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1. Fock space representation

7 is a Poisson process on some measurable space (X, X’) with
o-finite intensity measure A. This is a random element in the
space N of all integer-valued o-finite measures on X, equipped
with the usual o-field (and distribution ,) with the following two

properties
m The random variables 7(By), ..., n(Bm) are stochastically
independent whenever By, . .., By are measurable and

pairwise disjoint.
|

P(n(B) = k) = A(g)k exp[-A(B)], k€ Np Be X,

where oofe=> := 0 for all k € Np.
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Definition (Difference operator)

For a measurable function f : N — R and x € X we define a
function Dxf : N — R by

Dxf(p) := F(pu + 6x) — f(p)-

For x1,...,xn € X we define D}, f: N — R inductively by
D)’(71,...,an = D)1(1 D)’g;j.,x,,fa

where D' := D and D°f = f.

Lemma
Forany f € L3(P,)

Tnf(X‘] PR ,Xn) = ED),(71,...7an("7)7

defines a function Tpf € L2(\").
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Theorem (L. and Penrose ’10)
Letf,g € L3(P,). Then

[e.e]

B(n)g(n) = (BAn)(Egm) + > o [(Taf)(Tag) X"

n=1
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2. A covariance identity

Assume that the Poisson process 7 is proper, that is of the form
n(X)
n= Z ox,
n=1

for some random elements Xi, X, .... Let Uy, Us, ... be
independent random variables, uniformly distributed on [0, 1]
and independent of (1(X), (Xn)n>1). For each t € [0, 1] define a
t-thinning of n by

n(X)

ne = Z 1{U, < t}ix,.

n=1
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Definition

Let LZ denote the space of all random variables F € L?(P) such
that F = f(n) P-almost surely, for some measurable function
(representative) f : N — R.

Definition

Let F ¢ L% have representative f. Define Dy F := Dxf(n) for
x € X The mapping (w, X) — DxF(w) is denoted by DF.
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Let F € L2 and G € L2 be such that DF, DG € L?(P ® \). Then

E[FG] — E[F]E[G] = E[ / / \(DyF)(PDyG) th(dx)] ,
0
where

PF = ]E[/f(nt“‘/‘)nﬂ—t))\(dﬂ) ‘ n]-

LetF € L% and G € L,27. Then

1
E[FG] - E[FIE[G] = E[ J[| =0cF | niEi0.G o drA(dx)] |
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3. The Poincaré inequality

Theorem (Chen '85; Wu ’'00; L. and Penrose '11)

Let F € L2. Then
Var|[F] < E / (DeF)2A(0x).

Equality holds iff F is a linear function of 1.
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4. Chaos expansion of Poisson functionals

Definition

Let n € Nand g € L?(\"). Then I,(g) denotes the multiple
Wiener-It6 integral of g w.r.t. the compensated Poisson process
n— A Forc € R let Iy(c) := c. These integrals have the

properties

Eln(g)In(h) = n(@, A)n, N € No,
Elm(g)In(h) =0, m#n.

Here

- 1
g(X1,...,Xn) = o Z I(Xr(1ys - - 5 Xn(n))

" mEY,

denotes the symmetrization of g.
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Remark (Surgailis '84)
Letn>1and ge L'(\") N L2(\"). Then

Ih(g) = Z( 17 [ gt DA )

where [n] := {1,...,n}, J°:= [n] \ J and X, := (X))jey and n{™
is the m-th factorial moment measure associated with 7:

:/.../1B(x1,...,xm)(77nf@g)(dxm)
j=1

- (11— 8, )(cXa)n(dxy).
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Theorem (Wiener ’38; It6 '56; Y. Ito '88; L. and Penrose '11)

For any F € L2 there are uniquely determined f, € L5(\") such
that P-a.s.

