorem 9 Let C_o be one of the functions given in (I)-(IV) in Theorem 6 but with α outside the parameter range ($\alpha > 1$ in (I), (II), or (IV), and $\alpha > 1/2$ in (III)). Then there exists a star-shaped graph with Euclidean edges \mathcal{G} s.t. $s \mapsto \exp(-\beta s)$ ($s \ge 0$) is an isotropic auto-covariance function on (\mathcal{G}, d_G), but C_o is **not** an isotropic covariance function on (\mathcal{G}, d_G).

Theorem 10 If C_o is an auto-covariance function on (\mathcal{G}, d_G) for all star-shaped graphs with Euclidean edges \mathcal{G} , then $C_o \ge 0$ and either C_o has unbounded support or $C_o(t) = 0 \ \forall t > 0$.

イロト イ団ト イヨト イヨト 二耳

Some other results

Theorem 9 Let C_o be one of the functions given in (I)-(IV) in Theorem 6 but with α outside the parameter range ($\alpha > 1$ in (I), (II), or (IV), and $\alpha > 1/2$ in (III)). Then there exists a star-shaped graph with Euclidean edges \mathcal{G} s.t. $s \mapsto \exp(-\beta s)$ ($s \ge 0$) is an isotropic auto-covariance function on (\mathcal{G}, d_G), but C_o is **not** an isotropic covariance function on (\mathcal{G}, d_G).

Theorem 10 If C_o is an auto-covariance function on (\mathcal{G}, d_G) for all star-shaped graphs with Euclidean edges \mathcal{G} , then $C_o \ge 0$ and either C_o has unbounded support or $C_o(t) = 0 \ \forall t > 0$.

NB: I Theorems 9 and 10, " (\mathcal{G}, d_G) " can be replaced by " (\mathcal{R}, d_G) ".

イロト イポト イヨト イヨト 二日

Simulations of LGCPs using exponential auto-covariance functions:

Given a realisation of a GRF Y on \mathcal{G} with exponential auto-covariance function, simulate a Poisson process with intensity function $\exp(Y)$.

伺下 くまト くまり