F=EF+_ h(f).

n=1

Moreover, we have f, = % Taf, where f is a representative of F.
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5. Normal approximation of Poisson functionals

Definition
Let X be a random variable and N standard normal. The
Wasserstein distance between the laws of X and N is defined
by
dw(X,N) = sup |Eh(X)—Eh(N)|.
heLip(1)

The Kolmogorov distance is given by

dk(X,N) =sup|P(X < x) —P(N < x)|.
xeR
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Theorem (Peccati, Solé, Taqqu, Utzet '10; L., Peccati, Schulte

'16)
Suppose that F € L,% satisfies DF € L?(P ® \) and E[F] = 0.
Then
;
dw(F,N) < IEU1 - // (P,DyF)(DyF) dm(dx)”
0

+E[//01 |PyDy F|(Dy F)? dt)\(dx)}

Giinter Last Pairwise markings of Poisson processes



6. Edge markings of Poisson processes

m 7 is a Poisson process on a Borel space X with a o-finite
and diffuse intensity measure \.

m There is a measurable partial ordering < on X, that orders
the points of X \-a.e.

m Let X2 denote the space of all sets e C X containing
exactly two elements.

m Let (M, M) be a further Borel space equipped with a
probability measure Q.
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Definition
Let Zm.n, m, n € N, be independent random elements of M with
common distribution Q. Then

n(X)
Ei= > X < Xa}0(( X Xa}Zimn)

m,n=1

(a point process on X2 x M), is called an independent edge
marking of 7.
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7. The random connection model

Definition

Let ¢ : X x X — [0, 1] be a measurable and symmetric
connection function. Given 7, connect any two distinct points
X,y € n with probability ¢(x, y) independently of all other pairs.
This gives the random connection model I',(n) := (n, x), where
x is the point process of edges. More formally we can choose
M = [0, 1] and set

X = {{Xm, Xn} : Xm < X, Zm,n < SO(XmaXn)}'
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8. Variance inequalities

Definition
Let Zm.n, m, n € Z, be independent random elements of M with

common distribution Q. For k € N, xq,...,xx € X and | C [K]
define a point process &,),., on X2 x M by

Eo)ies = > H{Xm < Xn}0({Xm, Xo} . Zmn) >
mone[n(X]{—iicl}

where X_; := x;, i € I, and [m] := {k € N: k < m} for
m e NU {oo}.
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Definition

Let L denote the space of all o(£)-measurable random
variables. For each F € L, there is a measurable

f: N(X[ x M) — R such that F = f(¢) a.s. We call f a
representative of F.

Definition

Let F € L¢ have representative f. For each k € N and alll

Xi,..., Xk € X we define a random variable A¥ , F by
Al)§1,..4,XkF = Z (_1 )k_“' f(g(xi)iel)'
IC[K]
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Theorem (Fock space inequality, L., Nestmann and Schulte

17+)
Let F € L¢ be such that EF? < co. Then

> 1
VarF > = /E[]E (A% F | fx1,...,xn]2] A(d(xq, ..., Xn)),
n=1

where Fy, .. x, IS the o-field generated by the marks on the
complete graph supported by {x1,...,Xn}.
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Theorem (Poincaré inequality, L., Nestmann and Schulte '17+)
Let F € L¢ satisfy EF? < co. Then

VarF <E / (AxF)? \(dx).
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9. Normal approximation

Theorem (L., Nestmann and Schulte '17+)

Let F € L¢ be such that EF* < oo, EF = 0 and Var F = 1 and
let N be standard normal. Then, under further integrability
assumptions on F,
dw(F,N) <y +92 +13,

where

1/2 1/2
1} =4 [ (BB PRI V2 [B(AS, YOS, 1 FYF] V2
FYS = / (A)2(1 ,X3 F) ( X2,X3 F)2 d)\s

e = /IE]AXF\s)\(dx).
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Idea of the proof:
Represent ¢ as a function of a suitable independent
marking n* of the Poisson process 7.
Write F* = T(n*) such that F £ F*.
Apply the second order Poincaré inequality from L.,
Peccati, Schulte (2016) to F*.

Establish a connection between (AF, A%F) and
(DF*, D?>F*). (There is no commutativity!)
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